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Abstract: The effective and fast reduction of circulating low-density lipoprotein cholesterol (LDL-
C) is a cornerstone for secondary prevention of atherosclerotic disease progression. Despite the
substantial lipid-lowering effects of the established treatment option with statins and ezetimibe,
a significant proportion of very-high-risk patients with cardiovascular disease do not reach the
recommended treatment goal of <55 mg/dL (<1.4 mmol/L). Novel lipid-lowering agents, including
the proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies alirocumab and evolocumab, the
small interfering ribonucleotide acid (si-RNA) inclisiran, as well as the recently approved bempedoic
acid, now complete the current arsenal of LDL-C lowering agents. These innovative therapies have
demonstrated promising results in clinical studies. Besides a strong reduction of LDL-C by use
of highly effective agents, there is still discussion as to whether a very rapid achievement of the
treatment goal should be a new strategic approach in lipid-lowering therapy. In this review, we
summarize evidence for the lipid-modifying properties of these novel agents and their safety profiles,
and discuss their potential pleiotropic effects beyond LDL-C reduction (if any) as well as their effects
on clinical endpoints as cardiovascular mortality. In addition to a treatment strategy of “the lower,
the better”, we also discuss the concept of “the earlier, the better”, which may also add to the early
clinical benefit of large LDL-C reduction after an acute ischemic event.

Keywords: lipid-lowering therapy; PCSK9; the lower the better; strike effective and strong; inclisiran;
bempedoic acid; alirocumab; evolocumab

1. Introduction

Patients with established atherosclerotic cardiovascular disease (ASCVD) are a high-
risk population for ischemic events [1,2]. Numerous studies have consistently demonstrated
a significant reduction in ischemic events through lowering of low-density lipoprotein-
cholesterol (LDL-C) [1,3,4]. Treatment with statins has been the cornerstone of lipid-
lowering therapy in the past three decades, as several landmark trials have provided
strong evidence of cardiovascular risk reduction by statins in secondary prevention [5–8].
Additional reduction of LDL-C and atherosclerotic events can be achieved by concomitant
treatment with ezetimibe, a Niemann–Pick C1 inhibitor that reduces the intestinal absorp-
tion of cholesterol [9]. Nevertheless, LDL-C reduction below the recommended treatment
target of 55 mg/dL (1.4 mmol/L), as suggested for very-high-risk patients in the current
guidelines from the European Society of Cardiology (ESC), is difficult to achieve in many
patients with statin and ezetimibe treatment alone [10]. Novel lipid-lowering therapies
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have been developed in recent years and provide substantial LDL-C reduction on top of
an established treatment with high-intensity statin plus/minus ezetimibe [11–14]. These
novel treatment options include the proprotein convertase subtilisin/kexin type 9 (PCSK9)
antibodies alirocumab and evolocumab, the small interfering ribonucleotide acid (si-RNA)
inclisiran, and the cholesterol biosynthesis inhibitor bempedoic acid [11–14] (Figure 1).
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Novel Aspects of This Review

In this manuscript, we provide a comprehensive review of the current evidence, safety
profiles, and potential pleiotropic effects of these novel lipid-lowering agents. In addition,
we underline the importance of a pro-active approach in lipid-lowering therapy with a
thorough discussion of the novel treatment concepts of “the lower, the better” and “strike
effective and strong”. Consistent evidence supports the strategy to maximize LDL-C
reduction in very-high-risk patients to very low LDL-C levels (<25 mg/dL; 0.65 mmol/L)
without increasing potential adverse effects. Furthermore, we summarize and discuss the
emerging evidence of the benefits of very fast LDL-C reduction after an ischemic event.

2. Inhibition of PCSK9 for LDL-C Reduction

The circulating protein PCSK9 plays a central role in LDL-C regulation and the expres-
sion of LDL-C receptors on the surface of hepatocytes [15,16]. Plasmatic LDL-C is bound
by LDL-C receptors on liver cells to form a complex and to internalize as endosomes to
the cytoplasm [17]. The acidic pH of these endosomes causes dissociation of the complex
with LDL-C degraded in lysosomes and the LDL-C receptor recycled to the cell surface for
further use [18]. PCSK9 circulates in the plasma and binds to LDL-C receptors, leading
to internalisation into the liver cells [16]. In contrast to the complex of LDL-C with the
LDL-C receptor, the binding of PCSK9 to the LDL-C receptor is supported by enhanced
affinity and does not dissociate at low pH levels [18]. The complex of the LDL-C receptor
and PCSK9 is transferred to the lysosome for degradation and LDL-C receptor recycling
on the cell surface of the liver cells is significantly reduced [19,20]. Consequently, LDL-C
receptor expression and LDL-C uptake are significantly lowered [21]. The inhibition of
PCSK9 increases the presentation of LDL-C receptors on the liver cells and is a highly
effective approach to achieve substantial LDL-C reduction [21].



Biomedicines 2022, 10, 970 3 of 14

3. Monoclonal Antibodies for PCSK9 Inhibition—Alirocumab and Evolocumab

Alirocumab is a fully humanized monoclonal antibody with a maximal suppres-
sion of circulating PCSK9 within four to eight hours and a half-life during steady state
of 17 to 20 days [22]. The treatment is administered subcutaneously as 150 mg every
two weeks or 300 mg once a month and leads to a substantial reduction of LDL-C [22]. The
lipid-lowering efficacy was confirmed in a meta-analysis of randomized trials investigating
alirocumab on top of a maximally tolerated statin-therapy in patients at high cardiovascular
risk [23]. This analysis demonstrated that treatment with alirocumab leads to a further
LDL-C reduction of 60.5% (95%CI: 53.9–66.7%) when added to a baseline statin therapy [23].
By use of a lipid-lowering triple combination including high-intensity statin, ezetimibe,
and alirocumab, an LDL-C reduction of 85% from treatment-naive baseline levels can be
achieved [10,24]. In addition, the concentrations of other lipoproteins, including lipoprotein
(a) [Lp(a)], apolipoprotein B, and triglycerides, are significantly reduced under treatment
with this PCSK9 antibody [24–26].

The effect on cardiovascular outcomes was assessed in the ODYSSEY OUTCOMES
study [11]. This multicenter randomized study tested the efficacy of alirocumab versus
placebo on top of maximally tolerated statin therapy in 18,924 patients with acute coronary
syndrome 1–12 months prior to study inclusion [11]. After a median follow-up duration of
2.8 years, treatment with alirocumab significantly reduced the occurrence of the primary
composite endpoint of major adverse cardiovascular events (MACE) compared to placebo
(HR = 0.85, 95%CI: 0.78–0.93, p < 0.001) [11]. The greatest risk reduction was observed in
patients with baseline LDL-C levels of more than 100 mg/dL (2.6 mmol/L) (HR = 0.76,
95%CI: 0.65–0.87, p < 0.001) [11]. Pre-specified sub-analyses demonstrated a reduced risk
of all-cause death (HR = 0.83, 95%CI: 0.71–0.97, p = 0.02), nonfatal cardiovascular events
(HR = 0.87, 95%CI: 0.82–0.93, p < 0.001), and ischemic stroke (HR = 0.73, 95%CI: 0.57–0.93,
p = 0.01) in patients treated with alirocumab, without increasing the risk of hemorrhagic
stroke (HR = 0.83, 95%CI: 0.42–1.65, p = 0.59) [27,28].

Evolocumab is a human monoclonal antibody that achieves maximal suppression
of PCSK9 four hours after subcutaneous injection of the recommended 140 mg every
two weeks or 420 mg once a month [29]. The half-life of this agent ranges between
11–17 days [29]. In a similar fashion to alirocumab, treatment with evolocumab leads to a
profound and long-lasting LDL-C reduction. Results from the prospective Mendel-2 and
Gauss-2 studies demonstrated that evolocumab reduced LDL-C by 53–57% compared to
placebo in patients with documented statin intolerance [30,31]. Significant reductions were
also observed for Lp(a), apolipoprotein B, and triglycerides [30,31].

The FOURIER study investigated the potential benefit of evolocumab on clinical
outcomes [12]. A total of 27 564 patients with ASCVD and LDL-C >70 mg/dL on high-
intensity statin treatment were randomized to receive therapy with evolocumab (140 mg
every two weeks or 420 mg once a month) or placebo [12]. After 48 weeks of follow-up,
patients treated with evolocumab had a significantly lower risk of the primary endpoint
of MACE compared to placebo (HR = 0.85, 95%CI: 0.79–0.92, p < 0.001) [12]. The risk
of myocardial infarction (HR = 0.73, 95%CI: 0.65–0.82, p < 0.001) or stroke (HR = 0.79,
95%CI: 0.66–0.95, p = 0.01) was significantly lower in the evolocumab group [12]. LDL-C
was reduced by further 59% on top of high-intensity statin therapy [12].

Treatment with alirocumab or evolocumab is generally well tolerated. The most com-
mon adverse events of PCSK9 antibodies are injection site reaction, which occurs in 2.5–5.9%
of patients, with a mild clinical course in most cases [24,30,32,33]. Initial concerns of an
adverse effect on neurocognitive function, potentially due to very low LDL-C levels, were
not confirmed [34]. The EBBINGHAUS study—a prospective substudy of the FOURIER
trial—analyzed the neurocognitive function of patients treated with evolocumab compared
to placebo [34]. After the median follow-up of 19 months, no significant difference in
neuropsychological testing was found [34]. This result was corroborated in a meta-analysis
by Hirsch et al., which did not find an increased risk of neurocognitive adverse events
during PCSK9 antibody treatment [35].
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Overally, PCSK9 antibodies are potent and effective lipid-lowering medications with
rarely occurring side effects. However, the significant costs of this therapy need to be
addressed. With regards to the limited financial resources of healthcare systems, cost-
effectiveness analyses are an important factor to consider. Initial studies reported the
limited cost-effectiveness of PCSK9 antibodies at early market prices, although a more
favorable result was demonstrated with increasing cardiovascular risk [36,37]. A more
recent study showed that PCSCK9 antibodies are cost effective in very-high-risk patients
for cardiovascular secondary prevention [38]. Data on the cost-effectiveness of PCSK9
inhibition with inclisiran are limited and warrant future research with updated market
prices [39]. Of note, these financial analyses may differ based on the respective healthcare
systems, changes in treatment prices, and the estimated cost-effective threshold [40]. Never-
theless, it is important to state that access to these highly effective lipid-lowering therapies
must be a top-priority in very-high-risk patients in need of further LDL-C reduction.

4. Inclisiran

The double-stranded siRNA inclisiran is an alternative treatment option for PCSK9
inhibition [41]. After subcutaneous injection, inclisiran inhibits the translation of PCSK9
specifically in hepatocytes via sequence-specific binding to PCKS9 mRNA and activation of
the RNA-induced silencing complex (RISC) [41,42]. The activated RISC cleaves the mRNA
molecules of PCSK9, which are then degraded and unavailable for translation [42]. Thus,
the protein synthesis of PCSK9 is substantially reduced during inclisiran treatment [41].
Data from the phase III clinical studies of the ORION-10 and ORION-11 studies demon-
strated that plasma levels of PCSK9 decrease by up to 80% after treatment initiation with
inclisiran [14]. Lower plasma levels of PCSK9 lead to increased LDL-C receptor recycling
and a markedly increased uptake of LDL-C into liver cells [43]. Consequently, treatment
with inclisiran leads to a substantial reduction in LDL-C [14]. The randomized ORION-
10 and ORION-11 studies included a total of 3178 patients with established ASCVD or
an equivalent risk on the maximally tolerated statin dose [14]. After the follow-up pe-
riod of 510 days, LDL-C was significantly (p < 0.001) reduced by 52.3% and 49.9% in the
ORION-10 and ORION-11 studies compared to placebo, respectively [14]. The random-
ized ORION-9 study tested inclisiran in a population of 482 patients with heterozygote
familial hypercholesterinemia on maximally tolerated statin therapy with or without eze-
timibe [44]. After 510 days of follow-up, LDL-C was significantly (p < 0.001) reduced by
39.7% (95%CI: 35.7–43.7%) in the inclisiran group compared to placebo [44].

Despite the promising results of substantial LDL-C lowering capabilities, data on car-
diovascular clinical outcomes from an adequately powered studies are not yet available [45].
However, a meta-analysis of the ORION-9, -10, and -11 trials reported a significant reduc-
tion in MACE by 24% (HR = 0.76, 95%CI: 0.61–0.92, p = 0.001) compared to placebo [46].
The still ongoing ORION-4 trial (NCT03705234) will clarify the effect of inclisiran on car-
diovascular outcomes [45]. This study will randomize a total of 15,000 patients with prior
cardiovascular disease and high-intensity statin therapy to treatment with inclisiran or
placebo [45]. The primary completion date is estimated for July 2026 [45].

So far, no comparison of efficacy between inclisiran and one of the PCSK9 antibodies
is available. However, the ongoing ORION-3 study [47] is an active comparator extension
trial of the phase-1 ORION-1 study [48] and investigates the LDL-C lowering capabilities,
safety, and tolerability of inclisiran compared to evolocumab. This trial will include a
total study population of 382 patients with ASCVD or an equivalent cardiovascular risk
and will provide valuable insights of the potential differences of PCSK9 inhibition via a
monoclonal antibody or via reduced translation and protein synthesis [47]. Although the
primary completion date of this study was in December 2021, no results have yet been
published [47].

Inclisiran is generally well tolerated and has a good safety profile [41]. The phase I
study ORION-1 reported no serious adverse events related to inclisiran treatment [41]. In
the large ORION-10 and ORION-11 studies, local injection site reactions were reported
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significantly more frequently during inclisiran therapy compared to the placebo groups, but
were considered mild in most cases [14]. No significant side effects with respect to liver or
kidney function or muscle-related side effects were observed [14]. In contrast to the PCSK9
antibodies alirocumab and evolocumab, treatment with inclisiran requires subcutaneous
injections only twice a year, which might positively affect patient’s adherence to therapy.

5. Bempedoic Acid

Bempedoic acid is a once daily, orally administered pro-drug that is converted to
its active metabolite in the liver cells by the enzyme very long-chain acyl-coenzyme A
synthetase 1 (ACSVL1) [49]. Activated bempedoic acid reduces endogenous cholesterol
synthesis by inhibiting the adenosine triphosphate citrate lyase (ATP citrate lyase) upstream
to the inhibition of statin treatment [49]. Reduced intracellular cholesterol synthesis in the
hepatocytes and subsequently upregulated LDL-C receptor expression with increased LDL-
C plasma clearance leads to significant lipid-lowering properties of bempedoic acid [49]

The CLEAR study program of randomized, placebo-controlled trials tested the ef-
ficacy and safety of bempedoic acid in patients with high cardiovascular risk [13,50–52].
The CLEAR Harmony study randomized 2230 patients with ASCVD or heterozygote
familial hypercholesterinemia and an LDL-C > 70 mg/dL despite maximally tolerated
statin therapy with or without additional lipid-lowering treatment (ezetimibe or fibrate)
to receive bempedoic acid or placebo [13]. After 12 weeks of follow-up, treatment with
bempedoic acid reduced LDL-C by 16.5% (19.2 mg/dL, 0.5 mmol/L) from baseline [13].
Patients treated with bempedoic acid had a numerically lower risk of MACE (4.6 vs. 5.7%,
p = 0.30), although this study was not powered for cardiovascular outcomes [13]. The
CLEAR Wisdom study included a similar study population of 779 patients with ASCVD or
heterozygote familial hypercholesterinemia on maximally tolerated lipid-lowering ther-
apy [50]. After 12 weeks of therapy, patients with bempedoic acid had significantly lower
LDL-C levels compared to placebo (−15.1% vs. 2.4%, p < 0.001) [50]. The CLEAR Serenity
study tested the efficacy of bempedoic acid in 345 patients with statin intolerance and
elevated LDL-C despite background non-statin therapy (most commonly ezetimibe or
fish oil) [51]. Treatment with bempedoic acid significantly reduced LDL-C compared to
placebo (−23.1% vs. −1.3%, p < 0.001) after 12 weeks of follow-up [51]. The lipid-lowering
effect was less pronounced in the subgroup analysis of patients with T2DM, although
no interaction was observed for this parameter in other CLEAR studies [13,50–52]. The
CLEAR Tranquility study included 269 patients with statin intolerance and concomitant
treatment with ezetimibe [52]. Bempedoic acid reduced LDL-C by 23.5% from baseline in
this cohort [52]. Of note, although investigating the efficacy of bempedoic acid in statin-
intolerant patients, the CLEAR Serenity and Tranquility study included 8.4% and 31% of
patients with low-dose statin therapy, respectively [51,52]. In addition to the pronounced
LDL-C reduction, the CLEAR studies also demonstrated a significant reduction in non-HDL
and apolipoprotein B [13,50]. The potential benefit on cardiovascular outcome is not yet
clarified and is currently under evaluation in the still-ongoing CLEAR Outcomes study.
This trial will include a total of 14,014 patients with statin intolerance and established or
high risk of cardiovascular disease and will clarify the potential impact on cardiovascular
events [53]. Primary results are expected for December 2022 [53].

Treatment with bempedoic acid presents an overall favorable safety profile [13,50,51].
In contrast to statins, myopathy seems to be insignificant during bempedoic acid treat-
ment [13,50]. This may be explained by the necessity of activation in the liver cells by the
enzyme ACSVL1, which is not expressed in skeletal muscles [49]. However, increased
levels of uric acid were found more frequently in patients treated with bempedoic acid in
the CLEAR studies, although the overall incidence of gout was low (1–2%) [13,50,51].



Biomedicines 2022, 10, 970 6 of 14

6. Pleiotropic Effects beyond LDL-C Reduction

Chronic inflammation is regarded as one of the most important factors in atheroscle-
rotic disease progression [54]. While the major effect of statin treatment is the substantial
reduction of LDL-C, additional beneficiary properties beyond the mere lipid-lowering
effect have been described [4,55]. These pleiotropic effects include anti-inflammatory and
anti-oxidant properties [55]. Previous research in experimental and clinical studies demon-
strated that statins significantly reduce plasma levels of several inflammatory mediators,
including high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-1, IL-6, and tumor
necrosis factor alpha (TNF-alpha) [56–58]. In addition, statin treatment decreases the activa-
tion of thrombocytes, inhibits leukocyte migration and endothelial adhesion, and increases
the bioavailability of nitric oxide [55,56]. However, potential pleiotropic effects of the novel
lipid-lowering agents have been less thoroughly investigated.

PCSK9 is primarily produced in the hepatocytes, but significant expression can also
be found in the intestine, the mesenchymal cells of the kidney, in the endothelial and
smooth muscle cells of the vascular wall and in macrophages [59,60]. Previous studies
indicated that PCSK9 may have an impact on vascular inflammation and platelet function.
PCSK9 correlates with white blood cell count, attenuates the pro-inflammatory effect
of oxidized LDL on macrophages and increases monocyte migration to atherosclerotic
plaques [61–63]. Treatment with alirocumab was associated with decreased atherosclerotic
lesion size and monocyte recruitment in a mouse model [64]. This finding was also observed
in the GLAGOV and the recent HUYGENS studies, demonstrating that treatment with
evolocumab significantly reduces atherosclerotic atheroma volume and improves plaque
stability via an increase in fibrous cap thickness [65,66]. In addition, Marques et al. showed
that treatment with alirocumab reduces activation and chemotaxis of neutrophils and
eosinophils [67]. On the other hand, a meta-analysis of randomized controlled trials did not
find a significant reduction of hsCRP during treatment with alirocumab or evolocumab [68].

Although PCSK9 has a substantial impact in atherosclerotic disease progression and
treatment with inclisiran was shown to significantly reduce LDL-C, the evidence on its
potential effects on inflammation or thrombocyte function is limited so far [69]. In a pre-
specified substudy of the ORION-1 trial, inclisiran therapy was not associated with a
significant alteration in the pro-inflammatory cytokines IL-6 and TNF-alpha [69]. Counts
of platelets, leucocytes, or monocytes were not influenced by inclisiran therapy [69]. In
addition, plasma levels of hs-CRP did not differ between patients treated with inclisiran or
with placebo in the ORION-10 and -11 trials [14].

The CLEAR studies of bempedoic acid demonstrated not only a substantial lipid-
lowering effect, but also a significant reduction of hsCRP [13,51]. A meta-analysis showed
that treatment with bempedoic acid reduces hsCRP by −27.0% (95%CI: −32.4–22.6%,
p < 0.001), indicating a systemic anti-inflammatory effect [70]. In vitro studies showed
that bempedoic acid decreases the inflammatory response of monocytes via activation of
AMP-activated protein kinase (AMPK), which has been demonstrated to decrease IL-1,
IL-6, IL-8, and TNF-alpha [71,72]. In addition, treatment with bempedoic acid reduces the
expression of proinflammatory and profibrotic genes in liver cells in animal models, which
was associated with a significant improvement as assessed by the non-alcoholic fatty liver
disease score [73].

When discussing all these potential pleiotropic mechanisms, it is important to note
that the anti-inflammatory or anti-atherosclerotic actions of all lipid-lowering agents can
only be proven by use of extremely high doses of the agents. Accordingly, it remains
unproven whether lipid-lowering agents induce such anti-atherosclerotic properties by
direct action or by indirect actions via LDL-C reduction.

7. LDL-C Treatment Targets—The Lower the Better

Patients with established ASCVD greatly benefit from LDL-C reduction [10,74]. In
addition to the treatment target of <55 mg/dL (1.4 mmol/L) in very-high-risk patients with
documented ASCVD, a further reduction below 40 mg/dL (1.0 mmol/L) may be considered
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in patients with a second vascular event within two years [10]. Although no randomized
controlled study investigated these treatment targets specifically, these recommendations are
supported by sub-analyses of the FOURIER and the ODYSSEY OUTCOMES studies [75,76].
In the FOURIER trial, a total of 2669 patients reached very low levels of LDL-C (<20 mg/dL,
0.5 mmol/L) after four weeks of treatment with evolocumab [75]. These patients had
the lowest risk for ischemic events in the whole study population, without an increase
in adverse events [75]. Likewise, a propensity score-matched analysis of the ODYSSEY
Outcomes study reported that patients achieving an LDL-C of <25 mg/dL (0.65 mmol/L)
had a particularly low risk of MACE without an excess risk of hemorrhagic stroke or
dementia [76]. In contrast to the J-shaped curve of hypertension treatment [77], the benefit of
LDL-C reduction follows a monotonic relationship with the lowest risk for ischemic events
in patients with the lowest LDL-C levels [75,76]. This dose-dependent association between
cardiovascular events and LDL-C reduction was consistently demonstrated in numerous
studies [78–80]. A meta-analysis of the “Cholesterol Treatment Trialists’ Collaboration”
with data from 170,000 patients of 26 randomized trials demonstrated that a reduction of
LDL-C per 1 mmol/L (39 mg/dL) is associated with a 10% (RR = 0.90, 95%CI: 0.87–0.93,
p = 0.001) reduction in all-cause mortality and a 20% lower risk for cardiovascular mortality
due to coronary heart disease (RR = 0.80, 95%CI: 0.74–0.89, p < 0.001) [81]. Patients with
high baseline LDL-C levels and a large absolute LDL-C reduction benefit from a particularly
great risk reduction, but also patients with lower baseline LDL-C levels significantly benefit
from further lipid-lowering therapy [78–81].

Concerns have been raised with regard to potential harm and an increased risk of
dementia in patients that achieve low levels of LDL-C cholesterol. However, these previous
concerns were dismissed in several studies [82–84]. Patients with genetic variants that
are associated with lifelong very low LDL-C levels have a considerable lower risk of
cardiovascular disease without a significantly increased risk for other comorbidities or
impaired cognitive function [85,86]. Patients with familial hypolipoproteinemia often have
lifelong LDL-C levels of <50 mg/dL (1.3 mmol/L) due to a mutation in the apoB gene
that leads to substantially decreased secretion of apoB-containing lipoproteins from liver
cells [87]. Although an increased risk of hepatic steatosis was reported in these patients,
no influence on cognitive function was documented [88]. The loss-of-function of PCSK9
is associated with low levels of LDL-C and a significantly lower risk for atherosclerotic
events without an increase in other comorbidities [85,89]. A slightly increased risk for type
2 diabetes mellitus in this patient group was not confirmed in another study [85,90].

Despite the compelling benefit of LDL-C reduction and clear guideline recommen-
dations, a significant proportion of patients do not meet required treatment targets in
clinical practice. The recently published DA VINCI Study was an EU-wide observational
study on LDL-C goal achievement and demonstrated that only 18% (95%CI: 17–20) of
very-high-risk patients met the treatment target of LDL-C <55 mg/dL (1.4 mmol/L) [91].
Similar results were reported from the Euroaspire V survey [92], demonstrating that 71% of
very-high-risk patients did not achieve an LDL-C reduction below the 2016 ESC treatment
target of LDL-C <70 mg/dL (1.8 mmol/L) [93]. While treatment awareness might still play
a significant role in this matter [91,94], the novel lipid-lowering agents, alone or as combina-
tion therapy with statins or ezetimibe, provide highly effective and well-tolerated treatment
options to achieve sufficient LDL-C reduction below treatment targets [11,13,14,95].

8. Importance of Early Reduction below Treatment Target—“Strike Effective and Strong”

Current guidelines recommend a stepwise intensification of lipid-lowering ther-
apy with treatment controls after 4–6 weeks [10]. Accordingly, in patients with high
baseline LDL-C values that require an early start with a lipid-lowering triple therapy
(Statin + ezetimibe + PCSK9 inhibition), the achievement of the recommended LDL-C goal
can last up to 3 months [10]. This time delay until optimal lipid-lowering therapy might
be particularly relevant as the risk of a recurrent myocardial infarction is highest in the
early phase after the index event [96]. An early and strong LDL-C reduction in patients
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after an acute ischemic event might prevent recurrent thrombo-ischemic complications
and could improve the long-term prognosis. Consequently, an innovative approach in
lipid-lowering therapy has been proposed by the acute cardiovascular care society of ESC,
to “strike effective and strong” (Figure 2).
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This concept of an early and substantial LDL-C reduction after an ischemic event is
supported by emerging evidence. Fonarow et al. demonstrated, in a large study cohort of
more than 170,000 patients with acute myocardial infarction, that the initiation of statin
therapy within the first 24 h after hospital admission significantly reduced overall mortality
compared to patients without statin treatment (4.0 vs. 15.4%, p < 0.001) [97]. A meta-
analysis of randomized controlled statin trials investigated the association between the
timing of treatment initiation and the benefit on cardiovascular outcome [98]. This study
showed that patients treated with statins even before percutaneous coronary intervention
(PCI) benefit from the greatest risk reduction of recurrent myocardial infarction [98]. A
recent nationwide Swedish cohort study analyzed the effect of early and strong LDL-C
reduction in patients after myocardial infarction [99]. This study demonstrated that the
patient quartile with the strongest absolute LDL-C reduction (1.85 mmol/L, 71 mg/dL)
within 6–10 weeks after the index event had a significantly lower risk of MACE (HR = 0.77,
p < 0.05) and recurrent myocardial infarction (HR = 0.81, p < 0.05) compared to the quartile
with the least LDL-C reduction (0.36 mmol/L, 14 mg/dL) [99]. The randomized multi-
center SECURE-PCI ACS trial investigated if prior loading with atorvastatin in patients
with acute coronary syndrome and planned invasive management reduced the risk of
MACE [100]. This study showed that the initiation of statin therapy prior to PCI was associ-
ated with a 28% relative risk reduction in MACE after 30 days of follow-up (p = 0.02) [100].
The treatment benefit was consistent in patients that received atorvastatin loading less
than 12 h or less than two hours prior to PCI [101]. The randomized EVOPACS study
assessed the efficacy of evolocumab versus placebo on top of high-intensity statin therapy
for early LDL-C reduction in 308 patients with ACS [102]. Patients that were random-
ized to the evolocumab group had significantly (p < 0.001) lower levels of LDL-C after
eight weeks of follow-up compared to the placebo group (0.79 mmol/L [31 mg/dL] vs.
2.06 mmol/L [80 mg/dL], p < 0.001) [102]. The treatment target of LDL-C < 55 mg/dL
was achieved in 95.7% of patients in the evolocumab group compared to 37.6% in the
control group [102]. Recurrent cardiovascular events were similar between the groups,
although the study was not powered for this outcome parameter [102]. The randomized
EVACS study investigated the effect of evolocumab versus placebo on top of high-intensity
statin therapy in the early post-infarct period [103]. A total of 57 patients with non-ST
elevation myocardial infarction (N-STEMI) were enrolled and randomized within 24 h
after hospital admission [103]. Therapy with evolocumab was associated with a significant
LDL-C reduction after 72 h of treatment compared to placebo (49 mg/dL [1.27 mmol/L] vs.
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76 mg/dL [1.97 mmol/L], p = 0.02), demonstrating the feasibility of early LDL-C lowering
with PCSK9 inhibition [103].

The currently ongoing, randomized AMUNDSEN study is the first trial to investigate
the efficacy of evolocumab started before PCI in patients with STEMI or N-STEMI [104].
This multicenter study will include a total of 1666 patients randomized to receive either
evolocumab before PCI or standard care [104]. The primary outcome parameter is the
LDL-C reduction below 55 mg/dL after 12 months with overall mortality and ischemic
events as secondary outcome parameters [104]. The primary completion date is expected
to be in September 2023 [104].

9. Conclusions

Effective LDL-C reduction is of paramount importance for adequate cardiovascular
secondary prevention. Novel lipid-lowering agents have shown favorable safety profiles
and substantial LDL-C lowering capabilities. In combination with high-intensity statin
and ezetimibe therapy, a relative LDL-C reduction of up to 85% from baseline values can
be achieved. This is especially important regarding the monotonic relationship between
LDL-C levels and the risk of ischemic events, supporting the approach of “the lower, the
better”. In addition, emerging evidence has shown that early initiation of lipid-lowering
therapy in ACS patients even before PCI is associated with favorable outcomes. In this
very-high-risk population, we should “strike effective and strong”.
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Management of dyslipidaemia in patients with coronary heart disease: Results from the ESC-EORP EUROASPIRE V survey in
27 countries. Atherosclerosis 2019, 285, 135–146. [CrossRef]

93. Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser,
U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058.
[CrossRef]

94. Mazalin Protulipac, J.; Sonicki, Z.; Reiner, Ž. Cardiovascular disease (CVD) risk factors in older adults—Perception and reality.
Arch. Gerontol. Geriatr. 2015, 61, 88–92. [CrossRef]

95. Sabatine, M.S.; Leiter, L.A.; Wiviott, S.D.; Giugliano, R.P.; Deedwania, P.; De Ferrari, G.M.; Murphy, S.A.; Kuder, J.F.; Gouni-
Berthold, I.; Lewis, B.S.; et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without
diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: A prespecified analysis of the FOURIER
randomised controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 941–950. [CrossRef]

96. Song, J.; Murugiah, K.; Hu, S.; Gao, Y.; Li, X.; Krumholz, H.M.; Zheng, X. Incidence, predictors, and prognostic impact of recurrent
acute myocardial infarction in China. Heart 2020, 107, 313–318. [CrossRef]

97. Fonarow, G.C.; Wright, R.S.; Spencer, F.A.; Fredrick, P.D.; Dong, W.; Every, N.; French, W.J. Effect of statin use within the first
24 hours of admission for acute myocardial infarction on early morbidity and mortality. Am. J. Cardiol. 2005, 96, 611–616.
[CrossRef] [PubMed]

98. Navarese, E.P.; Kowalewski, M.; Andreotti, F.; van Wely, M.; Camaro, C.; Kolodziejczak, M.; Gorny, B.; Wirianta, J.; Kubica, J.;
Kelm, M.; et al. Meta-analysis of time-related benefits of statin therapy in patients with acute coronary syndrome undergoing
percutaneous coronary intervention. Am. J. Cardiol. 2014, 113, 1753–1764. [CrossRef]

99. Schubert, J.; Lindahl, B.; Melhus, H.; Renlund, H.; Leosdottir, M.; Yari, A.; Ueda, P.; James, S.; Reading, S.R.; Dluzniewski, P.J.;
et al. Low-density lipoprotein cholesterol reduction and statin intensity in myocardial infarction patients and major adverse
outcomes: A Swedish nationwide cohort study. Eur. Heart J. 2021, 42, 243–252. [CrossRef] [PubMed]

http://doi.org/10.1001/jama.2016.13985
http://www.ncbi.nlm.nih.gov/pubmed/27673306
http://doi.org/10.1016/s0140-6736(12)60367-5
http://www.ncbi.nlm.nih.gov/pubmed/22607822
http://doi.org/10.1016/s0140-6736(10)61350-5
http://www.ncbi.nlm.nih.gov/pubmed/21067804
http://doi.org/10.3233/JAD-201176
http://www.ncbi.nlm.nih.gov/pubmed/33216039
http://doi.org/10.1136/bmj.j1648
http://doi.org/10.3389/fnagi.2020.00005
http://doi.org/10.1056/NEJMoa1604304
http://doi.org/10.1086/507488
http://doi.org/10.1016/S0022-2275(20)39976-4
http://doi.org/10.1161/01.ATV.0000176191.64314.07
http://www.ncbi.nlm.nih.gov/pubmed/16002743
http://doi.org/10.1016/j.jacc.2010.02.044
http://www.ncbi.nlm.nih.gov/pubmed/20579540
http://doi.org/10.1007/s00125-015-3659-8
http://doi.org/10.1093/eurjpc/zwaa047
http://doi.org/10.1016/j.atherosclerosis.2019.03.014
http://doi.org/10.1093/eurheartj/ehw272
http://doi.org/10.1016/j.archger.2015.04.001
http://doi.org/10.1016/S2213-8587(17)30313-3
http://doi.org/10.1136/heartjnl-2020-317165
http://doi.org/10.1016/j.amjcard.2005.04.029
http://www.ncbi.nlm.nih.gov/pubmed/16125480
http://doi.org/10.1016/j.amjcard.2014.02.034
http://doi.org/10.1093/eurheartj/ehaa1011
http://www.ncbi.nlm.nih.gov/pubmed/33367526


Biomedicines 2022, 10, 970 14 of 14

100. Berwanger, O.; Santucci, E.V.; de Barros, E.S.P.G.M.; Jesuíno, I.A.; Damiani, L.P.; Barbosa, L.M.; Santos, R.H.N.; Laranjeira,
L.N.; Egydio, F.M.; de Oliveira, B.J.A.; et al. Effect of Loading Dose of Atorvastatin Prior to Planned Percutaneous Coronary
Intervention on Major Adverse Cardiovascular Events in Acute Coronary Syndrome: The SECURE-PCI Randomized Clinical
Trial. JAMA 2018, 319, 1331–1340. [CrossRef] [PubMed]

101. Lopes, R.D.; de Barros, E.S.P.G.M.; de Andrade Jesuíno, I.; Santucci, E.V.; Barbosa, L.M.; Damiani, L.P.; Santos, N.R.H.; Laranjeira,
L.N.; Orto, D.F.T.C.; de Andrade, B.P.; et al. Timing of Loading Dose of Atorvastatin in Patients Undergoing Percutaneous
Coronary Intervention for Acute Coronary Syndromes: Insights From the SECURE-PCI Randomized Clinical Trial. JAMA Cardiol.
2018, 3, 1113–1118. [CrossRef] [PubMed]

102. Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.;
et al. Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS). J. Am.
Coll. Cardiol. 2019, 74, 2452–2462. [CrossRef]

103. Leucker, T.M.; Blaha, M.J.; Jones, S.R.; Vavuranakis, M.A.; Williams, M.S.; Lai, H.; Schindler, T.H.; Latina, J.; Schulman, S.P.;
Gerstenblith, G. Effect of Evolocumab on Atherogenic Lipoproteins During the Peri- and Early Postinfarction Period: A Placebo-
Controlled, Randomized Trial. Circulation 2020, 142, 419–421. [CrossRef]

104. Evolocumab or Normal Strategies to Reach LDL Objectives in Acute Myocardial Infarction Upbound to PCI (AMUNDSEN).
NCT04951856. Available online: https://clinicaltrials.gov/ct2/show/NCT04951856 (accessed on 28 February 2022).

http://doi.org/10.1001/jama.2018.2444
http://www.ncbi.nlm.nih.gov/pubmed/29525821
http://doi.org/10.1001/jamacardio.2018.3408
http://www.ncbi.nlm.nih.gov/pubmed/30264159
http://doi.org/10.1016/j.jacc.2019.08.010
http://doi.org/10.1161/CIRCULATIONAHA.120.046320
https://clinicaltrials.gov/ct2/show/NCT04951856

	Introduction 
	Inhibition of PCSK9 for LDL-C Reduction 
	Monoclonal Antibodies for PCSK9 Inhibition—Alirocumab and Evolocumab 
	Inclisiran 
	Bempedoic Acid 
	Pleiotropic Effects beyond LDL-C Reduction 
	LDL-C Treatment Targets—The Lower the Better 
	Importance of Early Reduction below Treatment Target—“Strike Effective and Strong” 
	Conclusions 
	References

