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Automatic lumen segmentation from intravascular optical coherence tomography (IVOCT) images is an important and
fundamental work for diagnosis and treatment of coronary artery disease. However, it is a very challenging task due to irregular
lumen caused by unstable plaque and bifurcation vessel, guide wire shadow, and blood artifacts. To address these problems, this
paper presents a novel automatic level set based segmentation algorithm which is very competent for irregular lumen challenge.
Before applying the level set model, a narrow image smooth filter is proposed to reduce the effect of artifacts and prevent the
leakage of level set meanwhile. Moreover, a divide-and-conquer strategy is proposed to deal with the guide wire shadow. With our
proposed method, the influence of irregular lumen, guide wire shadow, and blood artifacts can be appreciably reduced. Finally, the
experimental results showed that the proposed method is robust and accurate by evaluating 880 images from 5 different patients
and the average DSC value was 98.1% ± 1.1%.

1. Introduction

Cardiovascular disease accounts for nearly half of noncom-
municable diseases. It remains one of themost leading causes
of death in worldwide [1]. It is estimated that about 785,000
Americans each year will get coronary artery disease [2].
Coronary artery disease ismainly caused by the accumulation
of atherosclerotic plaques on the coronary artery wall and
subsequent decrease of lumen area [3]. As the lumen area
decreasing, the blood flow to the heart will be reduced or even
the blood vessels become completely blocked. Eventually, it
can lead to angina pectoris or sudden death due to the vulner-
able plaque ruptures [4]. The lumen area information can be
used for diagnosis and treatment of coronary artery diseases,
such as evaluating intermediate lesions, selecting balloon

or stent dimensions, and deciding the optimal location for
coronary stent implantation [5]. Therefore, accurately and
quantitatively evaluating the lumen area of coronary artery
is an important and fundamental work.

There are mainly two invasive imagemodalities, intravas-
cular ultrasound (IVUS) and intravascular optical coherence
tomography (IVOCT) [6], that can be used to measure the
lumen area of coronary artery. IVOCT is based on near-
infrared light source rather than acoustic wave source for
IVUS imaging. By comparison, IVOCT hasmuch better con-
trast and spatial resolution (10–20 𝜇m), more than 10 times
higher than IVUS [7]. Therefore, based on IVOCT, it can get
more accurate measurement of lumen area for the diagnosis
and treatment of coronary artery diseases. At present, clini-
cally evaluating lumen area is performed by experts’ manual
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Figure 1: Three challenges of lumen segmentation in IVOCT images. (a) Irregular lumen caused by unstable plaque (a1) and bifurcation
vessel (a2). (b) Guide wire shadow. (c) Blood artifacts.

segmentation. However, it is an extremely time-consuming
work. Each pullback of IVOCT image sequence generally
contains 100–270 effective images. In practice, it will take
an experienced analyst more than 4–7 hours to segment all
images of a single pullback sequence [7]. In addition, it has
problems such as interobserver variability and cannot be
reproducible in manual segmentation. Thus, automatic and
accurate lumen segmentation method is highly desired.

Several methods for automated IVOCT image segmenta-
tion have been reported. Sihan et al. [8] appliedCanny filter to
detect the edge and then used linking step for segmentation.
However, their method may not work well on noisy images
due to the fixed threshold. Gurmeric et al. [9] proposed an
active contour model based method and also used threshold
processing to generate initial contour.The threshold process-
ing suffers from the similar problems on noisy cases. Ughi
et al. [10, 11] proposed a lumen segmentation method, which
first detected the boundaries on eachA-line by several a priori
parameters and then smoothed them with a spline fitting.
However, some detected points may be far away from the real
boundary because the spatial correlation between adjacent A-
lines was not incorporated. Tsantis et al. [12] used a Markov
random field (MRF) model that iteratively optimized a cost
function based on a pixel level estimation for segmentation.
Based on pixel level, itmay tend to converge to a local regional
optimumwhen it suffers from artifacts noisy. Guha Roy et al.
[13] andWang et al. [14] proposed graph cutmodels for image
segmentation, which also faced the problemof local optimum
due to pixel level based evolution. In summary, most of these
methods can only be applied on the healthy or nonbifurcation
images [15].

The task of lumen segmentation is difficult due to three
challenges. The first is the irregularity and complexity of
the lumen boundary. For instance, the lumen with unstable
plaque is often irregular [16], as described in region (a1) in
Figure 1. Moreover, the shape of artery wall is complex in
bifurcation vessel frame, as described in region (a2) in Fig-
ure 1. The second challenge is guide wire shadow. The guide
wire is used to guide catheter through the coronary artery

but its shadow makes the contour incomplete, as the arrows
(b) referred in Figure 1. Thirdly, luminal blood artifacts com-
monly exist in the lumen of IVOCT images, as the arrow (c)
refers in Figure 1, which brings a great challenge to distinguish
the real boundary from the edges of artifacts.

In kinds of medical image segmentations methods [17–
19], level set basedmethod [20–22] is themost promising one
to delineate local irregular shape as well as incorporate the
global image information. However, directly using the classi-
cal level set basedmethod is not competent due to the specific
challenges as described above. In this paper, a divide-and-
conquer strategy is firstly proposed to address the challenge of
guide wire. In this strategy, the region shadowed by the guide
wire is removed first.Then, the contour of the region without
shadow is detected. Finally, the complete contour is recon-
structed from the detected contour points by using polyno-
mial fitting. To reduce the effect of artifacts, a narrow image
smooth filter is proposed which prevent the leakage problem
of level set meanwhile. According to our best knowledge, this
is the first work to use level set for automated IVOCT image
segmentation. Compared with the state-of-the-art method
[10], it is shown that the proposed method gets more accu-
rate and more robust results.

The rest of this paper is organized as follows. The pro-
posed level set based segmentation method and its workflow
are presented in Section 2. Section 3 gives the experiment
results and performance of the proposed method. The con-
clusions are drawn in Section 4.

2. Method

In this section, we first introduce the gradient-based level set
model which is used to address the irregular lumen challenge.
Then, a proposed divide-and-conquer strategy is described
against guide wire challenge in second subsection. In third
subsection, a narrow image smooth filter is presented against
the artifacts challenge. Finally, the workflow of this method is
given in the last subsection.
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2.1. Level Set Model against Irregular Lumen Challenge. Level
set based segmentation method can be roughly classified as
region-based model [23, 24] and gradient-based model [25,
26]. Region-based level set evolves by the force ofminimizing
the intensity inhomogeneity of each region, which assumes
the image intensity is relatively homogeneous. This model
is based on a global energy function. However, if a region
contains complicated intensities, it will tend to result in either
oversegmentation or undersegmentation. In IVOCT images,
the guidewire shallow and blood artifacts lead to the intensity
inhomogeneity of intravascular lumen. Thus, it is unsuitable
to use the region-based segmentation model.

Gradient-based model mainly utilizes edge information
for segmentation, which can usually obtain better result for
the target boundary with large gradient magnitude. This
model does not need to assume image intensities as homoge-
neity and thus has a wider application area. For IVOCT
image, the lumen boundary is usually obvious and the gra-
dient magnitude is large. Therefore, gradient-based level set
method can be used for IVOCT image segmentation.

Distance regularized level set (DRLS)model is a gradient-
based level set framework presented by Li et al. [26] which
is a more stable model. It improves the efficiency and effect
of segmentation by avoiding the reinitialization problem in
traditional level set methods [27, 28]. The specific energy
function of DRLS model is

𝐸drls (𝜙) = 𝜇𝑅 (𝜙) + 𝜆𝐿 (𝜙) + 𝛼𝐴 (𝜙) , (1)

where 𝜇 > 0, 𝜆 > 0, and 𝛼 ∈ R are the corresponding
parameters and the function 𝜙 is a level set function.The first
term is a level set regularization term

𝑅 (𝜙) = ∫
Ω
𝑝 (∇𝜙) 𝑑𝑥, (2)

where 𝑝 is a double-well potential [26] with two minimum
points at 0 and 1. During evolution, it forces the gradient
magnitude of level set approach to one of itsminimumpoints.
This can maintain a signed distance property near the zero
level set to keep the level set contour stable. By this way, the
regularization term can avoid the reinitialization problem in
traditional level set methods and maintain contour smooth
during evolution. Thus, this term is also called the internal
energy.

The second term is length term

𝐿 (𝜙) = ∫
Ω
𝐼𝑔𝛿 (𝜙) ∇𝜙 𝑑𝑥, (3)

where 𝐼𝑔 is an edge indicator function defined as 𝐼𝑔(𝑥) =1/(1 + |∇𝐼(𝑥)|2). The length term is a line integral of 𝐼𝑔 along
the contour of zero level set. When the zero level set arrives
at target boundary, 𝐿(𝜙) is minimized.The aim of this term is
to attract the zero level set to the edge of image.

The third term is an area term

𝐴 (𝜙) = ∫
Ω
𝐼𝑔𝐻(𝜙) 𝑑𝑥, (4)

where𝐻 denotes Heaviside function as

𝐻(𝑓 (𝑥)) = {{{
1, 𝑓 (𝑥) ≥ 0,
0, 𝑓 (𝑥) < 0. (5)

The area term computes the weighted area of Ω+𝜙 = {𝑥 :
𝜙(𝑥) > 0}. It equals the area ofΩ+𝜙 when 𝐼𝑔 = 1.The aim of the
area term is to speed up level set evolution. Particularly when
the initial contour is far away from the target boundary in case
of bifurcation, this term is very important. Let 𝜙 be inner pos-
itive and outer negative; then if the initial contour is outside
the target, 𝛼 is set as 𝛼 > 0 so the zero level set can shrink to
the target boundary; if the initial contour is inside the target,𝛼 is set as 𝛼 < 0 so the zero level set can expand to the target
boundary.When the zero level set arrives at the target bound-
ary, 𝐼𝑔 is very small to slow down the speed of shrink or
expand.

The corresponding level set evolution equation can be
obtained by minimizing the energy function (1)

𝜕𝜙
𝜕𝑡 = 𝜇 div (𝑑 (∇𝜙) ∇𝜙) + 𝜆𝛿 (𝜙) div(𝐼𝑔

∇𝜙∇𝜙)
− 𝛼𝐼𝑔𝛿 (𝜙) ,

(6)

where 𝑑(|∇𝜙|) is a diffusion rate function. Using this model,
the initialization of level set function can be simplified as a
binary step function by setting the inner zero level set as 2 and
the outer as −2.While the zero level set evolves in a flat region
with small image gradient |∇𝐼(𝑥)|, the edge indicator func-
tion 𝐼𝑔(𝑥) approximately equals 1. So the level set variation𝜕𝜙/𝜕𝑡 is large to make the evolution move forward. While
the zero level set arrives at the sharp edge, the image gradient|∇𝐼(𝑥)| is very large and 𝐼𝑔(𝑥) is close to zero. So the energy
function is minimized and the evolution stops. For more
details about the DRLS model, refer to [26].

2.2. Divide-and-Conquer Strategy against Guide Wire Chal-
lenge. However, if the DRLS model is directly used for
IVOCT image segmentation, there is an obvious occlusion
problem resulting from the guidewire. Itmay lead to stopping
at the top of guide wire or a serious leakage of zero level set.
Moreover, the edges nearby the region of guide wire also have
large gradient which will mislead the segmentation. In this
paper, a divide-and-conquer strategy is proposed to address
the effect of guide wire.

Generally, for computational convenience, the IVOCT
images are first transformed fromCartesian space coordinate
into Polar coordinate by Hough transform [29], as shown in
Figure 2(a). In Polar coordinate, the vertical axis is called A-
scan direction.

Firstly, assume that the region of guide wire is calculated,
it can be separated by two parallel lines, as shown in Fig-
ure 2(b).Then the region of guide wire can be easily removed
by merging the regions outside of the two separated lines, as
shown in Figure 2(c). After the guidewire is removed from the
image, the contour is consecutive. Then, the level set model
is competent to segment this consecutive boundary. After
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Figure 2: (a) Polar coordinate. (b) Separated guide wire region. (c) Merged image. (d) Segmentation of the region with guide wire removed.
(e) Selected 2𝐾 points for fitting. (f) Complete contour.

implementing the level set, the image of Figure 2(c) can be
segmented as shown in Figure 2(d).

When it gets the segmentation of parts of the boundary
without guidewire, the complete contour can be computed by
polynomial fitting. Specifically, it first gets𝐾 points fromboth
sides of the guide wire, as the yellow points denoted in Fig-
ure 2(e). Based on these 2𝐾points, the boundary in the region
of guide wire can be fitted by 𝑀-order polynomial fitting.
Finally, the complete contour is composed of the level set seg-
mentation result and the fitting result, as shown in Figure 2(f).

The above algorithm is based on the assumption that the
guide wire region was calculated. Thus, the next important
thing is to calculate the guide wire region automatically. It can
be seen that an obvious feature of guide wire is that it has a
bright reflection and followed by a dark shadow immediately.
Another important feature is its spatial continuity along the
pullback direction [11].Thus, the guidewire can be segmented
by utilizing these two features as follows. Firstly, accumulate
the value of pixels on each column and then normalize the
summation so that each image can be mapped as a single
stripe.Then, along the pullback direction, stacking the stripes

mapped by images, it can get a mapped image, as shown in
lower left of Figure 3. In this image, each row is corresponding
to an single frame image. It can be seen that the guide wires
formed an obvious dark and river-liked region. Thus, it is
relatively easier to segment in the mapped image than in the
original image. By using the classical Otsu’s method [30] and
followed by morphological closing and area constraint and
dilation, the guidewire regions can be segmented, as shown in
lower right of Figure 3. Finally, each image can be segmented
by computing the boundary points of the corresponding
stripe on the segmented mapped image, as shown in upper
right of Figure 3.

2.3. Narrow Image Smooth Filter against Artifacts Challenge.
However, when facing the heavy noise of blood artifacts, it
may still be failed. Take an image, for example, as shown on
the left side of the middle of Figure 4; there are some artifacts
noise in the lumen. If the level set model is implemented
directly for segmentation, the edges of artifacts will prevent
the evolution of the zero level set.The final segmentation will
be failed, as shown on the right side of the middle of Figure 4.
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Figure 3: The work follow of guide wire segmentation.

[N ∗ N] filter

[N ∗ 1] filter

Figure 4: Comparison of different image smoothing filter and their corresponding segmentation results.
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InitializationLevel set segmentationBoundary fitOutput

Figure 5: The overall workflow of the proposed method.

Generally, a smooth filter can be taken to reduce the noise
effect. For example, if the image on the left side of the middle
of Figure 4 is processed by a Gaussian filter, as shown on the
left side of the top of Figure 4, the boundary of artifacts is
smoothed, and it is no longer preventing the evolution. Based
on the smoothed image, the segmentation result is shown on
the right side of the top of Figure 4. Compared with the direct
use of segmentation, the smoothed segmentation result is no
longer affected by the artifacts. But it should be noted that
leakage problem occurs in the region of the yellow arrow.
These regions have a common feature that the boundary
changed dramatically along A-scan direction, which usually
occurred at the region with guide wire removed or at the
region of bifurcation vessel. The boundary in this region will
be blurred by common smooth filter.

To overcome this problem, we proposed a narrow Gaus-
sian kernel for image smoothing. The artifacts and catheter
are mostly perpendicular to the A-scan direction and narrow
relative to the lumen boundary. Thus, a large Gaussian
kernel filter can smooth the noises of artifacts and catheter.
While if the kernel of filter is narrowed enough, the real
lumen boundaries which changed dramatically along A-scan
direction will not be affected. As shown in the right side of
the bottom row of Figure 4, the segmentation is satisfactory.
The top row is based on a𝑁×𝑁 sized Gaussian kernel, while
the kernel size of bottom is𝑁×1, both of which are based on
the same deviation parameter 𝜎.
2.4. Overall Workflow. The segmentation framework is
shown in Figure 5. For the segmentation of each frame, it
is first transformed into Polar coordinate space for compu-
tational convenience. Thus, the zero level set is initialized as
a straight line and the region above the line is used as the
region Ω+𝜙 for the computation of the level set function 𝜙(𝑥).
More specifically, the details of the workflow in Figure 5 can
be summarized as 6 steps as follows:

(1) Coordinate transform: each image to be segmented is
first transformed from the Cartesian coordinate space
to the Polar coordinate space by Hough transform
[29].

(2) Guide wire remove: the guide wire region can be
located by the segmented stacked sequence image and
then it can be removed, as described in the second
paragraph of Section 2.2.

(3) Smoothing: based on the image with guide wire
removed, the proposed narrow Gaussian filter is
implemented to reduce the artifacts and prevent leak-
age problem meanwhile, as described in Section 2.3.

(4) Level set segmentation: first, the initialization of zero
level set is set to be a straight line above the diameter
line of catheter tomake sure the initialization is inside
the lumen, as shown by the red line in the left bottom
of Figure 5. Then, the DRLS is implemented to detect
the lumen boundary. It should be noted that the
evolution of level set is always implemented on the
preprocessed image, but to intuitively illustrate the
contour of initialization and segmentation result, we
showed them on the source image instead, as shown
in Figure 5.

(5) Boundary fit: after the lumen boundary of the region
with guide wire removed is segmented, the complete
contour can be computed from the segmented bound-
ary, as described in detail in the third paragraph of
Section 2.2.

(6) Coordinate inverse transform: finally, with the inverse
transform, which is from the Polar coordinate space
to Cartesian coordinate space, the input image can be
segmented as shown in lower left of Figure 5.

3. Experiments

3.1. Materials, Evaluation, and Parameter Settings. The pro-
posed method was tested on 880 IVOCT images from 5
patients. Each pullback contains effective frames varying
between 117 and 271 for different patients. All the IVOCT
pullbacks were obtained by using the FD-OCT system (C7-
XR system, St. Jude, St. Paul, Minnesota) and the Dragonfly
catheter (St. Jude).The data were acquired with the following
parameters of pullback speed: 20mm/s, frame rate: 100
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Figure 6: Examples show the performance of the divide-and-conquer strategy against guide wire challenge. First row: direct segmentation.
Second row: results based on the proposed divide-and-conquer strategy. Red: ground truth. Yellow: automatic segmentation.

frames, axial resolution: ≤20𝜇m, and lateral resolution: 25–
60 𝜇m.

For the quantitative evaluation, Dice similarity coefficient
(DSC) was employed as themetric. Let 𝑆𝑎 denote the shape of
automatic segmentation and 𝑆𝑚 denote the shape of manual
segmentation; the overlap area between 𝑆𝑎 and 𝑆𝑚 is defined
as

DSC (𝑆𝑎, 𝑆𝑚) = 2
𝑆𝑎 ∩ 𝑆𝑚𝑆𝑎 + 𝑆𝑚 × 100%. (7)

In our experiments, we empirically fixed the insensitive
parameters 𝜇 = 0.2 and 𝜆 = 5 in level set model. The
parameter 𝛼 in (1) controls the evolution speed of level set.
Due to the complicated intensities around catheter, the initial
value of 𝛼 should be large to speed up the level set out of the
catheter area.Then, near the boundary of lumen, the value of𝛼 should be small to avoid leakage.Thus, the parameter 𝛼was
set as 𝛼 = 9 in the first 100 evolutions of level set and 𝛼 = 2 in
the rest of evolution. In the divide-and-conquer strategy, the
parameters 𝐾 and𝑀 are set to 10 and 9 by experiments. In
the narrow image smooth filter,𝑁 is set to be 20 according to
the width of lumen boundary in this work, and 𝜎was set to be
4.The parameters were tuned and the best values are chosen.
Then they are fixed for the 5 sequences. In our tests, no sig-
nificant variation of segmentation result was obtained when
varying the parameters around the given values.

3.2. Performance of the Proposed Method

3.2.1. Performance ofDivide-and-Conquer Strategy. As shown
in Figure 6, we compared the segmentation results of directly
using level set (first row) and with the proposed divide-and-
conquer strategy (second row). It can be seen that without
guide wire removed, the results of direct segmentation may
have two problems. The first is the zero level set may be pre-
vented by the guide wire, as shown in left top of Figure 6.This
problem usually occurred in the cases that the guide wire is
close to the lumen boundary. The second problem is that the
results may suffer from heavy leakage in guide wire region, as
the case in the middle top of Figure 6. The leakage problem
results from the regionwhere there is no significant boundary
on the shallow of guide wire. In some cases, like the image of
right top of Figure 6, the result may be suffered from both
problems, while, based on the proposed strategy, the bound-
ary in guide wire region can be fitted accurately, as shown in
the third row in Figure 6.

3.2.2. Performance of Narrow Image Smooth Filter. To illus-
trate the performance of the proposed image smoothing
method, it is compared with the results with no smoothing,
with smoothing by𝑁×𝑁 kernel sized filter and with the pro-
posed narrow image smooth filter. As shown in Figure 7, the
results of first row are without smoothing. It can be seen that
the evolution of level sets cannot reach to the real boundary
due to the prevention of blood artifacts. In second row, the
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Figure 7: Examples compare the performance of different image smoothingmethods. First row: without smoothing. Second row: smoothing
by𝑁 ×𝑁 kernel. Third row: smoothing by the proposed method. Red: ground truth. Yellow: automatic segmentation.

results are based on𝑁×𝑁 kernel smoothing; the level set can
pass through the artifacts. However, heavy leakage problem
occurs in week boundary region, especially in bifurcation
region. On the contrary, based on the proposed narrow
image smooth filter, the robust segmentation results can be
obtained, as shown on the second row of Figure 7.

3.3. Comparison with Other Methods

3.3.1. Comparison Method. To further validate the perfor-
mance of our proposedmethod, we tested the same images by
method [10]. In their method, it removed guide wire region
firstly. Then, it searches the edge point based on each single
A-line by some thresholds. Finally, these searched points are
fit to result in a segmentation.

3.3.2. Qualitative Comparison. Some segmentation results
based on the two methods are shown in Figure 8. It can be
seen that the results of our proposed method are the most
approximate to the ground truth. In the first two columns,
the method [10] cannot be competent to segment the bifur-
cation vessel. In the bifurcation region, the boundary is not
significant, and the thresholds in search step may fail on the
noise. Thus, it will affect the subsequent fitting results. In the
next two columns, compared with the results of method [10],
our method is more able to fit the irregular lumen of unstable
plaque. Comparing the results of the last column, it can be

seen that the method [10] is more sensitive to the noise of
blood artifacts and catheter than ours.

3.3.3. Quantitative Comparison. The quantitative evaluation
results of the two methods are shown in Figure 9. It can be
seen that the results of our method are significantly better
(𝑝 < 0.05, 𝑡-test) than the results of Ughi et al. [10] in most
cases. For the overall comparison of the two methods, the
averageDSC values were computed by averaging the segmen-
tation results over all the patients.With the whole test images,
the average DSC value of the method of Ughi et al. [10] is96.9% ± 1.8%, while the DSC of the proposed method is98.1% ± 1.1%, with an improvement of 63.2%.

3.4. Results for Clinical Analysis. Based on segmentation
results, the 3D structure of coronary artery lumen can be
reconstructed for cardiologists insight. Some quantitative
parameters can be automatically computed for diagnosis and
treatment. For example, the minimal luminal area (MLA)
reflects the degree of coronary narrowing and the lumen area
curve helps the cardiologists selecting the balloon and stent
and evaluating the optimal location for implantation of a
coronary stent. Figure 10 shows a 3D reconstruction result
based on VTK [31], which can provide the 3D structure of
coronary artery lumen intuitively for cardiologists. Its lumen
area curve is plotted by a red curve as shown in Figure 10.The
lumen area is computed by accumulating the pixel number
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Ughi et al.

Figure 8: Examples show the segmentation results of five frames based on the two methods. Red: ground truth. Yellow: automatic
segmentation.
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Figure 9: The average DSC of segmentation results based on the two methods.

and multiplying by the spacing of each pixel. Thus, the MLA
and its location can be easily obtained from the curve. In this
case, the location of MLA is located at the green circle shown
in Figure 10. Its corresponding frame and the segmentation of
MLA are shown in the right bottom in Figure 10. Moreover,
the biggest luminal area is located by a yellow circle, and its
corresponding frame is shown in the right top of Figure 10. It
can be seen that it contains a big bifurcation vessel.

4. Conclusion

In this paper, a novel level set based lumen segmentation
method is proposed for IVOCT images. The main contri-
butions of this work are included as follows: (1) To the best
of our knowledge, this is the first work introducing level set
model to segment artery lumen contour in IVOCT images.
(2) By using a divide-and-conquer strategy, the challenge
of guide wire shadow is addressed. (3) By analyzing the

direction features between the artifacts and lumen contour,
a special narrow image smooth filter is proposed to reduce
the blood artifacts. Finally, by comparing with a state-of-the-
art method [10], the experimental results show the proposed
method is robust and promising. In future work, shape prior
base method may be applied to constrain the evolution of
level set to get more accurate results.
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