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Abstract: Biomarkers play a key role in the development of personalized medicine. Cancer clinical
trials with biomarker should be appropriately designed and analyzed reflecting the various factors,
such as the phase of trials, the type of biomarker, the study objectives, and whether the used
biomarker is already validated or not. In this paper, we demonstrate design and analysis of two
phase II cancer clinical trials, one with a predictive biomarker and the other with a prognostic
biomarker. A statistical testing method and its sample size calculation method are presented for each
of the trials. We assume that the primary endpoint of these trials is a time to event variable, but this
concept can be used for any type of endpoint with associated testing methods. The test statistics and
their sample size formulas are derived using the large sample approximation based on the martingale
central limit theorem. Using simulations, we find that the test statistics control the type I error rate
accurately and the sample sizes calculated using the formulas maintain the statistical power specified
at the design stage.

Keywords: enrichment trial; interaction; predictive biomarker; prognostic biomarker; progression-
free survival; stratified randomization trial

1. Introduction

In many cancer clinical trials, different types of biomarkers are measured from the
tumor, blood or urine using molecular, biochemical, physiological, anatomical, or imaging
method at the baseline or during treatment. The observed biomarkers are used for var-
ious purposes during the diagnosis and treatment of the diseases. For example, cancer
biomarkers are used to diagnose diseases (diagnostic biomarker), to predict the response
to a specific treatment (predictive biomarker), to measure the aggressiveness of a disease
for patients with no or a non-targeted treatment(prognostic biomarker), to monitor the
recurrence of a disease, and so on.

These biomarkers can be used to select a treatment of cancer patients. However,
biomarkers should be validated before being used to select a treatment in clinical trials.
If a biomarker has not been validated yet, it can be used as a stratification factor of a
randomized clinical trial. In such a trial, the biomarker is used for its validation, rather
than for treatment selection.

The design and analysis method of a clinical trial with a biomarker-guided treatment
can be very different depending on the type of the used biomarker, the biomarker’s
development stage, the study objective, and so on. Various design issues of randomized
clinical trials with biomarkers have been widely discussed [1]. A series of statistical testing
has been proposed for a randomized phase II trial with a potentially predictive biomarker
which has not been strictly validated yet [2]. The efficacy of enrichment trials and stratified
randomization trials with a time to event variable as the primary endpoint has been
compared assuming that the treatment effect reverses between biomarker positive and
negative groups and considering subset analysis within each biomarker status group [3].

Phase II trials are to screen out inefficacious treatments before proceeding to a large-
scale studies, such as a phase III trial. As such, phase II trials should be completed in a
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short time period, so that we must choose a small sample size and a short-term surrogate
endpoint, such as tumor response or progression-free survival, as the primary endpoint,
rather than a confirmatory endpoint, such as overall survival.

In this paper, we demonstrate two phase II cancer clinical trials, one with a predictive
biomarker and the other with a prognostic biomarker, and present analysis and sample size
calculation methods for these trials. We use a survival variable as the primary endpoint in
this paper, but the same concept can be used for any kind of variables including a binary
variable, such as tumor response. For the purpose of sample size calculation, we assume
exponential survival distributions which are most popularly used in real trial designs,
although the statistical testing does not depend on any specific survival distribution. This
is a review article of a biostatistical paper [4] with some modifications.

2. Materials and Methods

We consider a time to event (or survival) endpoint, progression-free survival (PFS). We
use a generalized log-rank test for a trial with an imaging prognostic biomarker and a Cox
proportional hazards model for a trial with a predictive biomarker, and derive their sample
size formulas. To account for relatively small sample sizes of phase II trials, exact statistical
methods are used for binary outcomes, but in general no exact methods are available for
survival analysis. Therefore, using simulations on two real trial examples, we evaluate the
small sample performance of the discussed statistical tests and their sample size formulas
that are derived based on large sample approximation.

3. Results
3.1. A Phase II Trial with a Predictive Biomarker

Predictive biomarkers help provide information on the likelihood of response to a
specific chemotherapy. For example, tumors expressing high thymidylate synthase (TS)
levels were shown to be resistant to pemetrexed in a preclinical study [5], but it was
not validated by a clinical study yet. Suppose that we want to investigate whether TS
expression is a predictive marker for the clinical outcome of pemetrexed/cisplatin (PC) in
patients with nonsquamous non–small-cell lung cancer (NSCLC) through a phase II trial.
The control non-targeted treatment is gemcitabine/cisplatin (GC). Compared to GC, PC
is expected to be similarly efficacious for TS-positive group, but to be more efficacious in
TS-negative group.

To investigate this hypothesis, we want to randomize patients between the two
treatment arms stratifying by TS-positivity vs. TS-negativity. This trial was designed
and published with overall response as the primary endpoint [6], but in this paper, we
demonstrate how to design and analyze a trial using PFS as the primary endpoint based
on the estimates from the trial.

3.1.1. Statistical Testing

When this study is completed, PFS will be regressed on treatment allocation z1 (=0 for
GC arm; =1 for PC arm) and TS-positivity z2 (=0 for TS-negative group; =1 for TS-positive
group) using a proportional hazards model [7]

λ(t) = λ0(t) exp(β1z1 + β2z2 + β3z1z2) (1)

Please note that we have an interaction term z1z2 in the model.
From model (1), the hazard functions of four patient groups defined by treatments

and TS status are given as λ(t|z1 = 0, z2 = 0) = λ0(t), λ(t|z1 = 1, z2 = 0) = λ0(t) exp(β1),
λ(t|z1 = 0, z2 = 1) = λ0(t) exp(β2), and λ(t|z1 = 1, z2 = 1) = λ0(t) exp(β1 + β2 + β3).
For TS-positive patients (z2 = 1), the hazard ratio between PC and GC is λ(t|z1 = 1, z2 =
1)/λ(t|z1 = 0, z2 = 1) = exp(β1 + β3), so that we expect β1 ≈ −β3 if GC and PC are
similarly efficacious for TS-positive patients. For GC arm (z1 = 0), the hazard ratio between
TS-positivity group and TS-negativity group is λ(t|z1 = 0, z2 = 1)/λ(t|z1 = 0, z2 = 0) =
exp(β2), so that we will have β2 = 0 if GC is non-targeted against TS. With β2 = 0, λ0(t)
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is the hazard function for GC arm. On the other hand, for PC arm (z1 = 1), the hazard
ratio between TS-positivity group and TS-negativity group is λ(t|z1 = 1, z2 = 1)/λ(t|z1 =
1, z2 = 0) = exp(β3) since GC is non-targeted treatment (i.e., β2 = 0). If TS-positive tumors
are resistant to pemetrexed, we will have β3 > 0. Therefore, the hypotheses of interest are
H0 : β3 = 0 and H1 : β3 > 0.

For patient i(= 1, . . . , n), let Xi be the minimum of censoring time and survival time,
δi be the event indicator taking 1 if tumor progression has occurred and 0 otherwise,
and Zi = (z1i, z2i, z1iz2i)

T be the covariate vector. Partial score and information functions
for regression coefficients β = (β1, β2, β3)

T are given as

U(β) =
n

∑
i=1

∫ ∞

0

{
Zi −

∑n
j=1 Yj(t)Zje

βT Zj

∑n
j=1 Yj(t)e

βT Zj

}
dNi(t)

and

I(β) =
n

∑
i=1

∫ ∞

0

[∑n
j=1 Yj(t)Z⊗2

j eβT Zj

∑n
j=1 Yj(t)e

βT Zj
−
{∑n

j=1 Yj(t)Zje
βT Zj}⊗2

{∑n
j=1 Yj(t)e

βT Zj}2

]
dNi(t),

respectively, where Ni(t) = δi I(Xi ≤ t) is the event process, Yi(t) = I(Xi ≥ t) is the at-risk
process, I(·) is an indicator function, and z⊗2 = zzT for a vector z.

Let β̂ = (β̂1, β̂2, β̂3)
T denote the solution to U(β) = 0. Then, β̂ is approximately

normal with mean 0, and variance–covariance I−1(0) under the global null hypothesis of
β = 0 [8]. Hence, with a one-sided type I error rate of α, we reject H0 : β3 = 0 in favor of
H1 : β3 > 0 if β̂3/σ̂3 > z1−α, where σ̂2

3 is the (3, 3)-component of I−1(0) and z1−α is the
1− α quantile of the standard normal distribution.

3.1.2. Sample Size Calculation

For sample size calculation of this study, we need to specify following design parameters.

• Type I error rate and power, (α, 1− β)
• Allocation proportion for GC arm, p0, and for PC arm, p1 (p0 + p1 = 1)
• TS-negativity q0 and TS-positivity q1 based on the prevalence in the study population

(q0 + q1 = 1)
• Assuming exponential distributions for PFS, the hazard rates, λz1z2 , of the four patient

groups, λ00, λ01, λ10, and λ11
• Accrual period a (or accrual rate r) and additional follow-up period b

Assuming exponential distributions for PFS with hazard rates λz1z2 , model (1) is
simplified to

λ = λ0 exp(β1z1 + β2z2 + β3z1z2)

with

λ00 = λ0, λ10 = λ0 exp(β1), λ01 = λ0 exp(β2), λ11 = λ0 exp(β1 + β2 + β3).

By solving these equations with respect to (λ0, β1, β2, β3), we have

λ0 = λ00, β1 = log λ10 − log λ00, β2 = log λ01 − log λ00,

β3 = log λ11 − log λ10 − log λ01 + log λ00. (2)

Hence, we can calculate the values of β3 under H1 in terms of the hazard ratios that
are specified as design parameters above.

To derive a sample size formula, we need to calculate the limit of σ̂2
3 or I−1(0) as

n → ∞ in terms of the design parameters. Let pkl = P(z1 = k, z2 = l) for k, l = 0 or 1
denote the relative frequency of each cell of the 2× 2 table defined by treatment and TS
status. Under the stratified randomization scheme, we have pkl = pkql for k, l = 0 or 1.

Appendix A shows that I(0) converges to DA, where D = nd denotes the expected
number of events (or number of patients with tumor progression), d = p00d00 + p10d10 +
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p01d01 + p11d11 denotes the probability that a patient has a progression during the study
period, dkl = 1− exp(−λklb){1− exp(−λkla)} denotes the probability that a patient in
group (z1, z2) = (k, l) has a progression for k, l = 0, 1 as derived based on an exponential
PFS distribution and U(b, a + b) censoring distribution, and

A =

 p0 p1 p11 − p1q1 p0 p11
p11 − p1q1 q0q1 q0 p11

p0 p11 q0 p11 p11(1− p11)


Please note that dz1z2 is derived from an exponential PFS distribution with hazard ratio

λz1z2 and a censoring distribution of U(b, a + b). Hence, the limit of σ̂2
3 is σ2

3 = A(3,3)/D,
where A(3,3) is the (3, 3) component of A−1.

From (2), β̄3 = log λ11 − log λ10 − log λ01 + log λ00 is the β3 value specified under H1.
Since (β̂3 − β̄3)/σ3 has the standard normal distribution under H1, the power for a local
alternative hypothesis H1 : β3 = β̄3 is given as

1− β = P(β̂3/σ̂3 > z1−α|β3 = β̄3)

= P
( β̂3 − β̄3

σ3
> z1−α −

β̄3

σ3

∣∣∣β3 = β̄3)

= Φ̄(z1−α − β̄3/σ3) (3)

where Φ̄(·) is the survivor function of the standard normal distribution.
Noting that σ2

3 = DA(3,3) = ndA(3,3), we obtain the required number of events

D = A(3,3)

( z1−α + z1−β

β̄3

)2

or the required sample size

n =
A(3,3)

d

( z1−α + z1−β

β̄3

)2
(4)

by solving Equation (3).
Formula (4) requires specification of accrual period a together with (α, 1− β), β̄3, b, p0

and q0. In designing a clinical trial, however, we can estimate the accrual pattern, rather
than an accrual period. Suppose that patients are expected to be enrolled to the study
at a rate of r during an accrual period based on the number of patients treated by the
study member sites recently. Assuming uniform patient accrual during period a, we have
n ≈ a× r. Noting that d = d(a) is a function of a, (4) is expressed as

a× r =
A(3,3)

d(a)

( z1−α + z1−β

β̄3

)2
(5)

By solving (5) with respect to a using a numerical method, such as the bisection
method, we obtain the required accrual period, say a∗, and the required sample size
n = a∗r.

3.1.3. Example 1

We demonstrate our sample size calculation method with the NSCLC trial that is
introduced above. We will randomize patients between the two treatment arms with
1-to-1 fashion, i.e., p0 = p1 = 1/2 stratified by TS status. The expected TS-positivity is
50% (i.e., q0 = q1 = 0.5) because the median TS level was selected as the cutoff value
for TS-positivity from a previous study [9]. Hence, we have pz1z2 = pz1 qz2 = 1/4 for
z1, z2 = 0 or 1. The 6-month PFS is expected to be about 35% for GC arm regardless of TS
level and for PC arm with TS-positivity, and 55% for PC arm with TS-negativity. For an
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exponential distribution, t-year survival probability S(t) is associated with its hazard
rate λ by S(t) = exp(−λt). Therefore, the annual hazard rates under the alternative
hypothesis are given as λ00 = λ01 = λ11 = 2.100 and λ10 = 1.196 under the exponential
PFS assumption. For these hazard rates, we have the baseline hazard rate λ0 = 2.100,
β2 = 0, and β3 = −β1 = 0.563 from (2). Suppose that about 10 patients per month are
expected to be entered to the study, i.e., an annual accrual rate of r = 120. We plan to
follow the patients for additional b = 1 year after the last patient enters. Then, the 1-sided
α = 0.1 test for H0 : β3 = 0 against H1 : β3 = 0.563 in model (1) requires n = 345 patients
for a power of 1− β = 0.9. The expected number of events (i.e., number of patients with a
disease progression) at the analysis will be D = 333. As an effort to lower the sample size
for this phase II trial, we use a large α level compared to the standard two-sided α = 0.05.
We observe an empirical power of 0.897 from 10,000 simulation samples of size n = 345
that are generated at the design setting. This trial recruited 321 patients using overall
response as the primary endpoint [6].

A stratified randomized trial of a treatment with a predictive biomarker requires a
large sample size for testing on the interaction term. Sample size of a trial for testing
the interaction term with 50% of biomarker positivity may be compared to that of a trial
for an arm-to-arm comparison with 1-to-3 randomization in the setting of the NSCLC
trial expecting a higher efficacy of PC only for TS-negative group. Let us consider a
randomized trial to compare two treatment arms with (α, 1− β, r, b) = (0.1, 0.9, 120, 1) as
above and 6-month PFS of 35% for the control treatment and 55% for the experimental
treatment. In this case, we need only n = 122 (D = 102) patients by 1-to-3 randomization
by a sample size formula for the standard log-rank test [10]. If TS had been already
validated to be a predictive biomarker of pemetrexed before this trial, then we could have
chosen an enrichment trial for TS-negative patients that would require a much smaller
sample size. The efficiency has been compared between an enrichment design and a
stratified randomization design has been for predictive biomarker in terms of a continuous
outcome [11].

3.2. A Phase II Trial with a Prognostic Biomarker

Prognostic biomarkers provide information on the overall cancer outcome in patients
to facilitate cancer diagnosis regardless of selected treatments. In this section, we consider a
phase II trial with an imaging prognostic biomarker. Chemotherapy B has been a standard
regimen for patients with non-bulky stage I and II Hodgkin lymphoma. In a previous
study on 6 cycles of B, each patient had a FDG-PET (fluorodeoxyglucose positron-emission
tomography) imaging after 2 cycles of B. It was found that the patients with a negative
PET image (group 1) and those with a positive PET image (group 2) had a 3-year PFS
of S1(3) = 0.86 and S2(3) = 0.52, respectively, and the hazard ratio, ∆ = λ2/λ1, was
estimated as ∆0 = 4.3.

In a new single-arm phase II trial, the patients with a negative PET image after 2 cycles
of B will be treated by additional 4 cycles of the chemotherapy B as in the previous study,
whereas those with a positive PET image after 2 cycles of B will be treated by 4 cycles of a
more aggressive chemotherapy C plus radiation therapy (C+RT).

In this trial, we want to show that by treating PET positive patients with the more
aggressive therapy C+RT, their PFS will become closer to that of PET negative patients
who are treated by the standard chemotherapy B. To this end, we test H0 : ∆ = ∆0 against
H1 : ∆ < ∆0. Although the PFS of group 2 will be different between H0 and H1, that of
group 1 is expected to be identical since PET negative patients receive the same treatment
as that of the previous study.

Statistical Testing

Let nk denote the sample size in group k, n = n1 + n2 the total sample size, and Tki
the time to progression for subject i in group k (1 ≤ i ≤ nk; k = 1, 2). We observe (Xki, δki),
where Xki is the minimum of Tki and the censoring time and δki is an event (or progression)
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indicator taking 1 if the subject had a tumor progression and 0 otherwise. For group k,
Tk1, . . . , Tk,nk

are distributed with hazard function λk(t). Under the proportional hazards
assumption, ∆ = λ2(t)/λ1(t) denotes the hazard ratio between the two patient groups.

Let Λ̂k(t) =
∫ t

0 Y−1
k (t)dNk(t) denote the Aalen–Nelson estimator [12,13] for the cu-

mulative hazard function Λk(t) =
∫ t

0 λk(s)ds, Yk(t) = ∑nk
i=1 I(Xki ≥ t) and Nk(t) =

∑nk
i=1 δki I(Xki ≤ t) are the at-risk process and the event process for group k, respectively,

and N(t) = N1(t) + N2(t). It was shown [14] that

W(∆) =
∫ ∞

0

Y1(t)Y2(t)
Y1(t) + ∆Y2(t)

{∆dΛ̂1(t)− dΛ̂2(t)}

is increasing in ∆, and W(∆)/σn(∆) is asymptotically N(0, 1), where

σ2
n(∆) = ∆

∫ ∞

0

Y1(t)Y2(t)
{Y1(t) + ∆Y2(t)}2 dN(t)

Hence, we reject H0 : ∆ = ∆0, in favor of H1 : ∆ < ∆0, if W(∆0)/σn(∆0) > z1−α with
one-sided type I error rate α. The test statistic with ∆0 = 1 is the standard log-rank test [15].

3.3. Sample Size Calculation

We want to estimate the sample size n under a local alternative hypothesis H1 : ∆ = ∆1
(<∆0) with a desired power. For sample size calculation of this trial, we need to specify
following design parameters.

• Type I error rate and power, (α, 1− β)
• PET-negativity and PET-positivity, p1, p2
• Distributions of PFS for PET negative and PET positive patient groups: exponential

distributions with hazard rates λ1 for PET negative group; λ20 under H0 and λ21
under H1 for PET positive group

• Accrual period a (or accrual rate r) and additional follow-up period b

Using the specified hazard rates, we have ∆0 = λ20/λ1 and ∆1 = λ21/λ1. A sample
size formula with ∆0 > 1 and ∆1 = 1 for designing non-inferiority trials was proposed [14].
This sample size formula was further extended for general ∆0 and ∆1 with ∆1 < ∆0 [16].

Appendix B derives a sample size formula by adapting Jung and Chow’s formula [16]
for this trial,

n =
(σ0z1−α + σ1z1−β)

2

ω2 (6)

where

ω = p1 p2

∫ ∞

0

G(t)S1(t)S21(t){λ1∆0 − λ21}
p1S1(t) + p2∆0S21(t)

dt

σ2
0 = ∆0 p1 p2

∫ ∞

0

G(t)S1(t)S21(t){p1λ1S1(t) + p2λ21S21(t)}
{p1S1(t) + p2∆0S21(t)}2 dt

σ2
1 = p1 p2

∫ ∞

0

G(t)S1(t)S21(t){p2λ1∆2
0S21(t) + p1λ21S1(t)}

{p1S1(t) + p2∆0S21(t)}2 dt

S1(t) = exp(−λ1t), S21(t) = exp(−λ21t), G(t) is the survivor function of the U(b, a + b)
censoring distribution with

G(t) =


1 if t ≤ b
−t/b + (a + b)/a if b < t ≤ a + b
0 if t > a + b

and pk = nk/n. The integrals for ω, σ2
0 , and σ2

1 are calculated using a numerical method.
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The number of events D expected at the analysis time under H1 is calculated by
D = n(p1d1 + p2d2), where d1 = 1 +

∫ ∞
0 S1(t)dG(t) = 1− exp(−λ1b){1− exp(−λ1a)}

and d2 = 1 +
∫ ∞

0 S21(t)dG(t) = 1− exp(−λ21b){1− exp(−λ21a)}.
Sample size formula (6) assumes that the accrual period a is specified. Suppose

that accrual rate r is specified instead of accrual period a. Given (λ1, ∆0, ∆1, α, 1− β, p1, b),
ω = ω(a) and σh = σh(a) for h = 0, 1 are functions of a. Under uniform accrual assumption,
we have n = a× r. Hence, (6) is expressed as

a× r =
{σ0(a)z1−α + σ1(a)z1−β}2

ω2(a)
. (7)

By solving (7) with respect to a, using a numerical method such as the bisection
method, we obtain the required accrual period a∗ and the required sample size n = a∗ × r.

Example 2

We consider the PET-guided Hodgkin lymphoma trial introduced in the beginning
of this section. Under H0, we assume a 3-year PFS of 86% and 52% for PET negative
and positive groups, respectively, which correspond to annual hazard rates of (λ1, λ20) =
(0.050, 0.218) under an exponential PFS model, resulting in a hazard ratio of ∆0 = 4.3.
By treating the PET positive patients with an aggressive treatment C+RT, we expect to
increase their 3-year PFS up to 74% (from 52%), resulting in an annual hazard rate of
λ21 = 0.100 and hazard rate of ∆1 = 2.0. The previous study observed about p2 = 20%
of PET-positivity. Assuming an annual accrual rate of r = 60 patients and b = 3 years of
additional follow-up after completion of accrual, we need n = 191 patients for 1− β = 90%
power for detecting H1 : ∆1 = 2 by the generalized log-rank test W(∆0)/σn(∆0) with one-
sided α = 10% under H0 : ∆0 = 4.3. Under this specific alternative hypothesis, we expect
about 46 events (progressions or deaths) at the data analysis. This trial was conducted
with this study objective as a second objective [17]. Simulation studies are conducted to
evaluate the performance of the calculated sample size under the above design settings
under H0 and H1. Using 10,000 simulation samples of size n = 191 under each hypothesis,
the empirical type I error rate and power are observed as 0.0984 (to be compared to α = 0.1)
and 0.8749 (to be compared to 1− β = 0.9), respectively.

4. Discussion

We have presented design and analysis methods of two phase II trials for biomarker-
guided treatments.

The power of the statistical tests of the trials discussed above depends on the preva-
lence of the biomarker positivity. Therefore, we need to check the observed prevalence
during the patient accrual, and to recalculate the sample size if the observed prevalence is
very different from the one specified at the design stage. For both of our example trials,
the initial sample size will be under-powered if the observed prevalence is farther from
1/2 than the specified one at the design stage. In this case, we may plan a sample size
recalculation reflecting the observed prevalence in the middle of the trial, and modify the
sample size of the trial if necessary.

For the sample size calculations, we have assumed exponential survival distributions
and an accrual pattern with a constant accrual rate, but we can easily extend the formulas
for any survival distributions and any accrual pattern [18]. We have considered a survival
endpoint as the primary endpoint in this paper, but the concept can be used to design and
analysis for biomarker-driven phase II trials with other type of endpoint, such as a binary
outcome for tumor response.

As an effort to lower the sample size of a phase II trial from that of a phase III trial, we
use a high type I error rate [19,20], such as 1-sided α = 5% or 10% (compared to 2-sided
α = 5%), a surrogate short-term outcome, such as tumor response or progression-free
survival (compared to a confirmatory endpoint such as overall survival), a larger treatment
effect, and a single-arm design (compared to a randomized design). Despite these efforts,
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we observe that a randomized trial stratified by a predictive biomarker requires a relatively
large sample size for a phase II trial. This fact is pointed out by literature [3,11,21].

5. Conclusions

Through simulations on the two real study examples, we find that the proposed
statistical tests control the type I error rate accurately and the calculated sample sizes
maintain the appropriate power. The sample size calculations require some numerical
methods for integration and solving equations. The author developed Fortran programs to
implement the sample size formulas, which are available upon request.

Funding: This research received no external funding.
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Appendix A. Limit of I(0)

Since n−1 ∑n
i=1 uniformly converges to G(t)S00(t) under the global null hypothesis,

as n→ ∞, we have

∑n
j=1 Yj(t)Z⊗2

j

∑n
j=1 Yj(t)

−→ A1 =

 p1 p11 p11
p11 q1 p11
p11 p11 p11


and

(∑n
j=1 Yj(t)Zj)

⊗2

(∑n
j=1 Yj(t))2 −→ A2 =

 p2
1 p1q1 p1 p11

p1q1 q2
1 q1 p11

p1 p11 q1 p11 p2
11


uniformly. Hence,

I(0) =
n

∑
i=1

∫ ∞

0

[∑n
j=1 Yj(t)Z⊗2

j

∑n
j=1 Yj(t)

−
{∑n

j=1 Yj(t)Zj}⊗2

{∑n
j=1 Yj(t)}2

]
dNi(t)

converges to AD, where D = ∑n
i=1
∫ ∞

0 dNi(t) is the number of events and

A = A1 − A2 =

 p0 p1 p11 − p1q1 p0 p11
p11 − p1q1 q0q1 q0 p11

p0 p11 q0 p11 p11(1− p11)


Appendix B. Derivation of Jung and Chow’s Formula

Let pk = nk/n denote the prevalence of group k(= 1, 2). To derive a sample size
formula, we must derive the limiting distribution of the test statistic W(∆0)/σn(∆0) under
H1. The survivor function of the U(b, a + b) censoring distribution is given as

G(t) =


1 if t ≤ b
−t/b + (a + b)/a if b < t ≤ a + b
0 if t > a + b

Please note that under H1, n−1
1 Y1(t) and n−1

2 Y2(t) uniformly converge to G(t)S1(t)
and G(t)S21(t), respectively.

Since

W(∆0) = ∆0

∫ ∞

0

Y2(t)
Y1(t) + ∆0Y2(t)

dN1(t)−
∫ ∞

0

Y1(t)
Y1(t) + ∆0Y2(t)

dN2(t)
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its variance under H1 is

σ̂2
1 = ∆2

0

∫ ∞

0

Y1(t)Y2
2 (t)

{Y1(t) + ∆0Y2(t)}2 dΛ1(t) +
∫ ∞

0

Y2
1 (t)Y2(t)

{Y1(t) + ∆0Y2(t)}2 dΛ21(t)

Therefore, n−1σ̂2
1 converges to

σ2
1 = p1 p2

∫ ∞

0

G(t)S1(t)S21(t){p2λ1∆2
0S21(t) + p1λ21S1(t)}

{p1S1(t) + p2∆0S21(t)}2 dt

On the other hand, under H1, n−1σn(∆0) converges to

σ2
0 = ∆0 p1 p2

∫ ∞

0

G(t)S1(t)S21(t){p1λ1S1(t) + p2λ21S21(t)}
{p1S1(t) + p2∆0S21(t)}2 dt

Also, the expected value of n−1W(∆0) under H1 is given as

ω = p1 p2

∫ ∞

0

G(t)S1(t)S21(t){λ1∆0 − λ21}
p1S1(t) + p2∆0S21(t)

dt

Please note that we derive σ2
0 , σ2

1 , and ω using the exact asymptotic results under H1,
while Jung (2018) derives them approximately under the nearby alternative hypothesis.

Hence, under H1, W(∆0) is approximately normal with mean nω and variance nσ2
1 ,

so that given n, the power of the test statistic with 1-sided α is

1− β ≈ P
(W(∆0)

σ0
√

n
> z1−α|H1

)

= P
(W(∆0)− nω

σ1
√

n
× σ1

σ0
+

ω
√

n
σ0

> z1−α|H1

)
= Φ̄

(σ0

σ1
z1−α −

ω
√

n
σ1

)
By solving this equation with respect to n, we obtain the sample size required for a

power of 1− β as

n =
(σ0z1−α + σ1z1−β)

2

ω2
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