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Log-linear models are widely used for assessing determinants of fitness in empirical studies, for example, in determining how

reproductive output depends on trait values or environmental conditions. Similarly, theoretical works of fitness and natural se-

lection employ log-linear models, often with a negative quadratic term, generating Gaussian fitness functions. However, in the

specific application of regression-based analysis of natural selection, such models are rarely employed. Rather, OLS regression is

the predominant means of assessing the form of natural selection. OLS regressions allow specific evolutionary quantitative pa-

rameters, selection gradients, to be estimated, and benefit from the fact that the associated statistical models are easily applied.

We examine whether selection gradients can be directly expressed in terms of the coefficients of models using exponential fitness

functions with linear or quadratic arguments. Such models can be easily fitted with generalized linear models (GLMs). The expres-

sions we obtain coincide with those for Gaussian functions, but relax the major constraint that the (log) fitness function is concave

(downwardly curved). Additionally these results lead to univariate and multivariate analyses of both linear and quadratic selec-

tion that potentially incorporate pragmatic and interpretable models of fitness functions, where the parameters can be related

analytically to selection gradients, and that can be operationalized using widely available statistical tools.
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The characterization of natural selection, especially in the wild,

has long been a major research theme in evolutionary ecology

and evolutionary quantitative genetics (Endler 1986, Kingsolver

et al. 2001, Lande & Arnold 1983, Manly 1985, Weldon 1901).

In recent decades, regression-based approaches have been used

to obtain direct selection gradients (especially following Lande

& Arnold 1983), which represent the direct effects of traits on

fitness. These, and related, measures of selection have an ex-

plicit justification in quantitative genetic theory (Lande 1979,

Lande & Arnold 1983), which provides the basis for comparison

among traits, taxa, and so on, and ultimately allows meta-analysis

(e.g., Kingsolver et al. 2001). Selection gradients can character-

ize both directional selection and aspects of nonlinear selection,

and so are a very powerful concept in evolutionary quantitative

genetics.

The selection gradient may be defined as the vector of partial

derivatives of relative fitness with respect to phenotype, averaged

over the distribution of phenotype observed in a population. This

definition is equivalent to other existing definitions when the phe-

notype follows a Gaussian distribution (Walsh & Lynch 2018), an

assumption we rely on for most of our results. Following Lande

& Arnold (1983), given an arbitrary function W (z) for expected

fitness of a (multivariate) phenotype z, a general expression for

the directional selection gradient vector β is

β = W̄ −1
∫

∂W (z)

∂z′ p(z)dz , (1)

where p(z) is the probability density function of phenotype, with

z being a column vector, and W̄ is mean fitness. Mean fitness

can itself be obtained by
∫

W (z)p(z)dz. A quadratic selection
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gradient can also be defined as the average curvature (similarly

standardised), rather than the average slope, of the relative fitness

function,

γ = W̄ −1
∫

∂2W (z)

∂z∂z′ p(z)dz. (2)

The directional selection gradient has a direct relationship to

evolutionary change, assuming that breeding values (the addi-

tive genetic component of individual phenotype, Falconer 1960)

are multivariate normally distributed, following the Lande (1979)

equation

�z̄ = Gβ , (3)

where �z̄ is per-generation evolutionary change, and G is the

additive genetic covariance matrix, i.e., the (co)variances among

individuals of breeding values. The quadratic selection gradient

matrix has direct relationships to the change in the distribution of

breeding values due to selection, but not with such simple rela-

tionships between generations as for the directional selection gra-

dient and the change in the mean (Lande & Arnold 1983). Walsh

& Lynch (2018) provide an extended treatment of the various re-

lationships between the summaries of the local fitness function

provided by β and γ to changes in the distribution of phenotype

and breeding values.

Some progress has been made at developing generalised

regression model methods for inference of selection gradients.

Janzen & Stern (1998) proposed a method for binomial fitness

components (e.g., per-interval survival, mated vs. not mated). The

Janzen & Stern (1998) method provides estimates of β, and re-

quires fitting a logistic model with linear terms only, calculating

the average derivatives at each phenotypic value observed in a

sample, and then standardizing to the relative fitness scale. Mor-

rissey & Sakrejda (2013) expanded Janzen & Stern’s (1998) ba-

sic approach to arbitrary fitness functions (i.e., not necessarily

linear) and arbitrary response variable distributions, retaining the

basic idea of numerically averaging the slope (and curvature) of

the fitness function over the distribution of observed phenotype.

Shaw & Geyer (2010) developed a framework for characteriz-

ing the distributions of fitness (and fitness residuals) that arise

in complex life cycles, and also showed how the method could

be applied to estimate selection gradients by averaging the slope

or curvature of the fitness function over the observed values of

phenotype in a sample.

Perhaps the simplest fitness function, W (z), that arises in

evolutionary theory is a log-linear model, such that

W (z) = eα+b′z, (4)

where α is an intercept, and b is a vector of linear regression

coefficients on the log scale. The derivative of fitness with respect

to phenotype is ∂W /∂z′ = bW (z), and so from equation 1 the

selection gradient is

β =
∫

bW (z)p(z)dz∫
W (z)p(z)dz

= b. (5)

Thus, under such a model, the directional selection gradient vec-

tor β is equal to b (see also Lande 1983, Chevin & Hospital 2008,

Chevin et al. 2015). The fitness function given by equation 4 is

convex (upwardly curved) on the scale of fitness (as opposed to

log fitness), and this may be regarded both as a biological feature

of such a model, or as a statistical artifact of fitting a model that is

linear on the log scale (Schluter 1988, Chevin & Hospital 2008).

More commonly in evolutionary theory (e.g., Lande 1976,

Chevin & Haller 2014), Gaussian functions are used, such that

W (z) ∝ e− 1
2 (z−θ)’ω−1(z−θ), (6)

where θ is the vector of optimal phenotypes and ω describes the

curvature; ω must be positive-definite. Any time that mean trait

values are not equal to the optimum (θ), selection in a Gaussian

fitness model has a directional component. Specifically,

β = −S(μ − θ) , (7)

where μ is mean phenotype and S = (ω + �)−1, where � is the

phenotypic variance-covariance matrix before selection; this rela-

tion is used extensively in evolutionary theory (e.g., Lande 1976,

1979, Gomulkiesicz & Houle 2009, Chevin & Haller 2014).

Quadratic selection gradients are more rarely considered in the-

ory that uses Gaussian fitness functions, perhaps because those

functions are seen as general models of stabilizing selection, and

therefore represent quite constrained models of nonlinear selec-

tion. The quadratic selection gradient matrix is given by

γ = ββ′ − S (8)

(Chevin et al. 2015; note that this reference gives a mis-printed

version of this relation). The expressions given here for selection

gradients in Gaussian fitness models deviate somewhat from typ-

ical presentations in so far as we give multivariate expressions for

all quantities.

It is possible to fit constrained functions (e.g., Gaussian)

to empirical data in studies on natural selection, although this

is rarely done (see Chevin et al. 2015 for an excellent example,

linking theoretical quantities to selection gradients using a Gaus-

sian model). More general exponential functions may be very

useful for empirical studies of natural selection, particularly if

they make less restrictive assumptions about the overall form of

selection. If the coefficients of more general functions can be re-

lated analytically to selection gradients, they may help to better

link theoretical and empirical evolutionary quantitative genetic

studies. We sought to determine whether analytical relationships
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could be found between selection gradients and the parameters of

exponential functions with quadratic exponents, i.e.,

W (z) = ea+∑
i bizi+

∑
i

1
2 giz2

i +
∑k−1

i=1

∑k
j=i+1 gi j ziz j . (9)

Such functions are easily estimated via generalised linear models,

using log link functions, and inherently benefit from the property

of exponential functions to treat the response variable (expected

fitness in this case) as a strictly positive quantity. The class of

function we consider is also a generalization of the Gaussian fit-

ness function (as in eq. 6), and is therefore linked to evolutionary

quantitative genetic theory, but provides a more flexible model

of nonlinear selection. Specifically, it need not be assumed that

the function contains a maximum; when it does, relationships to

theory that uses Gaussian functions may be invoked. As such,

this more general approach, and its immediate link to statistical

analysis with generalized linear models, may be very attractive to

empiricists. We obtain analytical links between the regression pa-

rameters in equation 9 and β and γ. Our expressions coincide with

known relations for Gaussian fitness functions (i.e., equations 7

and 8). The results are thus a particularly satisfying link between

procedures that are likely to be adopted by empiricists, and the

kinds of function that are used by theoreticians in evolutionary

quantitative genetics. We also provide expressions for biological

and statistical variance in selection gradients, given variance in

the parameters of the regression in equation 9, and some links

between exponential fitness functions and some other analyses

about fitness components in use in evolutionary studies.

Selection Gradients and Exponential
Fitness Functions with Quadratic
Arguments
Before detailing our results, a brief description of the factor of
1
2 associated with the quadratic terms in equation 9, analogous

to that surrounding a similar factor in Lande & Arnold’s (1983)

paper (see Stinchcombe et al. 2008), may prevent confusion. In

order to obtain the correct values of the gi coefficients, the co-

variate values for quadratic terms should be squared and then

halved. An alternative analysis is possible, where the squared co-

variate values are not halved, but the estimated coefficient esti-

mates are doubled (analogous to procedures discussed by Stinch-

combe et al. 2008). However, this alternative analysis leads to

an additional, and potentially confusing, step in the calculation

of standard errors and variance-covariance matrices of selection

gradients in replicated studies (detailed in the appendix).

Define a vector b = (b1, . . . , bk )′ containing the coefficients

of the linear terms in the exponent of the model in equation 9, and

a matrix g = (gi j ) containing the coefficients of the correspond-

ing quadratic form. We can then write the fitness function more

conveniently in matrix form

W (z) = e f (z) (10a)

f (z) = a + b′z + 1

2
z′gz. (10b)

Let d be a vector of the expectations of the first order partial

derivatives of W (z) and let H be the matrix of expectations of the

second order partial derivatives of W (z). Thus the elements of

d are di = E [ ∂W (z)
∂zi

] and the elements of H are Hi j = E [ ∂2W (z)
∂zi∂z j

].

We can now rewrite the expressions for directional and quadratic

selection gradients as

β = d
E [W (z)]

(11)

and

γ = H
E [W (z)]

. (12)

Differentiating equation 10 gives

∂W (z)

∂z′ = (b + gz)e f (z), (13)

and

∂2W (z)

∂z∂z′ = (
g + (b + gz)(b + gz)′

)
e f (z). (14)

Assume that the phenotype z is multivariate normal, with

mean μ and covariance matrix �, and denote its probability den-

sity by pμ,�(z). Provided e f (z) has a finite expectation, the func-

tion

K (z) = e f (z) pμ,�(z)

E
[
e f (z)

] (15)

is a probability density function giving the distribution of pheno-

types after selection. Define the matrix �−1 = �−1 − g and the

vector ν = μ + �(b + gμ). We show in the Appendix that � is

symmetric. Provided it is also positive definite, it is a valid co-

variance matrix, and, by equation A8, K (z) ∝ pν,�(z). As K is a

probability density function this implies

K (z) = pν,�(z). (16)

Define Q−1 = �−1� = Ik − g�. Combining equations

11, 13 and 16 yields β = E [b + gz], where the expectation is

taken with respect to K . This is an expectation of a linear function

of z, and so

β = b + gν = (b + gμ) + g�(b + gμ) = (Ik + g�)(b + gμ)

= Q(b + gμ), (17)

by use of equation A5.
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Combining equations 12, 14, and 16 yields γ = E [g +
(b + gz)(b + gz)′], where the expectation is taken with respect

to K . Hence

γ = g + VAR(b + gz) + [E(b + gz)][E(b + gz)]′

= g + g�g′ + ββ′

= ββ′ + (Ik + g�)g
= ββ′ + Qg,

(18)

where we have noted that g is symmetric and used equation A5.

In univariate analyses, the matrix machinery necessary for

implementing the general formulae in equations 17 and 18 can

be avoided. If the fitness function is W (z) = ea+bz+ 1
2 gz2

, and z

has a mean of μ and a variance of σ2, then β = b+gμ
1−gσ2 and

γ = (b+gμ)2+g(1−gσ2 )
(1−gσ2 )2 . These expressions will hold for any uni-

variate analysis, and can be applied to get mean-standardized,

variance-standardized, and unstandardized selection gradients,

when appropriate values of μ and σ2 are used, and applied to

log-quadratic models of W (z) where the phenotypic records have

been correspondingly standardized. For the common case where

the trait is mean-centred and (unit) variance standardized, the ex-

pressions simplify further to β = b
1−g and γ = b2+g(1−g)

(1−g)2 .

The notation we have used is designed to relate the param-

eters one may estimate directly in a regression analysis to se-

lection gradients. This should facilitate the application of log-

linear models of fitness functions in empirical models of selec-

tion. Interestingly, the expressions we obtain, while more general

than Gaussian functions (they do not constrain selection to have

a stabilising form), coincide with those for Gaussian selection.

This equivalence is demonstrated in the appendix. We have thus

shown that these expressions are more general and empirically

useful than has previously been known. The requirements for ob-

taining selection gradients from Gaussian and the more general

exponential functions with quadratic arguments are slightly dif-

ferent. For Gaussian functions, ω (as in equation 6) must be pos-

itive definite. Equations 17 and 18 require that �, which depends

on both g and �, is positive definite. In univariate analyses, this

condition reduces to g < 1
σ2 , implying that the fitness function

should not curve upward too sharply within the range of observed

phenotype.

The main application of the expressions given here to obtain

selection gradient estimates from log-linear or log-quadratic ar-

guments is generalized linear model (GLM) regression analyses

with log link functions. With appropriate specification of linear,

quadratic, and correlational terms, GLMs with any response vari-

able distribution should yield selection gradient estimates, pro-

viding that they specify a log link function. This will include,

for example, binomial and negative binomial GLM models, with

arguments specified as in equation 4 or 9. The equations also

apply directly to log-link models with additive overdispersion

(appendix section). Additionally under certain conditions, sev-

eral other analyses commonly used to assess the dependence

of fitness, or fitness components, on quantities such as pheno-

typic traits can yield log-linear or log-quadratic models of trait-

fitness relationships, and can thus be used with the expressions

given in this section for β and γ. These include special cases

of parentage analysis, capture-mark-recapture analysis, and sur-

vival analysis. The conditions under which these methods can

yield selection gradient estimates are elaborated in appendix

sections.

Biological Variation and Statistical
Uncertainty
The expressions for selection gradients, given the parameters

of a log-quadratic fitness function (equations 17 and 18) give

the selection gradients conditional on the estimated values of

b and g. However, we often make inference about selection,

not merely to quantify selection at a given place and time, but

rather to ask larger questions, for example, about how selection

varies. For exponential models with a linear argument (equa-

tion 4), the variance in b among, for example, cohorts or pop-

ulations, may be estimated by random-regression analysis, and

would represent the variance in directional selection gradients,

since β = b. However, since the b and g coefficients in an expo-

nential model of fitness with a quadratic argument (equation 9)

are not themselves selection gradients, their variances and co-

variances are not the variances and covariances of β and γ. More-

over in empirical studies of natural selection, b and g will not

typically be known quantities, but rather will be estimates with

error.

Whether variances and covariances of the elements of b and

g are of biological interest (e.g., variation among temporal repli-

cates of a selection analysis), or are statistical (e.g., sampling

variance), the corresponding biological or sampling variances of

β and γ can potentially be obtained by integrating approxima-

tions, bootstrapping, and/or Monte Carlo methods. In particular,

approximation of variances in β and γ by a first-order Taylor ap-

proximation (the “delta method”; Lynch & Walsh 1998) may gen-

erally be pragmatic. Formulae for approximate biological or sta-

tistical variances of β and γ given covariances of b and g by this

method are given in the appendix. For univariate analysis, with

phenotype standardised to μ = 0 and σ2 = 1, the approximate

variances β and γ are given by

Var[β] ≈ Var[b]

(1 − g)2
+ b2Var[g]

(1 − g)4
+ 2bCov[b, g]

(1 − g)3
, (19)

and

Var[γ] ≈ 4b2Var[b]

(1 − g)4
+

(
1 + 2b2 − g

)2
Var[g]

(1 − g)6
+ 4b(1 + 2b2 − g)Cov[b, g]

(1 − g)5
, (20)
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where Var[b] and Var[g] represent the variances of b and g terms

and Cov[b, g] is the covariance of the b and g terms. These vari-

ances and covariances may represent real variation in trait-fitness

relationships (e.g., variation in time or space), or they may rep-

resent statistical uncertainty in parameter values. If equations 19

and 20 are used to represent statistical uncertainty in estimates β̂

and γ̂, Var[b] would be replaced by Var[b̂] (the sampling vari-

ance, or squared standard error of the estimate of b), etc. The

sampling covariance of b and g (i.e., Cov[b̂, ĝ]) is not routinely

reported by most statistical software packages, but can gener-

ally be obtained (the use of the sampling covariance of b̂ and ĝ

terms in a GLM model in R is demonstrated in the supplemental

materials).

STATISTICAL UNCERTAINTY: SIMULATION

We performed a small simulation study to assess the extent of any

bias in the estimators β and γ and the adequacy of the first-order

approximation of their standard errors. We simulated univariate

directional selection, with values of b between -0.5 and 0.5, and

with g = −1, 0, and 0.4. Because β and γ are nonlinear func-

tions of g, it is not possible to simultaneously investigate ranges

of parameter values with regular intervals of values of both g and

selection gradients. These values of g represent a compromise be-

tween investigating a regular range of g and γ. We used a (log)

intercept of the fitness function of a = 0. We simulated a sample

size of 200 individuals. This sample size reflects a very modest-

sized study with respect to precision in inference of nonlinear

selection, and is therefore a useful scenario in which to judge

performance of different methods for calculating standard errors.

Fitness was simulated as a Poisson variable with expectations de-

fined by the ranges of values of b and g, and with phenotypes

sampled from a standard normal distribution.

First, we analyzed each simulated dataset using the OLS re-

gression described by Lande & Arnold (1983), i.e., wi = μ +
βzi + 1

2 γz2
i + ei, using the R function lm(). For the OLS regres-

sions, we calculated standard errors assuming normality using the

standard method implemented in the R function summary.lm(),

and by case-bootstrapping, by generating 1000 bootstrapped

datasets by sampling with replacement, running the OLS regres-

sion analysis, and calculating the standard deviation of the boot-

strapped selection gradient estimates. Second, we fitted a Poisson

GLM with linear and quadratic terms, using the R function glm().

We then calculated conditional selection gradient estimates using

equations 17 and 18. We obtained standard errors by using a first-

order Taylor series approximation (the “delta method”; Lynch &

Walsh 1998, appendix A1). For each method of obtaining esti-

mates and standard errors, we calculated the standard deviation

of replicate simulated estimates. We could thus evaluate the per-

formance of different methods of obtaining standard errors by

their ability to reflect this sampling standard deviation. We also

calculated mean absolute errors for both estimators of β and γ for

all scenarios. Every simulation scenario and associated analysis

of selection gradients was repeated 1000 times.

Selection gradient estimates obtained by all three methods

were essentially unbiased (Figure 1a,d,g,j,m,p), except for small

biases that occurred when the fitness function was very curved.

Thus, GLM-derived values of selection gradients, conditional on

estimated values of b and g, performed very well as estimators

of β and γ in our simulations. Similarly, first-order approxima-

tions of standard errors of the GLM-derived estimates of β and

γ closely reflected the simulated standard deviations of the esti-

mators (Figure 1b,e,h,k,n,q). All methods for obtaining standard

errors performed well for estimates of β in the pure log-linear se-

lection simulations (Figure 1h,k). OLS standard errors performed

reasonably well under most simulation scenarios, except when g

was positive (Figure 1n,q); across all scenarios bootstrap stan-

dard errors of the OLS estimators outperformed OLS standard

errors produced using the standard formula. Mean squared er-

ror of the GLM estimators was always smaller than that of the

OLS estimators of β and γ. This is unsurprising, as the simu-

lation scheme corresponded closely to the GLM model. These

results demonstrate the usefulness of the conditional values of β

and γ as estimators, and show that gains in precision and accuracy

can be obtained when glm models of fitness functions fit the data

well.

It remains plausible that the OLS estimators motivated by

Lande & Arnold’s (1983) work could outperform glm-based anal-

yses in some scenarios. In particular, the OLS estimators will

rarely be misleading (Figure 1), whereas the risk of bias or mis-

leading standard errors in workflows involving GLMs resulting

from, for example, mis-specification of error structures, is not

known. What the theory and limited simulations presented here

demonstrate is that (a) given a well-specified log-link GLM, se-

lection gradients can be obtained and (b) first-order approxima-

tions to the standard errors of these GLM-based selection gradi-

ents seem to perform adequately.

VARIATION IN SELECTION: EMPIRICAL EXAMPLE

In order to explore the behavior of estimates of β and γ derived

from log-quadratic fitness models, we conducted a small study

of selection and variation in selection of birth mass in female

Soay sheep (Ovis aries), from a long-term study on St Kilda,

in the Outer Hebrides, Scotland (Clutton-Brock & Pemberton

2004). Briefly, the data comprise records of mass taken within 5

days of birth, and subsequent lifetime breeding success (i.e., the

total number of offspring produced, regardless of the fates of

those offspring) of females from cohorts born between 1985 and

2006 (inclusive, except for 2001, when data collection was sus-

pended due to precautions associated with an outbreak of foot-

and-mouth disease). Fitness data were collected between 1985
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Figure 1. Simulation results for the performance of Lande & Arnold’s (1983) least squares-based (OLS) estimators (red lines), and log-

quadratic (GLM) estimators (blue lines), of directional and quadratic selection gradients. The first column shows bias in estimates of β and

γ, where departure from the grey line (the simulated truth) indicates bias. The middle column shows the performance of OLS standard

errors (red dashed lines), bootstrap standard errors (red dotted lines), and first-order approximations (blue dashed lines) of the standard

errors of the GLM estimators. Ideally, all values of estimated mean standard errors would fall on the simulated standard deviation of

their associated estimators, shown as solid lines. The right column shows the mean squared errors of the OLS and GLM estimators. Note

that the y-axis scale for the MSE in plot o differs from that in plots (c) and (i), that the scale in plot (r) differs from that in plots (f) and (l),

and that the scales in plots (d), (j), and (p) differ.
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and 2016. A small number of ewes from later cohorts (i.e., 2005

and 2006) will have still been alive in 2016, and their fitness will

therefore be slightly underestimated. Birth masses were corrected

for growth in the first 5 days prior to other analyses by fitting a

linear model of mass as a function of age, and then correcting

mass for growth.

We fitted a single model as our basis for estimating the vari-

ance in selection among cohorts. We fitted a generalized linear

random regression mixed model describing the dependence of

lifetime breeding success, Wi j , of individual i from cohort j, as a

function of their birth mass zi j , according to

Wi j = P
(
E [W ]i j

)
, (21a)

log
(
E [W ]i j

) = a j + b̄zi j + 1

2
ḡz2

i j + δb, j z
2
i j + 1

2
δg, j zi j + ei j,

(21b)

where P(λ) denotes samples from a Poisson distribution with ex-

pectation λ, a j are cohort-specific intercepts, and b̄ and ḡ are

overall log-scale slopes and curvatures. δb, j and δg, j are cohort-

specific random effects for slopes and curvature terms, assumed

to be distributed according to[
δb

δg

]
j

∼ N (0, �δ),

and elements of the covariance matrix �δ =
[

σ2
δb

σδb,δg

σδb,δg σ2
δg

]
are

estimated. ei j are residuals, with zero means and cohort-specific

variances. We implemented the model defined by equations 21 as

a mixed model, and collected MCMC samples, using MCMCglmm

(Hadfield 2010). We used diffuse normal priors on the fixed ef-

fects, an inverse-Wishart prior for �δ, and inverse-gamma pri-

ors on the cohort-specific log-scale overdispersion variances, σ2
e .

We used informative priors on the cohort-specific overdispersion

variances, σ2
e , in order to help the model to predict cohort-specific

mean fitnesses that agreed well with the observed data. The spe-

cific model is fully detailed in the code supplement.

Selection is predominantly directional, favoring larger birth

masses (Table 1). Quadratic selection is near zero on average, but

not because there is generally a lack of curvature of the fitness

function. The combination of positive values of b and negative

values of g (from fitting equation 21; Table 1 a) implies that the

fitness function is often upwardly curved over much of the dis-

tribution of birth mass, but becomes downwardly curved in the

region of large birth masses (Figure 2), such that the curvature,

averaged over the distribution of phenotype, tends to be near zero.

Using the system given in the appendix for calculating variances

in β and γ (with univariate cases given in equations 19 and 20),

we inferred that there is very substantial variation in both direc-

Table 1. Parameters of the random regression mixed model (a)

used to characterize variation in selection of lamb body mass in

Soay sheep (Ovis aries). Part (b) gives estimates of the means, vari-

ances, and covariances of selection gradients, derived from the

model reported in part (a). For ease of interpretation, estimates

of variation in β and γ are reported as standard deviations, and

the relationship between β and γ is reported as a correlation.

Parameter Estimate and 95% CI

(a) Mixed model parameters
b 1.07 ( 0.83 – 1.35)
g −0.72 (−1.08 – -0.33)
σ2

d 0.25 (0.05 – 0.50)
σ2

e 0.47 (0.07 – 1.02)
σd,e −0.26 (−0.56 – 0.00)
(b) Derived parameters of the distribution of selection

gradients
μβ 0.62 ( 0.52 – 0.74)
μγ 0.02 (-0.21 – 0.21)
σβ 0.18 ( 0.04 – 0.34)
σγ 0.35 ( 0.06 – 0.71)
ρβ,γ 0.64 (-0.18 – 1.00)

tional and quadratic selection. While β varies greatly (σ̂β = 0.18

(0.04 – 0.34); Table 1 b), because selection is so strongly direc-

tional, this does not lead to fluctuations in the direction of se-

lection. The fact that the average quadratic selection gradient is

near zero does not imply that nondirectional selection is absent.

Rather, in contrast to the situation for directional selection, the

estimate of σ̂γ = 0.35 (0.06 − 0.71) (Table 1 b), given that μ̂γ =
0.02 (–0.21 – 0.21), suggests quadratic selection varies substan-

tially, sometimes taking positive values, and sometimes being

negative.

Annual (log) quadratic functions from the random regres-

sion mixed model (equation 21) correspond reasonably closely

to quadratic OLS estimates, for most cohorts (Figure 2). There

are some systematic differences, arising primarily from the fact

that the two models have different functional forms; the former

is a quadratic function, while the latter is a quadratic function

on the log scale, or a Gaussian function when the parameter g is

negative, as it often is (Table 1 a).

Conclusion
We have provided analytical expressions for selection gradients,

given the parameters of exponential fitness models with quadratic

arguments. These functions can be applied in conjunction with a

range of generalised linear model approaches, specific situations

in capture-mark-recapture, survival analysis, and parentage

analysis, and relate empirical selection gradients directly to

types of fitness functions used in theoretical studies. The general
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Figure 2. Estimates of functions relating birth mass to lifetime breeding success in 21 cohorts of Soay sheep (Ovis aries) on St Kilda from

1985 to 2006; note that inference of selection in 2001 is not possible because very little phenotypic data were collected on account of

the foot and mouth outbreak in the UK that year. Estimated fitness functions are given with 95% confidence intervals (OLS) or credible

intervals (Bayesian generalized linear mixed model or GLMM) intervals of the predictions. OLS estimates are generated independently

for each cohort; GLMM estimates depict cohort-specific predictions from the random regression mixed model described in equation 21.
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relationship of selection gradients to the coefficients of log-linear

and log-quadratic models, and in particular, various ways of

estimating these using generalized linear models, are probably

the most generally useful feature of our results. In empirical ap-

plications, our preliminary simulation results indicate that, given

an appropriate model of a log-scale fitness function, inference

using log-linear and log-quadratic models may be very robust,

and could provide more reliable statements about uncertainty

(i.e., reasonable standard errors) than the main methods used

to date. It should be noted, however, that OLS methods proved

to be highly robust in our simulations with Poisson fitness

residuals (see also McGee, submitted), except in the presence of

very strong nonlinear selection. Furthermore, the relationships

given here between log-quadratic fitness functions and selection

gradients could lead to better integration between empirical and

theoretical strategies for modelling selection.
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Appendix
GAUSSIAN FITNESS FUNCTIONS AS SPECIAL CASES

OF LOG NORMAL FITNESS FUNCTIONS WITH

QUADRATIC ARGUMENTS

Suppose that the fitness function W (z) is proportional to a Gaus-

sian density function for z with mean θ and covariance matrix ω.

The exponent of the corresponding exponential function is then

given by

− 1

2
(z − θ)′ω−1(z − θ) = − 1

2
θ′ω−1θ + θ′ω−1z − 1

2
z′ω−1z = a + b′z + 1

2
z′gz,

where a = − 1
2 θ′ω−1θ, b′ = θ′ω−1 and g = −ω−1. Let z have

a Gaussian distribution with mean μ and covariance matrix �.

1386 EVOLUTION JULY 2022



ANALYTICAL RESULTS FOR DIRECTIONAL AND QUADRATIC SELECTION

Setting S = (ω + �)−1, the selection gradient vector β given by

equation 7 is

−S(μ − θ) = (ω + �)−1(ωb − μ) = (−g−1 + �)−1(−g−1b − μ)

= (g−1 − �)−1g−1g(g−1b + μ)

= (Ik − g�)−1(b + gμ)

= Q(b + gμ), (A1)

where Q is defined following equation 16. This shows that the

result for the selection gradient using Gaussian fitness functions

is a special case of our result in equation 17.

Comparison of the pre-multipliers of μ in A1 indicates

that −S = Qg. It follows that equation 8, giving the result for

quadratic selection gradients using Gaussian fitness functions, is

a special case of our result in equation 18.

SAMPLING VARIANCES OF SELECTION GRADIENT

ESTIMATES

Denote a vector containing all unique elements of γ by γ̃.

The following assumes that γ̃ is composed by vertically stack-

ing the columns of the diagonal and sub-diagonal elements

of γ. For example, in an analysis with three traits, γ̃ =
[γ1,1, γ2,1, γ3,1, γ2,2, γ3,2, γ3,3]′. Let v() denote the function map-

ping the distinct elements of a symmetric matrix r onto the col-

umn vector r̃.

The first-order approximation to the sampling covariance

matrix of the elements of β and γ is then given by J�̃J
′
, where �̃

is the sampling covariance matrix of a vector containing the ele-

ments of b and g̃, where the latter is a column vector containing

the distinct elements of g arranged according to the same scheme

that defines γ̃. J is the Jacobian, or gradient matrix of first order

partial derivatives, of β and γ̃ with respect to b and g̃, i.e.,

J =
[

∂β

∂b
∂β

∂ g̃
∂γ̃

∂b
∂γ̃

∂ g̃

]
,

evaluated at the estimated values of b and g.

Note that some users may prefer to fit the model 9 with gii

replaced by 2gi, say. The formulae for β and γ are readily re-

expressed in terms of these variables by making this substitution.

If �1 denotes the covariance matrix obtained when fitting this re-

vised model, the required covariance matrix �̃ can be calculated

using �̃ = D�1D′, where D is a diagonal matrix with all the di-

agonal elements equal to one, apart from those corresponding to

the variables gii which equal 2.

The four submatrices of J can be treated separately. Noting

that β = Q(b + gμ) (equation 17),

∂β

∂b
= Q. (A2)

Let s = 1
2 k(k + 1), where k is the number of traits in the

analysis, and let e1, . . . , es be the standard basis for an s dimen-

sional space (i.e., e1 = [1, 0, . . . , 0]′, etc.). Define an indicator

matrix Cm = C(i, j) where C(i, j) is a k by k matrix in which

[
C(i, j)

]
xy =

⎧⎨
⎩1, (x, y) = (i, j) or ( j, i);

0, otherwise.

Using the standard expression for the derivative of the in-

verse of a matrix with respect to a scalar, we can obtain ∂β

∂ g̃ , i.e.,

the upper-right sub-matrix of J.

β = �−1(b + gμ) ⇒ ∂β

∂ g̃m
= ∂β

∂gi j
= −�−1

[
∂�

∂gi j

]
�−1(b + gμ) + �−1

[
∂ (b + gμ)

∂gi j

]

= −Q
[

∂ Ik − g�

∂gi j

]
Q(b + gμ) + Q

[
∂ g
∂gi j

]
μ

= Q
[

∂g
∂gi j

][
�Q(b + gμ)

] + Q
[

∂ g
∂gi j

]
μ

= QC(i j) (�β + μ) = QCm (�β + μ)

⇒ ∂β

∂ g̃
=

s∑
m=1

∂β

∂ g̃m
e′

m = Q
s∑

m=1

Cm (�β + μ)e′
m (A3)

Let Q[u] denote the uth column of Q. Using the previous re-

lation ∂β

∂b = Q, we can obtain ∂ γ̃

∂b , i.e., the lower-left sub-matrix

of J.

γ = ββ′ + Qg ⇒ ∂γ

∂bu
= β

(
∂β

∂bu

)′
+

(
∂β

∂bu

)
β′ = βQ′

[u] + Q[u]β
′

⇒ ∂γ̃

∂bu
= v

(
βQ′

[u] + Q[u]β
′)

⇒ ∂γ̃

∂b
=

k∑
u=1

v
(
βQ′

[u] + Q[u]β
′)e′

u (A4)

Let M(m) = QCm(�β + μ)β′. Note that Q−1 = �−1� im-

plies � = �Q. Moreover �−1 = �−1 − g implies firstly that

Ik + g� = �−1� = Q (A5)

and secondly that � is symmetric, since � and g are both sym-

metric. It follows that

Q′ = Ik + (g�)′ = Ik + �g. (A6)

The lower-right sub-matrix of J can then be derived.

∂γ

∂gi j
=

[
∂β

∂gi j

]
β′ + β

[
∂β

∂gi j

]′
+ QC(i j) + QC(i j)�Qg

= [
QC(i j) (�β + μ)

]
β′ + β

[
QC(i j) (�β + μ)

]′ + QC(i j) + QC(i j)�g

⇒ ∂ γ̃

∂gi j
= v

[
M(m) + (M(m) )′ + QCm(Ik + �g)

]
⇒ ∂ γ̃

∂ g̃ = ∑s
m=1 v

[
M(m) + (M(m) )′ + QCmQ′]e′

m,

(A7)

by use of equation A6.

Finally note that equations A5 and A6 are also relevant to the

derivation of formula 16. By definition, f (z) = a + z′b + 1
2 z′gz,

and we have log[pμ,�(z)] = − 1
2 z′�−1z + z′�−1μ + α, where α
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does not depend on z. Thus, if α′ = α + a, it follows that, as a

function of z,

f (z) + log[pμ,�(z)] = − 1
2 z′(�−1 − g)z + z′(b + �−1μ) + α′

= − 1
2 z′�−1z + z′�−1[�(b + �−1μ)

] + α′,

Now, by A5 and A6, we have �(b + �−1μ) = �b +
(�−1�)′μ = �b + Q′μ = �b + (Ik + �g)μ = ν, implying

that

f (z) + log[pμ,�(z)] = − 1
2 z′�−1z + z′�−1ν + α′

= − 1
2 (z − ν)′�−1(z − ν) + α′′, (A8)

where α′′ is constant as a function of z. The exponent of

e f (z) pμ,�(z) is thus identical, as a function of z, to that of pν,�(z).

Hence formula 16 holds.

OTHER ANALYSES THAT CORRESPOND TO

LOG-LINEAR AND LOG-QUADRATIC FITNESS

FUNCTIONS

In addition to generalised linear models with log link functions,

there may be other cases where models of trait-fitness relation-

ships may correspond to log-linear or log-quadratic fitness func-

tions. In this section, we describe how the formulae for β and γ

given in equations 17 and 18 are applicable in four kinds of anal-

yses. In each of these situations, it may not be immediately ap-

parent that a form of the fitness function equivalent to equation 9

is implied.

Models with overdispersion
Key applications of equations to calculate selection gradients

from parameters of log-linear fitness models, such as GLM and

generalised linear mixed model (GLMM) analysis, are likely to

involve fitness measures with more dispersion than is accommo-

dated by standard statistical distributions such as the Poisson dis-

tribution. Multiplicative overdispersion of count variables is often

handled with a negative binomial distribution, parameterised via

its expectation and a dispersion parameter. Thus negative bino-

mial GLM analyses can be used directly to estimate b and g, and

thus β and γ. For additive overdispersion, the relations between a

generalised model of a fitness function and selection gradients are

equally direct, but this is not so immediately obvious. Consider a

model for expected fitness such as

log(E [W ]i ) = a + bzi + 1

2
gz2

i + εi, εi ∼ N
(
0, σ2

ε

)
,

which represents a GLMM analysis with additive overdisper-

sion. Heterogeneity in the εi affects the expectation, such that

E [W ]i = ea+bzi+ 1
2 gz2

i + 1
2 σ2

ε (note that the mean of a log normal dis-

tribution depends on the dispersion on the log scale such that

μx = eμlogx + σ2
log(x)

2 ; Aitchison & Brown 1957). In this situation, the

selection gradients, β and γ are again given by equations 17 and

18, even though this expression for log fitness or expected fitness

ostensibly differs from that implied by equations 10 a,b. This can

be seen by rearranging such that the dependence of expected ab-

solute fitness on the dispersion parameter, σ2
ε , is absorbed into the

intercept,

E [W ]i = eα+bzi+ 1
2 gz2

i ,

where

α = a + 1

2
σ2

ε .

Since selection gradients do not depend on the intercept a in

equations 17 and 18, they do not depend on α in the above expres-

sion, and therefore depend neither on the intercept a nor the dis-

persion parameter σ2
ε . Consequently, linear and quadratic terms

from log-link GLMMs with additive overdispersion can also be

used with equations 17 and 18 to obtain selection gradients for

Gaussian traits.

Multinomial models, as in parentage analysis
In parentage inference, some methods have been proposed

wherein the probability that candidate parent i is the parent of

a given offspring is modelled according to

W (zi ) ∝ e f (zi ),

and where realised parentages of a given offspring array are

then modelled according to a multinomial distribution, poten-

tially integrating over uncertainty in paternity assignments based

on molecular data (Hadfield et al. 2006, Smouse et al. 1999).

When f (z) is a linear function, (Smouse, Meagher & Korbak

1999; T. Meagher, personal communication) interpreted the anal-

ysis as being analogous to that of Lande & Arnold (1983), but not

necessarily identical. For a linear f (z), this analysis does in fact

yield estimates of β, and for a quadratic function, directional and

quadratic selection gradients can be obtained using equations 17

and 18. This can be seen by noting that expected fitness, given

phenotype, of candidate fathers for any given offspring array will

be, in the log-linear case,

W (z) = cea+b′z ∝ eã+b′z,

where c is a constant and ã = a + log(c). As W (z) has been

expressed in the form of equation 4, it follows from equa-

tion 5 that β = b. Moreover, if expected parentage is mod-

elled as a log-quadratic function, equations 17 and 18 can be

used to recover selection gradients from multinomial parentage

models.
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Mark-recapture with constant survival functions
Another case where our formulae may be applicable pertains to

inferences of survival rate. Often, data about trait-dependent sur-

vival rates may be assessed over discrete intervals. While the ex-

perimental unit of time may be an interval (e.g., a day or a year),

the biologically-relevant aspect of variation in survival may be

longevity, i.e., for how many intervals an individual survives. One

such situation arises when per-interval survival rate is assessed

via a logistic regression analysis, and trait-dependent survival

rates are (or may be assumed to be) constant across intervals. A

common case of logistic regression analysis that satisfies this first

condition is often implemented in capture-mark-recapture proce-

dures. Suppose that per-interval survival rate, given phenotype,

may be assumed to be constant, with death in a particular interval

of an individual with phenotype z occurring at probability ρ(z).

If fitness may reasonably be assumed to be reflected by the ex-

pected number of intervals survived, then it will be given, as the

expectation of a geometric distribution, by

W (z) = 1 − ρ(z)

ρ(z)
.

If trait-dependent per-interval survival probability is denoted φ(z)

(φ being the standard symbol for survival rate in capture-mark-

recapture analyses; Lebreton et al. 1992), then the fitness func-

tion in terms of expected number of intervals lived is W (z) =
1−(1−φ(z))

1−φ(z) = φ(z)
1−φ(z) . If per-interval survival rate has been modeled

as a logistic regression, i.e.,

φ(z) = e f (z)

1 + e f (z)
,

where φ(z) denotes the per-interval fitness function, and f (z) is

the fitness function on the logistic scale, then the fitness function

on the discrete longevity scale is

W (z) =
e f (z)

1+e f (z)

1 − e f (z)

1+e f (z)

= e f (z).

Therefore, if f (z) is a linear function, then its terms are the direc-

tional selection gradients on the discrete-longevity scale. If f (z)

is a quadratic function, then the corresponding directional and

quadratic selection gradients, again if the relevant aspect of fit-

ness is the number of intervals survived, can be obtained using

equations 17 and 18. Waller and Svensson (2016) take advantage

of these relationships to compare inference of trait-dependent sur-

vival in capture-mark-recapture models to classical inference us-

ing Lande & Arnold’s (1983) least-squares regression analysis

where fitness is assessed as the number of intervals that individ-

uals survive.

It must be stressed that these results do not justify interpre-

tation of logistic regression coefficients of survival probability as

selection gradients in a general way. Such coefficients differ from

selection gradients for three reasons: (1) they pertain to a linear

predictor scale, and natural selection plays out on the data scale,

(2) they directly model absolute fitness, not relative fitness, and

(3) they pertain to per-interval survival, which may not necessar-

ily be the aspect of survival that best reflects fitness in any given

study. It is only when the number of intervals survived is of in-

terest (and phenotype-dependent survival rates can be assumed to

be constant across intervals) that these three different aspects of

scale cancel out such that the parameters of a logistic regression

are selection gradients.

Survival analysis
Another situation where an important analysis for understanding

trait-fitness relationships that has an immediate—but not neces-

sarily immediately apparent—relationship to selection gradients,

arises in survival analysis. In a proportional hazards model (Cox

1972), the instantaneous probability of mortality experienced by

live individuals, the hazard λ(t ), as a function of their phenotype,

could be modelled as

λ(t ) = λ0e f (z) ,

where λ0 is the baseline hazard, and the factor e f (z) describes

individual deviations from this baseline hazard. If the baseline

hazard is constant in time, then survival distributions conditional

on phenotype are exponential, and have mean λ−1. So, if fitness

may be assumed to be proportional to longevity (as a continuous

variable now, not discrete number of intervals as in the relations

given above between logistic models of per-interval survival and

selection gradients) then

W (z) ∝ 1

λ0e f (z)
= 1

λ0
e− f (z).

In expressions for selection gradients (equations 1 and 2), 1
λ0

would be a constant in the integrals in both the numerators and

denominators, and therefore cancels in calculations of selection

gradients. Therefore, if proportional hazards are modeled with

f (z) as a linear or quadratic function, then the expressions for

selection gradients (equations 5, 17 and 18) hold, but the coeffi-

cients of the trait-dependent hazard function must be multiplied
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by -1. The relationship to survival analysis will also approxi-

mately hold when fitness is determined by survival to a specific

age, and mean survival to that age is low.
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