
RESEARCH ARTICLE

Characterization of the fungal community in

the canopy air of the invasive plant Ageratina

adenophora and its potential to cause plant

diseases

Lin Chen1,2,3, Kai Fang1,2,3, Xing-Fan Dong2,3, Ai-Ling Yang2,3, Yu-Xuan Li2,3, Han-

Bo ZhangID
1,2,3*

1 School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan Province, China,

2 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University,

Kunming, Yunnan Province, China, 3 School of Life Sciences, Yunnan University, Kunming, Yunnan

Province, China

* zhhb@ynu.edu.cn

Abstract

Airborne fungi and their ecological functions have been largely ignored in plant invasions. In

this study, high-throughput sequencing technology was used to characterize the airborne

fungi in the canopy air of the invasive weed Ageratina adenophora. Then, representative

phytopathogenic strains were isolated from A. adenophora leaf spots and their virulence to

A.adenophora as well as common native plants in the invaded range was tested. The fungal

alpha diversities were not different between the sampling sites or between the high/low part

of the canopy air, but fungal co-occurrences were less common in the high than in the low

part of the canopy air. Interestingly, we found that the phytopathogenic Didymellaceae fungi

co-occurred more frequently with themselves than with other fungi. Disease experiments

indicated that all 5 Didymellaceae strains could infect A. adenophora as well as the 16 tested

native plants and that there was large variation in the virulence and host range. Our data

suggested that the diverse pathogens in the canopy air might be a disease infection source

that weakens the competition of invasive weeds, a novel phenomenon that remains to be

explored in other invasive plants.

Introduction

It has been suggested that invasive plants have the ability to decrease biodiversity in local eco-

systems through competition [1]. The enemy release hypothesis (ERH) partially explains this

competitive advantage, as hosts in the introduced range escape from their enemies [2–7]. Klir-

onomos (2002) showed that five of North America’s most damaging exotic plant invaders

modified the soil microbial community in ways that benefit themselves (i.e., positive feedback)

[8]. Callaway et al. (2004) found a switch from negative to positive plant-soil feedback for spot-

ted knapweed when moving from its native to its exotic range [9]. However, some invasive
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plants have been shown to accumulate pathogens in their invaded ranges, which is called the

pathogen accumulation and invasive decline (PAID) hypothesis [10]. In some cases, pathogen

accumulation can limit the spread of invasion [11]. In eastern North America, the highly inva-

sive annual grass Microstegium vimineum becomes significant declines in growth performance

in natural populations due to accumulate Bipolaris species and other fungal pathogens [12,

13].

Besides the direct adverse impacts on invasive host, these accumulated pathogens can indi-

rectly exacerbate the effects of invasions if they are transmitted in the invaded ecosystem and

affect the susceptible of native hosts [34], which is defined as disease-mediated invasion (DMI)

[14, 15]. Alternatively, invasive plants could be a reservoir of local pathogens, which may

spread to wild plants, crops and generate very large ecological risks [10, 16–18]. In the UK, the

invasive Rhododendron ponticum is a key foliar reservoir host for the native pathogens Phy-
tophthora ramorum and P. kernoviae [19]. Evaluating these impacts of invasive hosts in the

introduced range largely depends on the understanding if these fungi can be released from

hosts into the surrounding air and if they have the potentials to cause diseases on neighboring

native plants.

Airborne fungal propagules have been a major focus of epidemiological studies in tradi-

tional plant pathology for native plants and crops. For example, most airborne spores come

from fungi growing on living or dead plants [20], and their abundance is influenced by multi-

ple abiotic factors, such as temperature [21], humidity [22], rainfall [23], and wind speed [24].

Scherm & van Bruggen (1995) reported that lesions on source plants infected with an isolate of

Bremia lactucae sporulated at night and released spores beginning at sunrise [25]. Plant canopy

air, with complex microclimates, thus acts as an important space for dynamic host-pathogen

interactions [26]. Pathogens in the canopy air can infect plants under optimal microclimate

conditions and in turn, release their spores into the air to complete their life cycle; meanwhile,

the host can change the canopy microclimate to affect pathogen spread and disease develop-

ment [26]. Some studies for the monoculture crop also have shown that numbers of conidia

collected decreased with increasing height within and above the crop canopy [27–29]. Simi-

larly, for the monoculture invasive plant, its canopy air would harbor diverse fungal spores

released from leaf spots, which in turn, may infect host itself as well as neighboring species. It

should be expected that: (1) The closer to the plant host, the higher diversity and more compli-

cated co-occurring connections of fungi; (2) there are the sharing between fungi in the canopy

air of invasive plants and host-associated pathogenic fungi. Currently, there is a total lack of

the knowledge of the airborne phytopathogenic fungi surrounding the invasive plants.

The invasive weed Ageratina adenophora is one of the most serious invasive weeds in Yun-

nan Province, China. It has rapidly spread in southwestern China and is expected to invade

southern and south-central China unless it is controlled [30]. Recently, several studies indi-

cated that A. adenophora could be infected by the foliar fungal pathogens Phaeoramularia sp.

[31], Passalora ageratinae [32], Alternaria alternata [33], and Collectotrichum [34,35]. In

recent, our group has indicated that the foliar fungi from family Didymellaceae are adverse to

the growth of A. adenophora [36], and these fungi frequently occurs in the surrounding envi-

ronment, such as in the withered leaves and the canopy air of hosts [37]. In this study, two

experiments were designed to verify the expectation above. Firstly, we used the high-through-

put sequencing technology to characterize the fungal community and analyze their co-occur-

rence network in the canopy air of A. adenophora (experiment 1); and then the shared

representative phytopathogenic fungi from family Didymellaceae were isolated from leaf spots

of A. adenophora and their virulence to A. adenophora as well as native plants was tested

(experiment 2).
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Materials and methods

Experiment 1: High-throughput sequencing of canopy fungal communities

Collection of airborne fungal spores. The samples were collected in two regions in

which A. adenophora heavily occurs in Yunnan Province, China. These sampling sites are not

located within the protected area and no sampling permit is required. At 2–4 pm, April 10 and

15, 2018, three sites per region were selected to collect the air in the same day and considered

as the biological duplication. In each sampling site, we sampled two heights in the air column,

and totally we collected 12 air samples. Briefly, in each region, three sampling sites over 1 km

apart were randomly selected (S1 Table, sampling sites information). The canopy air in each

site was sampled from both the immediate canopy (the air from the low part of the canopy,

defined as LC) and 1.5 meters above the vegetation (the air from the high part of the canopy,

defined as HC). For each sample, airborne spores were concentrated from 1000 liters of air

(~5mins), using a 9cm diameter Petri dish filled with a sterilized cellulose acetate membrane

by a surface air system (SAS) Super ISO 180 (VWR International PBI SRL, San Giusto, Italy).

The Petri dishes were immediately sealed with Parafilm1 "M" (Pechiney Plastic Packaging,

Menasha, WI) after air collection and brought back to the laboratory. Then, the cellulose ace-

tate membrane was removed, cut into small pieces and placed in 2 mL centrifuge tubes. The

fungal spores on the cellulose acetate membrane were oscillated and removed with 600 μL ster-

ile water and sterilized steel balls in a magnetic shaker for 10 minutes. The cellulose acetate

membrane and steel balls were removed from the centrifuge tubes. Then, the spores from each

sample were centrifuged and pooled, and the precipitant was stored in a -4˚C refrigerator

prior to DNA extraction.

DNA extraction. Prior to DNA extraction, the concentrated spores were resuspended in

approximately 250 μL of sterile distilled water. The resuspended fungal spores were extracted

using the commercial DNA extraction kit FastDNA1 SPIN Kit for Soil (MP Biomedicals,

Irvine, CA). The DNA quality was monitored by 0.8% agarose gel electrophoresis. The

extracted DNA was diluted to a concentration of 2 ng/μL to balance the DNA amount among

the samples, and then stored at -20˚C until further processing. Meanwhile, the sterilized cellu-

lose acetate membranes without performing collection of air spores were used as the extraction

blanks, which were failed in DNA extraction and were excluded from the further processing.

The diluted DNA was used as a template for PCR amplification. For the fungal diversity

analysis, the fungal rRNA gene was amplified with primers ITS1-1737F (GGA AGT AAA AGT
CGT AAC AAGG) and ITS2-2043R (GCT GCG TTC ATC GAT GC) targeting ITS1-ITS2

(approximately 246 bp) [38,39]. All the amplifications were conducted in an ABI GeneAmp1

9700 (Applied Biosystems Inc., Foster City, CA) at 95˚C for 3 min, followed by 37 cycles at

95˚C for 30 s, 55˚C for 30 s, and 72˚C for 45 s and a final elongation step at 72˚C for 10 min.

The PCRs contained 2 μL 10 × PCR buffer, 2 μL 2.5 mM dNTPs, 0.8 μL 5 μM ITS1-1737F and

ITS2-2043R primer, 0.2 μL of TakaRa rTaq DNA polymerase and 10 ng DNA template, with a

final volume of 20 μL. Equal amounts of purified amplicon were pooled for subsequent

sequencing using the Miseq sequencing platform at Shanghai Majorbio Biopharm Technology

Co., Ltd. (Shanghai, China). The next-gen data were submitted to GenBank under bioproject

accession numbers PRJNA590841.

Bioinformatic analysis of the high-throughput sequencing. The raw sequencing data

were in the FASTQ format. The paired-end reads were preprocessed using Trimmomatic soft-

ware [40] to detect and remove ambiguous bases (N). We also removed low-quality sequences,

i.e., those with an average quality score below 20, using the sliding window trimming

approach. After trimming, the paired-end reads were assembled using FLASH software [41].

The parameters of assembly were a minimum of 10 bp overlapping, a maximum of 200 bp
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overlapping and a 20% maximum mismatch rate. The sequences were further denoised as fol-

lows: the reads with ambiguous, homologous sequences or sequences below 200 bp were aban-

doned, reads with 75% of bases above Q20 were retained, and reads with chimeras were

detected and removed. These steps were performed using QIIME software (version 1.8.0) [42].

The clean reads were subjected to primer sequence removal and clustering to generate

operational taxonomic units (OTUs) using UPARSE software with a 97% similarity cutoff

[43]. The representative read of each OTU was selected using the QIIME package. All the rep-

resentative reads were annotated and blasted against the UNITE database using BLAST

[44,45].

Data analysis of the high-throughput sequencing. After OTU classification, we first

deleted the unidentified OTUs at the phylum level and then subsampled all samples to the

30376 reads (minimized reads’ sample) using the “sub.sample” function in MOTHUR v1.35.1.

All the data were analyzed except those that were removed during subsampling (see S2 Table

Data Subsampled OTUs table). The rarefaction curve for each sample was calculated using

MOTHUR "rarefaction.single" and plotted using Graphpad Prism v7 (GraphPad Software,

Inc., CA, USA). The alpha diversity was calculated using the R package "vegan" and plotted

using Graphpad Prism v7. The alpha fungal diversity between two regions, as well as between

two heights in the air column was compared using paired t test by SPSS 25.0 (IBM, NY, USA).

We used two methods to compare the diversity between two regions, i.e. considering the

heights in the air column (LC: 3 vs 3, HC: 3 vs 3) and not considering the height in the air col-

umn (6 vs 6). The same method was used to compare the different height in the air column

with and without considering the region. Similarly, the differences in fungal abundance

between two regions, as well as between two heights in the air column were also compared

using paired t test using the methods above described at phylum, family, and genus level,

respectively. The fungi with an average abundance of less than 0.5% were excluded from the

comparison. For the phylogenetic analysis of Didymellaceae, the most similar sequences were

downloaded from NCBI and neighbor joining (NJ) was used to construct phylogenetic trees

with Mega X using 18S rRNA gene sequences (approximately 220 bp). Leptosphaeria conoidea
(CBS 616.75) and L. doliolum (CBS 505.75) were selected as the outgroup. The node stability

was assessed with 1,000 bootstrap replicates. The relative abundance of Didymellaceae fungi is

shown in a heatmap plotted by the R package "pheatmap".

Co-occurrence patterns do not allow mapping of microbial interactions directly, but pro-

vide information on particular groups sharing habitats or performing similar ecological func-

tions [46]. Therefore, to reveal the co-occurrence among airborne fungi, network analyses of

the OTU matrix based on Spearman’s Rho were calculated by the "psych" R package. The

OTUs that occurred only in one sample were excluded when structuring the co-occurrence

networks. We further divided the synthetic dataset into two parts: LC and HC of A. adeno-
phora. The co-occurrence among all the fungi was calculated for both LC and HC. These two

valid co-occurrence events were considered to be robust if the correlation coefficient ρ> |0.8|

and if they were statistically significant at P< 0.05 [46–49]. The network visualization was

generated with Gephi v 0.9.2 [50]. Other graphs were plotted by GraphPad Prism v7.

Experiment 2: Isolation of leaf spot fungi and performance of the disease

experiment

Isolation and molecular identification of leaf spot fungi. To verify if there is fungal

sharing of the leaf spots with the canopy air of A. adenophora, we selected one population of A.

adenophora from one site (KM3) to perform fungal isolation. Diseased leaves with morpholog-

ically different symptoms were collected. Healthy leaf tissues and the margins of diseased
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tissues of each leaf spot were cut into six sections of 6 mm2 and surface sterilized. The disin-

fected fragments were then plated onto PDA and incubated at ambient temperature for 6–8

days or until mycelia growing from the leaf fragments were observed. Then, all the fungal

colonies grown from the leaf fragments were purified and used to determine the phyloge-

netic position and in the disease experiments. All the fungi were maintained as pure cul-

tures at Yunnan University (Kunming, China). All the fungi were sequenced by the internal

transcribed spacer (ITS) region using primers ITS 1 (TCC GTA GGT GAA CCT GCGG)

and ITS 4 (TCC GCT TAT TGA TAT GC) [51–52]. Sequences of pure isolates were clus-

tered to generate OTUs using MOTHUR software with a 100% similarity cutoff [43]. These

cultured OTUs were named as cOTUs to distinguish from the OTUs generated by next-gen-

eration sequencing. The fungi were annotated and blasted against the UNITE database [45]

using the MOTHUR classifier (confidence threshold of 80%) [44]. The nucleotide sequences

of these OTUs have been deposited in GenBank under accession numbers MK813969—

MK814043.

Identifying the shared OTUs of leaf spot fungi with airborne fungi of A. adenophora.

To identify the fungal sharing, the ITS sequences from each representative OTU obtained

from airborne fungi were selected to perform alignment with those sequences obtained from

cultural leaf spot fungi above. Because the ITS sequence obtained by the high-throughput

sequencing technology was short (~250bp), the alignment was trimmed to this range and was

clustered to generate OTUs again using MOTHUR software with a 97% similarity cutoff [43].

Deletions/insertions were considered when comparing the sequences from next-gen and cul-

tures. Those OTUs clustered from both sources were defined as the shared fungi; the Venn

and bubble diagrams were used to show the shared fungal OTUs. Then, the shared Didymella-

ceae fungi obtained from leaf spots were selected to test their pathogenicity in the disease

experiment. The used multiple isolates from one OTU were obtained from different leaf spots

to avoid the origin of the same clone.

Disease experiment. The disease experiment was performed in the field. The field site is

located in Xishan mountain, Kunming (Lat 24˚58024@ N and Lon 102˚37017@ E) and has an ele-

vation of 2,214 m. The site is not located within the protected area and no sampling permit is

required. In this site, there is a natural plant assemblage, which includes weeds, forbs, trees

and vines, native to Yunnan. The experimental period extended from June to the end of Octo-

ber 2018, the primary growth season for plants in Kunming. In total, A. adenophora and 16

other native plants (Ampelopsis sinica, Zehneria maysorensis, Reinwardtia indica, Fallopia mul-
tiflora, Pharbitis nil, Rubia cordifolia, Arthraxon hispidus, Urena lobata, Abelmoschus moscha-
tus, Achyranthes bidentata, Quercus glauca, Lindera communis, Celtis tetrandra, Betula
alnoides, Smilax scobinicaulis, and Pueraria peduncularis) were tested. Because necrotrophs

infect frequently through wounds [53], our experiment was performed as previously reported

to test the virulence of necrotrophs in tropical forests [54]. Briefly, the fungi were grown on

PDA for 7 days, and 6mm2 fungal mycelium agar dishes were obtained and used to inoculate

in plants in the field. Mature and healthy leaves were selected for inoculation. Small wounds

were made by lightly touching the underside of the leaf with toothpicks; this resulted in 7 pin

pricks in an area of 0.5 cm2. The inoculum agar was pressed against the wound using cellulose

tape on the underside of the leaf and clipped in place with a bent hair clip. The wounds were

labeled with the strain number. One week after the inoculation, the leaves were harvested and

leaf spot size was measured. The leaf spot size for each strain was visualized by a heat map,

which was plotted by the R package "pheatmap". The PDA culture agar without fungus was

used as the negative control. In the case that the obvious symptom was developed in the nega-

tive control group, the same batch of the fungi was tested again.
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Results

Experiment 1: High-throughput sequencing of canopy fungal communities

The fungal diversity and species in the canopy air. After the removal of the ambiguous

OTUs and subsampling, a matrix with 12 samples × 178 OTUs was obtained, and all the sam-

ples reached saturation at ~15,000 sequences (see S1 Fig rarefaction curves). The alpha diversi-

ties, including the Shannon index and species richness, were different neither between the

regions (with or without considering the height in the air column) nor between the high (HC)

and low (LC) parts of the canopy (with or without considering the region) (Fig 1, P> 0.05,

paired t test), but there was a large variation within sites.

The fungi belonged to 3 phyla, 59 families and 85 genera. Fungi from the Ascomycota

accounted for 98.86% of the overall abundance and included Cladosporiaceae (61.21%), Didy-

mellaceae (5.22%), Hypocreales (4.63%), Cordycipitaceae (3.84%), Nectriaceae (3.21%), Pleos-

poraceae (2.52%), Mycosphaerellaceae (2.26%) and Aspergillaceae (1.84%). The dominant

genera are Cladosporium (60.58%), Sarocladium (4.42%), Lecanicillium (3.82%), Alternaria
(2.08%), Epicoccum (1.49%), Penicillium (1.03%), and Fusarium (0.53%) (Fig 2). The fungal

community composition showed no significant difference between the LC and HC canopy air

and between two regions (P> 0.05, paired t test), with the exception that Epicoccum varied sig-

nificantly between YL and KM when no considering the LC and HC (P = 0.028, paired t test).

Fungal co-occurrence network analysis. In total, the fungal co-occurrence network had

62 nodes and 85 edges, with 20 negative edges (Fig 3A and 3B). The air from the low part of

the canopy (LC) had more fungal co-occurrences than those of the air from the high part of

the canopy (HC). The most abundant Cladosporium rarely linked among themselves or with

other fungi positively. In most cases, common phytopathogens, e.g., Alternaria (OTU117) and

Fusarium (OTU202), are positively linked with other fungi (Fig 3A). Interestingly, we found

that diverse fungi belonging to the Didymellaceae family frequently linked with each other

positively, e.g., OTU11-OTU43, OTU43-OTU295, and OTU97-OTU295, but linked with

other fungi negatively, e.g., OTU97 (Didymellaceae) with OTU117 (Alternaria), and with

OTU325 (Fusarium). The exception to this pattern was that the most dominant genus Clados-
porium (OTU287) showed a positive relationship with Didymellaceae (Fig 3B).
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We identified nine Didymellaceae OTUs, with a sum of 7.53% of the sequences. Phyloge-

netically, OTU150 was combined with Ascochyta into one clade, and the remaining OTUs

were close to Phoma, Epicoccum, Cumuliphoma and Didymella, which were clustered into

another clade (Fig 4A). Relatively LC had a greater abundance of the Didymellaceae family

than that of HC, with no statistical significance (P> 0.05, paired t test). OTU11 and OTU90

were the predominant fungi and appeared in most samples. OTU150 only occurred in HCin-

KM2, and OTU52 was detected in HCin-YL2. The remaining OTUs occurred in 2 to 8 samples

(Fig 4C).
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Experiment 2: Isolation of fungi and disease experiment

Fungal relationships between the canopy air and leaf spots of A. adenophora. The

diverse Didymellaceae in the canopy air of A. adenophora may be associated with the easy

release of Didymellaceae spores from monocultures of A. adenopohra. To verify whether A.

adenophora harbors diverse Didymellaceae fungi, we selected one population, KM, to isolate

the leaf spot fungi. In total, 355 isolates were isolated and grouped into 75 unique cOTUs with

a 100% cutoff of ITS gene similarity. The most dominant fungi were from the family Glomerel-

laceae (24.51%). The second most dominant fungi were Didymellaceae, which included 10

cOTUs and accounted for 20.00% of the isolated strains (see S1 Table). By comparing the

results with the fungal library obtained by high-throughput sequencing technology, a total of

20 overlapping OTUs were identified, which accounted for 11.45% and 44.79% of the abun-

dance of two libraries, respectively (Fig 5A). The shared OTU11 (cOTU24), OTU14 (cOTU12,

cOTU35, cOTU36, cOTU37 and cOTU43) and OTU295 (cOTU75) belonged to Didymella-

ceae were the most abundant fungi in both the canopy air and leaf spots. The leaf spots showed

relatively high overlap with LC compared with that with HC (Fig 5B).

Evaluation of the potential of Didymellaceae fungi to cause plant disease. Because

Didymellaceae occurred frequently in both the canopy air and leaf spots of A. adenophora, 5

strains from the overlapped OTU14 were selected to test their virulence to native plants and A.

adenophora. The disease experiments indicated that all the strains could infect A. adenophora.

These strains also infected the 16 native plants tested to varying degrees. A. adenophora was

more sensitive to these strains than most native plants, with the exception of R. indica (Fig 6).
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Discussion

This is the first study that characterizes the airborne fungal communities of invasive plants and

evaluates their potential to cause plant disease. Similar to previous reports, we found that Cla-

dosporiaceae was the most frequent fungus in the air, mainly represented by the genus Clados-
porium (Fig 2). Other fungi included common genera, such as Fusarium, Alternaria and

Epicoccum [55–58]. Previously, there have been verified the occurrence of more fungal spores

in the air in the low part of the canopy, which is close to plant leaves (i.e., the important release

source of fungal spores), compared with the number of spores in the air of the high part of the

canopy [20,59]. Several reports from crop systems have also verified this trend [27–29]. We

did not found a higher fungal diversity and abundance in low part than high part of the canopy
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(Fig 1). This is possible due to the small distance of two heights (~1.5m, see methods). Many

reports have indicated that the determining factors for airborne pathogen spores are very com-

plex, related to the environment, season and time [60–62], and in particular meteorological

factors [21, 23, 55, 56, 63]. In this study, therefore, it is impossible to conclude the difference in

fungal diversity across air column due to the small size of air samples (only two heights from

two regions). However, partially supporting our expectation, we found that the air in the low

part of the canopy (LC) had more fungal co-occurrences than the air in the high part of the

canopy (HC) (Fig 3). In particular, we found that the dominant pathogens on A. adenophora
enhanced the links among themselves (e.g., Didymellaceae fungi OTU90) and reduced their

links with other fungi in the canopy air (Figs 3 and 4A).

This pattern may result from their high infection and easy release of spores from the mono-

culture A. adenophora host into the surrounding air. Species of Didymellaceae mainly cause

leaf and stem lesions [64,65] and produce many small conidia, which is conducive for spread-

ing through the air [66]. We also verified that A. adenophora harbored abundant leaf spot

pathogens from Didymellaceae in this study (see S2 Table). The data suggest that there may

form a feedback between the pathogenic fungi associated host and the airborne spores, i.e., the

monoculture hosts support high load of pathogenic fungal infection, which will develop into a

pathogenic-fungus-dominant canopy air and in turn further worsen their infection on hosts.

Such a feedback cycle may partially contribute to the prevalence of Didymellaceae fungi on A.

adenophora. Here we reasoned that the co-occurrence pattern of the dominant airborne fungal

pathogen may be a label in the monoculture plant, including invasive plants, as well as eco-

nomic crops. Janzen-Connell hypothesis indicates that diverse host-specific pathogen is

important to maintain plant diversity [67, 68]. For native vegetation, higher plant diversity

promotes higher diversity of fungal pathogens [69], it thus is expected that the airborne fungal

co-occurrence become more abundant in native vegetation than in the monoculture plant.

Although it remains to have such a conclusion due to the lack of air samples above native vege-

tation in this study, our data indirectly indicate that the diverse hosts and the diverse airborne

pathogen co-occurrence network may partially contribute to high diversity of pathogens in

native vegetation and thus decreases pathogen infection per plant [69]. Previously, increasing

host diversity has been verified to help reduce the disease severity of airborne pathogens for

monoculture crops. For example, Zhu et al. (2000) reported that planting disease-susceptible

rice varieties in mixtures increased crop yield by 89% and reduced blast severity by 94% when

comparing with those in monocultures [70]. Therefore, it is worthwhile to verify the common-

ness of such fungal co-occurrence patterns in other invasive systems as well as in crop systems,

and the study of airborne fungal co-occurrence networks represents a promising field of plant

pathology.

Regarding the reason why an exotic plant invades successfully, many reports have focused

on the positive soil microbial feedback of invasive plants compared with that of native plants

[8, 9]. Our data indicated that the pathogen feedback in the canopy air may weaken plant inva-

sion as the residence time increases. In addition, previous reports have indicated that invasive

plants could accumulate pathogens and infect native plants [10]. In this case, the infection risk

was possible because susceptible native hosts were available, e.g., R. indica, in the invaded

range (Fig 6). Nonetheless, whether these effects of Didymellaceae fungi ultimately translate

into a competitive adverse of A. adenophora and the ecological risk must be evaluated against

the background of the invaded ecosystems.

Interestingly, we found that the most dominant genus Cladosporium (OTU287) showed a

positive relationship with Didymellaceae in the canopy air of A. adenophora. This pattern here

does not mean that Cladosporium specifically facilitates the accumulation of Didymellaceae in

the air but mirrors the high prevalence of Cladosporium spores in the air [55, 56]. In addition,
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although Glomerellaceae fungi (e.g., Colletotrichum) were the most abundant fungi isolated

from the leaf spots (also see Supplementary Data Fungi isolation table) as well as foliar endo-

phytes of A. adenophora [71], they were rarely detected in the air by high-throughput sequenc-

ing. Because these Colletotrichum strains are rarely pathogenic on A. adenophora (unpublished

data), we excluded them from this analysis. However, fungal spores in the air can be affected

by microclimatic conditions, such as temperature and humidity [26], and it is worth determin-

ing the daily and seasonal dynamics of Colletotrichum in the air of A. adenophora.

For the fungi of Didymellaceae in the air, Epicoccum is the most reported genus [55], and

the other groups have been disregarded because they were not identified. Didymellaceae is the

largest family in the Pleosporales and has more than 5400 taxon names listed in MycoBank

[72]. Although Chen et al. (2017) classify Didymellaceae into 19 genera, many Didymellaceae

remain to be identified [66]. Similarly, most Didymellaceae fungi in this study were of the

unclassified group, indicating that many of them may be potential novel species and worthy of

characterization in the future. Nonetheless, the high-throughput sequences obtained from air

samples we used for the comparison with the cultured strains were too short (~250bp) to fully

confirm their matches. Therefore, the traditional culture methods should be used to success-

fully culture Didymellaceae fungi from the air, and both the morphological taxonomic meth-

ods and multiple loci of gene sequences are needed to accurately determine their phylogeny.

Interestingly, strains from OTU14 showed a great variation in virulence and host range (Fig

6); in particular some strains, e.g., DID2, have a narrow range of hosts. These strains are the

candidates to develop into a potential biocontrol of A. adenophora in future.
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