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Neurons are highly specialized post-mitotic cells that are inherently dependent on
mitochondria owing to their high bioenergetic demand. Mitochondrial dysfunction
is therefore associated with various age-related neurodegenerative disorders such
as Alzheimer’s disease (AD), wherein accumulation of damaged and dysfunctional
mitochondria has been reported as an early symptom further contributing to disease
progression. In AD, impairment of mitochondrial function causes bioenergetic deficiency,
intracellular calcium imbalance and oxidative stress, thereby aggravating the effect of Aβ

and tau pathologies, leading to synaptic dysfunction, cognitive impairment and memory
loss. Although there are reports suggesting intricate parallelism between mitochondrial
dysfunction and AD pathologies such as Aβ aggregation and hyperphosphorylated tau
accumulation, the factors that drive the pathogenesis of either are unclear. In addition,
emerging evidence suggest that mitochondrial quality control (QC) mechanisms such
as mitophagy are impaired in AD. As an important mitochondrial QC mechanism,
mitophagy plays a critical role in maintaining neuronal health and function. Studies show
that various proteins involved in mitophagy, mitochondrial dynamics, and mitochondrial
biogenesis are affected in AD. Compromised mitophagy may also be attributed to
impairment in autophagosome–lysosome fusion and defects in lysosomal acidification.
Therapeutic interventions aiming to restore mitophagy functions can be used as a
strategy for ameliorating AD pathogenesis. Recent evidence implicates the role of
microglial activation via mitophagy induction in reducing amyloid plaque load. This
review summarizes the current developments in the field of mitophagy and mitochondrial
dysfunction in AD.
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most debilitating age-induced neurodegenerative disorders
affecting millions worldwide (Lane et al., 2018). It is characterized by extensive neuronal loss,
synaptic dysfunction, mitochondrial damage, neuroinflammation, and accumulation of amyloid
plaques and neurofibrillary tangles (NFTs) (Crews and Masliah, 2010; Butterfield et al., 2013;
Kocahan and Dogan, 2017; Magalingam et al., 2018). Extensive research has gone into elucidating
the mechanisms of the pathogenesis and development of this disease, with multiple dimensions
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and hypotheses being ascribed as causatives (Du et al., 2018).
Amyloid beta (Aβ) fibrils and phosphorylated tau tangles are
characteristic hallmarks of the disease, and these appear to
spread through the cortex as the disease progresses (Davidson
et al., 2018). In addition, several studies have highlighted the
presence of damaged mitochondria and synaptic dysfunction
as prior observations to the initiation of Aβ fibril or tau
tangle formation (Cai and Tammineni, 2017; Guo et al., 2017;
Tang et al., 2019). Therefore, the focus has now shifted to
mitochondria as one of the central players in the pathogenesis
of AD (Cadonic et al., 2016; Cai and Tammineni, 2017;
Cardoso et al., 2017; Guo et al., 2017; Martin-Maestro et al.,
2017; Swerdlow, 2018). Accumulation of damaged mitochondria
might be a result of various insults including accrued Aβ

oligomers or fibrils and phosphorylated tau. On the other
hand, mitochondrial dysfunction due to mitochondrial DNA
(mtDNA) damage or mutations, impairment in mitochondrial
transport, or the like may lead to Aβ oligomeric or fibrillar
formation and phosphorylated tau accumulation. Either way, a
cause or consequence relationship draws attention to the fact
that mitochondrial health and quality control (QC) is central
to maintaining a healthy pool of neurons and that any damage
to mitochondria might lead to neuronal loss, synaptic damage,
and neurodegeneration (Lin and Beal, 2006; Johri and Beal,
2012; Hroudova et al., 2014; Bhat et al., 2015; Lane et al.,
2015; Akbar et al., 2016; Kocahan and Dogan, 2017; Chen
et al., 2019). Given the importance of maintaining healthy
mitochondria, cells host a series of QC mechanisms to govern
mitochondrial homeostasis. These major mitochondrial QC
mechanisms include mitochondrial unfolded protein response
(mtUPR), ubiquitin-proteasome system (UPS), mitochondrial-
derived vesicle (MDV) degradation pathway, and mitophagy
(a selective form of autophagy) (Ashrafi and Schwarz, 2013;
Jovaisaite et al., 2014; Sugiura et al., 2014; Bragoszewski et al.,
2017; Leites and Morais, 2018). Among these, mitophagy
can selectively degrade the entire damaged mitochondria, and
impairment of this pathway may lead to the development of
AD (Kerr et al., 2017). Recent work has therefore focused on
the contribution of mitochondrial dysfunction as a primary
driving cause of AD.

THE AMYLOID TO MITOCHONDRIAL
CASCADE HYPOTHESIS IN THE
PATHOGENESIS AND PROGRESSION OF
AD

The amyloid cascade hypothesis was first proposed by Hardy
and Higgins (1992). According to this hypothesis, Aβ peptide
deposition leads to the pathogenesis of AD, and the occurrence
of NFTs, neuronal cell loss, vascular damage, and dementia is
a direct result of this deposition (Hardy and Higgins, 1992).
The observation of Aβ peptides in senile plaques of AD patients
(Masters et al., 1985), along with the occurrence of the APP
gene on chromosome 21, which causes Down’s syndrome (Hardy
and Selkoe, 2002), initially invigorated the hypothesis. Although

the amyloid cascade hypothesis has prevailed among others
for decades, recent evidence points to the de facto role of Aβ

peptide as a ‘seed,’ playing an important role in the development
rather than the progression of the disease (Sowade and Jahn,
2017). The multifactorial nature of this disease also substantiates
the fact that Aβ peptide might be required but not adequate
for the development of AD (Dourlen et al., 2019). Further
investigations in AD mouse models failed to establish a link
between neuronal cell death and accumulation of senile plaques
of Aβ fibrils (Bryan et al., 2009), possibly hinting that Aβ

oligomers might be the key cytotoxic agents rather than the
fibrillar form. In addition, later studies by Kim et al. (2007,
2013), using Aβ42 overexpressing BRI2-Aβ mice, showed that
despite the presence of Aβ oligomers and Aβ amyloid fibrils,
there was no impairment in cognitive function or degeneration
of neurons. Furthermore, vast deposition of Aβ in the brains
of elderly non-AD patients suggested that Aβ deposition might
not be specific to AD (Price et al., 2009; Chetelat et al., 2013).
The amyloid cascade hypothesis does not account for such
observations, and thus several other alternatives have been
proposed such as the tau hypothesis, cholinergic hypothesis,
neuroinflammation hypothesis, and synaptic failure hypothesis
(Lindwall and Cole, 1984; Okatsu et al., 2012; Kozlov et al.,
2017; Kametani and Hasegawa, 2018). Although the previous
notion of aggregate formation as the primary cause of the
development and pathogenesis of AD still exists, focus is now
shifting to the mitochondrial cascade hypothesis (summarized
below). Mitochondrial dysfunction in the synapses has been
commonly observed in AD, and studies are now emerging that
evidently point to the role of dysfunctional mitochondria in
the pathogenesis and progression of AD (Du et al., 2010; Cai
and Tammineni, 2017; Guo et al., 2017; Pickett et al., 2018;
Tang et al., 2019).

The mitochondrial cascade hypothesis was based on
observations of glucose hypometabolism in the prodromal
stage in AD patients, detected through fluorodeoxyglucose
positron emission tomography (FDG PET) in early 1980s
(Ferris et al., 1980; De Leon et al., 1983; Foster et al., 1983;
Friedland et al., 1983). Theories have since emerged that
point to the critical role of bioenergetic pathways in neuronal
function. In fact, reduction in the activity of many enzymes
related to mitochondrial bioenergetics, such as cytochrome c
oxidase (COX), pyruvate dehydrogenase complex (PDHC), and
α-ketoglutarate dehydrogenase complex (KGDHC), has been
implicated in disease progression (Sorbi et al., 1983; Gibson et al.,
1988; Parker et al., 1989). The mitochondrial cascade hypothesis
was proposed by Swerdlow and Khan (2004) based on Parker’s
initial proposal that mitochondrial function, determined by
mtDNA inheritance, influences the risk of AD (Parker et al.,
1989, 1990; Swerdlow and Khan, 2004). In summary, this
hypothesis states that the age-related decline in mitochondrial
function leads to various physiological changes in the neurons
(Trifunovic et al., 2004; Navarro and Boveris, 2007). The cell tries
to compensate and adapt to these changes, but upon reaching
a threshold, such compensation is not possible, thus triggering
symptoms characteristic of the disease. The clinical manifestation
of AD is thus largely dependent on mitochondrial genetics and
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environmental influences. Based on these and many other
lines of evidence, focus is now shifting towards mitochondrial
dysfunction as the central player in the pathogenesis of AD
(Swerdlow and Khan, 2004; Baloyannis, 2006; Lin and Beal, 2006;
Eckert et al., 2011; Johri and Beal, 2012; Hroudova et al., 2014).

MITOCHONDRIAL DYSFUNCTION IN
AD—A CAUSE OR AN EFFECT?

Alzheimer’s disease is characterized by impairment in
oxidative metabolism, free radical accumulation, reduction
in mitochondrial metabolic enzyme levels, dysregulation of
calcium homeostasis, and transcriptional and translational
defects in mitochondria (Gibson et al., 2010). Aβ plaques and
NFTs are the two hallmarks of AD. Aβ peptide is generated from
the cleavage of amyloid precursor protein (APP) through the
action of various secretases. APP is an integral transmembrane
protein, and APP mRNAs are alternatively spliced to produce
several isoforms of APP mRNAs, of which APP695 is the
most abundant isoform in brain (Zheng and Koo, 2011).
There are two pathways by which APP can be processed, the
amyloidogenic and the non-amyloidogenic pathway, of which
the amyloidogenic processing of APP predominantly leads
to the increase in the Aβ42/Aβ40 ratio. The amyloidogenic
processing of APP begins with the cleavage of the precursor
protein by β-secretases followed by γ-secretases, both of
which are enriched in the trans-Golgi network and endosomal
compartment, leading to the generation of secreted APP
(sAPPβ), C-terminal fragment 99 (CTF 99), and Aβ peptide
fragments. The fragments thus generated may vary in length
from 38 to 43 amino acids, some of which are more pathogenic
than others (Chow et al., 2010).

Another hallmark of AD is NFTs comprised primarily of
tau, a microtubule-associated protein (MAP) enriched in the
axonal regions of neurons. Hyperphosphorylated forms of
tau are responsible for their aggregation into paired helical
filaments (PHFs) and subsequent accumulation into tangles,
leading to the degeneration of neurons (Lindwall and Cole,
1984; Okatsu et al., 2012; Kozlov et al., 2017; Kametani
and Hasegawa, 2018). The MAP tau protein exists in six
isomeric forms ranging from 352 to 441 amino acids due
to alternative splicing of exons 2, 3, and 10 (Kametani and
Hasegawa, 2018). Exon 10 harbors the microtubule-binding
domain. In normal physiological form, tau binds to tubulin
and stabilizes the microtubules (Iqbal et al., 2010). Since tau
is a phosphoprotein, its activity is largely dependent on its
phosphorylation status (Iqbal et al., 2010). Mutations in tau
protein lead to its hyperphosphorylation and mislocalization to
the cell body or dendrites, where it forms NFTs or straight
filaments (SFs), respectively (Zempel and Mandelkow, 2014).
Impairment of the synaptic vesicle cycle (Zhou et al., 2017),
mitochondrial dysfunction (DuBoff et al., 2012), and cytoskeletal
disintegration (Fulga et al., 2007) also occur as a result of NFT
or SF accumulation.

While there are reports suggesting that dysfunctional
mitochondria drive Aβ and hyperphosphorylated tau pathology

(Swerdlow, 2018; Albensi, 2019), contradictory studies also hint
at Aβ and pathogenic tau-driven mitochondrial dysfunction
(Wang et al., 2007; Mossmann et al., 2014; Todd et al.,
2014). Whether mitochondrial dysfunction leads to AD or
the pathologies underlying the disease subsequently cause
mitochondrial dysfunction is a well-debated topic. Additionally,
the possibility of a feedback loop between the two cannot be ruled
out. Some of the cause and consequence relationships between
mitochondrial dysfunction and pathological development of AD
are summarized below, with a special focus on Aβ plaques and
hyperphosphorylated tau.

Evidence for Mitochondrial Dysfunction
Leading to Amyloid Beta and
Pathological Tau Accumulation
Evidence for mitochondrial dysfunction as the causative agent
in Aβ and tau-aided AD development has been reported using
various cell lines as well as mouse models. A study by Gabuzda
et al. (1994) showed that inhibiting the energy metabolism
in COS cell line using sodium azide and carbonyl cyanide
m-chlorophenylhydrazone shifted the processing of APP toward
Aβ production. Similar studies have indicated the importance of
cellular bioenergetics, the dysregulation of which can potentially
drive the defective processing of APP and more Aβ production
(Webster et al., 1998; Gasparini et al., 1999).

Cybrid (cytoplasmic hybrid) cell lines have been used
consistently in support of the primary mitochondrial cascade in
AD. Cybrid cells were initially created to address the question
of whether reduced COX activity in platelets derived from AD
patients could be attributed to mitochondrial DNA (mtDNA).
Cybrid cell lines were made from SH-SY5Y or NT2 cell lines
by removing their endogenous mtDNA and fusing them with
platelet cells from AD or age-matched control patients in the
presence of a detergent. The mitochondrial DNA-depleted SH-
SY5Y cells were termed p0 cells. The cybrid cells were then
selected for mitochondria derived from platelets and for nuclear
DNA derived from p0 cells. These cybrid cell lines derived from
AD patients and those derived from control patients differed
in their mtDNA content alone, and thus any difference in
the physiological status of the cells between AD or control
cybrids could be attributed to their mtDNA (Sheehan et al.,
1997; Scheffler et al., 2012). Such studies have also been carried
out using transgenic APP mouse models that differed in their
mitochondrial contents (Khan et al., 2000; Onyango et al., 2010;
Scheffler et al., 2012). In all these studies, the cybrids that
contained mitochondria from AD patients showed a significant
increase in the levels of Aβ as compared to age-matched control
cybrids. Also, the mean COX activity between groups of AD and
age-matched controls differed in that the mean was lower in the
AD group than in the control group. While some may argue that
this difference may be driven by the transfer of APP or Aβ, the
cybrid data suggests otherwise, hinting at the role of mtDNA in
reducing the mitochondrial platelet COX activity (Sheehan et al.,
1997; Swerdlow and Khan, 2004).

Reactive oxygen species (ROS) are generated as a by-
product of the electron transport chain in mitochondria
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(Murphy, 2009). ROS serve as signaling molecules, but levels
beyond their physiological threshold can induce mitochondrial
dysfunction and can eventually lead to ROS-associated cellular
damage (Zorov et al., 2014). Experimental evidence of inducing
mitochondrial damage subsequently leading to Aβ buildup inside
cells suggested a possible role of mitochondrial dysfunction in
triggering AD. A study found that induction of mitochondrial
damage by rotenone and antimycin A, which act on complexes
I and III, increased ROS levels. Interestingly, the treated cells also
showed significant levels of soluble Aβ (Leuner et al., 2012).

Likewise, studies using two in vivo mouse models also
demonstrated the appearance of AD-like symptoms upon
perturbation of mitochondrial function. Ndufs4-null (KO) mice,
in which mitochondrial complex I was absent, showed elevated
levels of Aβ40 as compared to age-matched control mice, with
progressive development of ataxia and death at week 7. A similar
increase in Aβ40 levels was seen in a Thy-1 APP mouse model
when treated with rotenone for 3 days (Leuner et al., 2012).
However, a reduction in Aβ levels was observed in an AD
mouse model crossed with a complex IV-null model, with
a concomitant decrease in ROS levels, thus suggesting that
mitochondria-derived ROS is the key to more Aβ production
(Fukui et al., 2007).

In an in vivo mouse model, D257A;APP/Ld, which carries
a mutation with an abolished proofreading function of
mitochondrial DNA polymerase γ in an AD background,
it was observed that the levels of Aβ42 and the plaque
density were increased, leading to age-related phenotypes and
death within a year after birth (Kukreja et al., 2014). The
mitochondrial DNA of this transgenic AD mice harbored
extensive mutations leading to mitochondrial dysfunction,
thus linking the pathogenesis of AD primarily to defective
mitochondria and dysfunctional bioenergetics (Kukreja et al.,
2014). These and other such studies (Sims et al., 1985, 1987;
Gibson et al., 1988) have led to the proposition of defective
mitochondria being the causative agent of the development and
pathogenesis of AD.

In parallel, studies have also shown how mitochondrial
dysfunction can lead to tau hyperphosphorylation and
accumulation into tangles. The phosphorylation status of
the microtubule-associated domain of MAPT (microtubule-
associated protein tau) determines its binding capability
with the microtubule (Mazanetz and Fischer, 2007).
Hyperphosphorylation of serine, threonine, and tyrosine
residues may lead to destabilization and dissociation of MAPT
from microtubules and cause the equilibrium to shift towards
aggregate formation (Neddens et al., 2018). Mitochondrial
dysfunction leading to oxidative stress can be one of the
major causes of tau hyperphosphorylation. This was attributed
to the inhibition of glutathione synthesis using buthionine
sulfoximine (BSO), which caused a significant increase in
the activity of kinases like JNK and p38 and a decrease in
the activity of phosphatases such as PP2A, thus leading to
hyperphosphorylation of tau in M17 neuroblastoma cells in a
time-dependent manner (Su et al., 2010). In another Drosophila
model of human neurodegeneration, expression of mutant
human tau (tauR406W) under a pan-neuronal driver, elav-GAL4,

caused extensive tau hyperphosphorylation via p38-MAPK
activation (Dias-Santagata et al., 2007). The role of kinases
and phosphatases, namely, GSK3β and PP2A, has also been
implicated in ROS production and tau hyperphosphorylation
(Abou-Sleiman et al., 2006; King et al., 2008; Feng et al.,
2013), thus substantiating the primary mitochondrial cascade
hypothesis in the development of AD.

Evidence for Mitochondrial Dysfunction
Due to Amyloid Beta and Pathological
Tau Accumulation
Contrary to the previous evidence highlighting the contribution
of mitochondrial damage to the progression of AD, a plethora of
studies showed the role of Aβ and pathogenic tau in abrogating
mitochondrial function. Studies have shown that pathogenic Aβ

peptide generation causes dysfunction in mitochondrial function
as well as in various proteostatic pathways (Figure 1). The first
evidence of Aβ-induced mitochondrial dysfunction was provided
by Cardoso and colleagues, where external addition of Aβ to
a medium containing NT2 cells or NT2 p0 cells (with mtDNA
removed) showed differential toxicity to Aβ. Since NT2 p0

cells lack respiratory enzymes, it was proposed that Aβ-induced
mitochondrial dysfunction was mediated through the respiratory
pathway (Cardoso et al., 2001).

An Aβ-induced defect in mitochondrial function was shown
via a reduction in respiratory functions and electron transport
chain enzyme activities (Casley et al., 2002). Subsequently,
several studies, using both cultured cells and in vivo models, as
highlighted below, have demonstrated the detrimental effects of
Aβ and pathogenic tau on mitochondria. In addition, AD-patient
brain autopsies showed the presence of Aβ in mitochondria

FIGURE 1 | Impairment in proteostatic machineries and mitochondrial
dysfunction in AD. Amyloidogenic processing of APP in the endocytic
pathway results in the generation of Aβ peptide, which causes impairment in
mitochondrial function (1) as well as in various proteostatic pathways such as
UPS (2), autophagy (3), and mitophagy (4).
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(Manczak et al., 2011). Aβ has been shown to cause mitochondrial
dysfunction in the following ways: through APP-mitochondria
interactions, through direct interaction with mitochondrial
enzymes, through direct insertion into mitochondrial membrane
pore, through a calcium cascade, or through inhibiting the
fission–fusion dynamics of mitochondria. These are further
discussed below.

The Aβ precursor protein APP contains a binding motif for
TOM40 (translocase of the outer mitochondrial membrane 40
kDa) that inhibits its activity and impairs normal functioning
of the mitochondria (Anandatheerthavarada et al., 2003;
Anandatheerthavarada and Devi, 2007). APP binding to TOM40
also inhibits the entry of COX subunits IV and Vb, thus
reducing the activity of COX and leading to an increase in
ROS production (Manczak and Reddy, 2012a). In a study
conducted by Lustbader et al. (2004), it was found that Aβ could
bind to a mitochondrial dehydrogenase enzyme, ABAD (Aβ

binding to alcohol dehydrogenase), preventing NAD binding.
Drugs interfering with Aβ-ABAD interaction were effective in
improving memory and cognitive functions in AD transgenic
mice (Lustbader et al., 2004). In another study, Aβ was found
to insert into the mitochondrial transition pore component
cyclophilin D (CyPD) and impair mitochondrial function.
This was attenuated in CyPD knockout mice, improving their
cognitive functions (Du et al., 2008). Through a different
mechanism, Sanz-Blasco et al. (2008) showed that exogenously
added oligomeric Aβ led to an influx of extracellular calcium
and an overloading of calcium onto mitochondria, leading to
mitochondrial dysfunction characterized by 1ψ subsidence,
opening of mitochondrial permeability transition pore (mtPTP)
channels, and release of cytochrome c, eventually causing cell
death by apoptosis.

Elevated levels of Aβ can also influence the fission–fusion
dynamics of mitochondria. Aβ has been shown to enhance
S-nitrosylation of dynamin-like protein-1 (DLP1/DRP1), leading
to increased mitochondrial fission and subsequent loss from
dendrites and axonal regions (Cho et al., 2009). Also, there
is increased mitochondrial fission upon Aβ expression in cells
and in in vivo transgenic mouse models (Wang et al., 2009).
However, a study by DuBoff et al. (2012) found that mutated
human tau caused actin stabilization and prevented DRP1
localization to mitochondria, causing mitochondrial fusion and
neurotoxicity. Other studies have shown that expression of
APP695 in M17 neuroblastoma cell line showed an increase
in the level of mitochondrial fission 1 protein (FIS1), a
fission protein, and decreased levels of mitofusin 1 (MFN1)
and OPA1, proteins involved in fusion. The mitochondria
in these cells were reportedly fragmented, and the dynamics
were slower (Wang et al., 2008). In yet another study, it
was shown that a particular mitochondrial protease called
presequence protease (PreP), known to degrade Aβ, was
inactivated through Aβ-induced oxidative stress mechanisms,
thereby further increasing Aβ concentration in mitochondrial
matrix (Alikhani et al., 2009). This evidence points to the
possibility of a secondary mitochondrial cascade wherein
pathogenic Aβ accumulation leads to mitochondrial dysfunction,
thereby aggravating the disease phenotype (Figures 1, 2).

FIGURE 2 | Impact of AD-associated protein aggregates on mitochondrial
integrity. Aβ oligomers and hyperphosphorylated tau cause mitochondrial
dysfunction. Aβ oligomers inhibit COX, ABAD, and PreP functions. They also
impair fission–fusion dynamics by changing the levels of DLP1, OPA1, and
MFN1. CyPD function is also inhibited, disturbing mitochondrial permeability.
Hyperphosphorylated tau compromises mitochondrial transport, dynamics,
and permeability. It stalls mitochondrial transport along microtubules by
inhibiting JIP1. It also interacts with DLP1, OPA1, MFN1, and MFN2, thereby
affecting mitochondrial dynamics. Additionally, it can interact with VDAC1,
which affects the opening and closing of mtPTP, thereby impairing membrane
permeability. C99 fragments in MAM can generate ceramides due to
increased sphingomyelinase activity.

An interesting hypothesis that has recently emerged is
that of the mitochondria-associated ER membrane (MAM)
contributing to AD pathology (Area-Gomez et al., 2018).
MAM is a subdomain of the ER that serves as a contact site
between mitochondria and ER and is especially enriched in
cholesterol and sphingomyelin, thus imparting the characteristic
features of lipid rafts (Hayashi and Su, 2010). Surprisingly
enough, it was found that presenilin and γ-secretase, as well
as Aβ peptide-generation, was enriched in MAMs (Newman
et al., 2014; Schreiner et al., 2015; Del Prete et al., 2017).
Since MAM serves important functions in calcium transport,
synthesis of phospholipids, mitochondrial fission–fusion
dynamics, division of mtDNA, and cholesterol esterification
(Hayashi et al., 2009), several studies have investigated the
role of mitochondrial dysfunction in AD mediated through
Aβ via MAM.

It was subsequently found that the C99 fragment responsible
for the generation of Aβ42 was present not only in endosomes,
as expected, but also in MAMs. Since γ-secretase is also found
in MAMs, the amyloidogenic processing of C99 to Aβ42 has
been proposed to take place in MAMs (Schreiner et al., 2015;
Pera et al., 2017). Furthermore, the accumulation of the C99
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fragment led to increased sphingomyelinase (SMase) activity in
MAMs (Pera et al., 2017), thereby altering its structure and
function, leading to the generation of ceramides, which can
cause mitochondrial dysfunction via apoptosis or inhibition of
mitochondrial respiration (Haimovitz-Friedman et al., 1997; Yu
et al., 2007). A simultaneous increase in the SMase activity
in SH-SY5Y cells upon inhibition of γ-secretase was seen in
MAM domains, with a concomitant increase in C99 levels (Pera
et al., 2017). Supporting this result, the inhibition of beta-
site APP-cleaving enzyme 1 (BACE1) activity (which reduces
C99-formation) resulted in an attenuation of SMase activity
(Pera et al., 2017). Area-Gomez et al. (2012) thus proposed a
mechanism whereby mitochondrial dysfunction lies downstream
of C99 accumulation in the MAM. Although this hypothesis
does not account for a direct effect of Aβ42 on mitochondrial
dysfunction, the observed accumulation of C99 fragments
on mitochondrial MAMs and increased ER-mitochondrial
connectivity (Area-Gomez et al., 2012) suggest an early role of
mitochondrial dysfunction in AD. Hyperphosphorylated tau can
similarly impair mitochondrial functioning in three major ways,
namely, (i) by shifting the equilibrium of mitochondrial fission–
fusion towards increased fission, (ii) by impairing transport
of mitochondria, and (iii) by causing dysfunction in oxidative
phosphorylation and increasing ROS production (Figure 2).
Increased fission in mitochondria due to the presence of
hyperphosphorylated tau has been attributed to the atypical
interaction between tau and DRP1, observed in brain tissues of
APP, APP/PS1, and 3xTg-AD mice and AD patients (Manczak
and Reddy, 2012a). Moreover, reducing DRP1 levels protected
against mutated tau-induced synaptic impairment (Kandimalla
et al., 2016). Li et al. (2016) have shown that expressing full-
length wild-type tau caused disruption in mitochondrial function
via increased fusion in HEK293 and rat primary hippocampal
neurons mediated by an increase in the level of fusion proteins
such as OPA1, MFN1, and MFN2, thereby causing cellular
damage and degeneration. It has also been proposed that
mitochondrial dysfunction due to tau pathology can be divided
into two distinct phases: an early phase wherein tau mediates
a protective function by promoting mitochondrial fusion and
a late phase where increased mitochondrial fission leads to
degeneration of neurons (Wang et al., 2014).

In a squid model of AD, it was found that the filamentous
form of hyperphosphorylated tau inhibited the transport of
mitochondria along axons through activation of glycogen
synthase kinase (GSK3) and protein phosphatase 1 (PP1)
(Kanaan et al., 2011). Also, mitochondrial transport
in cortical neurons was influenced by overexpression
of GSK3β and the p25 activator of cyclin dependent
kinase 5 (CDK5) (Morel et al., 2010). Mutated tau with
hyperphosphorylation in AT8 sites also showed impaired
mitochondrial transport through inhibition of c-Jun NH2-
terminal kinase (JNK) interacting protein 1 (JIP1) (Ittner
et al., 2009). It has also been shown that mutated tau can
interact with voltage-dependent anion-selective channel 1
(VDAC1) and influence the opening and closing of mtPTP,
and disrupt mitochondrial membrane potential, thereby
causing dysfunction (Manczak and Reddy, 2012a). Several

studies have also indicated increased ROS formation and
dysfunctional oxidative phosphorylation systems in the
presence of mutated tau (Rhein et al., 2009; Eckert et al.,
2011; Schulz et al., 2012; Mondragon-Rodriguez et al., 2013;
Alavi Naini and Soussi-Yanicostas, 2015).

In view of the above evidence, mitochondrial dysfunction and
Aβ/pathological tau accumulation seemingly appear physically
and temporally connected. Since mitochondrial dysfunction
leads to the accumulation of damaged mitochondria, various QC
mechanisms are imperative for maintaining healthy neuronal
populations; these are summarized below.

ROLE OF MITOCHONDRIAL QUALITY
CONTROL MECHANISMS IN
MAINTAINING CELLULAR
HOMEOSTASIS

Since mitochondrial function and integrity are critical parameters
for maintaining cellular homeostasis, cells have evolved several
mitochondrial QC mechanisms to maintain a healthy pool of
functional mitochondria. Apart from functioning independently
in response to specific cues, there exists a crosstalk between
these mitochondrial QC pathways. The activation of specific
mitochondrial QC mechanisms is dependent on the extent
of mitochondrial damage occurring at both molecular and
organellar levels. This makes mitochondrial QC mechanisms an
interdependent hierarchical system that monitors mitochondrial
integrity, thereby ensuring the survival of cells (Rugarli and
Langer, 2012). Mitochondrial damage can be induced by
various factors like ROS, abnormal protein aggregates (Aβ,
tau), mutations in genes encoded by the mitochondrial and
nuclear genome, and exposure to toxic drugs (Angelini et al.,
2009; Tuppen et al., 2010; Fischer et al., 2012; Manczak
and Reddy, 2012a,b; Vuda and Kamath, 2016). The various
mitochondrial QC mechanisms that are initiated depending on
the degree of mitochondrial damage caused by these insults are
summarized below.

mtUPR, Ubiquitin-Proteasome System,
MDVs, and Mitophagy
The first line of defense in response to mitochondrial protein
damage involves the activation of various mitochondrial
resident chaperones and proteases, which help in maintaining
mitochondrial proteostasis. The mitochondrial chaperones heat
shock protein 22 (HSP 22), HSP 60, and HSP 70 help
in the refolding of the misfolded proteins to their native
three-dimensional conformation, thereby maintaining protein
functionality (Baker et al., 2011). In contrast, irreversibly
damaged proteins are degraded by a set of mitochondrial resident
proteases, especially the Lon proteases and Clp proteases. These
ATP-dependent proteases recognize the exposed hydrophobic
regions in the denatured proteins and degrade them after
unfolding (Sauer and Baker, 2011). Mutations in genes encoding
these proteases and chaperones lead to neurological disease
phenotypes like hereditary spastic paraplegia, spastic ataxia
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neuropathy syndrome, and spinocerebellar ataxia (Atorino et al.,
2003; Levytskyy et al., 2016). However, if the level of misfolded
and damaged proteins rises above a threshold, it activates a
stress response called mtUPR. The activation of mtUPR results
in elevated expression of nuclear genes encoding mitochondrial
chaperones and proteases, thereby reducing the concentration of
the damaged proteins (Zhao et al., 2002; Haynes and Ron, 2010).

Secondly, damaged mitochondrial proteins can also be
degraded with the help of the cytoplasmic 26S proteasome
system. Here, the damaged outer mitochondrial membrane
(OMM) proteins are retro-translocated from the membrane
with the help of p97, an AAA+ ATPase, and are degraded
by the cytoplasmic proteasome system (Tanaka et al., 2010;
Xu et al., 2011).

The next level of mitochondrial QC becomes activated when
there is localized or severe damage to mitochondria. The
two mechanisms that function in response to these forms of
damage are MDVs and mitophagy, constituting the third and
fourth levels of mitochondrial QC. MDVs are 70–150-nm-
sized vesicles that bud off from the mitochondria, selectively
incorporating large assemblies of damaged proteins and lipids
from the OMM, inner mitochondrial membrane (IMM), and
matrix (Sugiura et al., 2014). They are usually formed when
there is local accumulation of damaged proteins resulting
in blockage of mitochondrial import channels. The MDVs
containing damaged mitochondrial proteins are targeted to either
lysosomes, late endosomes, multivesicular bodies, peroxisomes or
they undergo exocytosis (Sugiura et al., 2014). The field of MDVs
is relatively underexplored.

Mitophagy, the next organellar level of mitochondrial QC,
differs from the above-mentioned pathways in that it can
target an entire damaged mitochondrion for degradation. It
is a selective autophagy pathway that recognizes damaged
mitochondria and sequesters them into autophagosomes,
thereby forming mitophagosomes that eventually fuse with
lysosomes and are degraded (Palikaras et al., 2018). Different
mitophagy pathways become activated upon specific cues, and
a plethora of proteins are involved in the execution of these
pathways. The molecular details of mitophagy pathways are
discussed briefly below.

PINK1-Parkin Pathway
The PINK1-Parkin pathway is one of the best-characterized
stress-induced mitophagy pathways. PINK1 is a serine/threonine
kinase that functions as a sensor for mitochondrial health (Unoki
and Nakamura, 2001). In healthy mitochondria, PINK1 gets
imported into mitochondria through TOM (Translocase of
Outer Membrane) and TIM (Translocase of Inner Membrane)
complexes, respectively. Once PINK1 has been imported
into the IMM, it is processed by two proteases, MPP (matrix
processing peptidase) and PARL (rhomboid protease presenilin-
associated rhomboid-like), thereby making it a substrate for
N-end rule degradation by the cytosolic UPS (Jin et al., 2010;
Deas et al., 2011; Greene et al., 2012; Yamano and Youle,
2013). When mitochondria are damaged, PINK1 import is
blocked, and it accumulates on the OMM, which spares it from
proteolytic processing (Jin et al., 2010; Narendra et al., 2010;

Lazarou et al., 2012; Jin and Youle, 2013). The accumulated
PINK1 autophosphorylates itself, making its kinase domain-
active (Okatsu et al., 2012). Upon activation, PINK1
phosphorylates its substrate proteins MIRO (mitochondrial
rho GTPase), MFN1, and ubiquitin, which promotes the
recruitment of parkin, a cytosolic E3 ubiquitin ligase, onto the
damaged mitochondria (Chen and Dorn, 2013; Kane et al., 2014;
Shlevkov et al., 2016). The binding of parkin to phosphorylated
ubiquitin (pS65Ub), followed by PINK1 phosphorylation at
serine 65, promotes parkin activation, which then ubiquitinates
its downstream targets (Zhang et al., 2012; Kane et al., 2014;
Koyano et al., 2014; Nguyen et al., 2016). Ubiquitination of OMM
proteins by parkin provides PINK1 with more substrates for
phosphorylation, which further promotes enhanced recruitment
of parkin and its activation, forming a positive feedback loop
(Ordureau et al., 2014). K63 ubiquitination by parkin recruits
autophagy adaptor proteins like optineurin (OPTN), nuclear
dot protein 52 (NDP52), Tax1-binding protein 1 (TAX1BP1),
sequestosome-1 (SQSTM1)/p62, and neighbor of BRCA1 gene 1
(NBR1) to damaged mitochondria (Sarraf et al., 2013; Lazarou
et al., 2015; Nguyen et al., 2016). These adaptor proteins mediate
the recruitment of autophagy machinery to the damaged
mitochondria and interact with the autophagosomal proteins
LC3 (microtubule-associated protein 1A/1B-light chain 3) or
GABARAP (gamma-aminobutyric acid receptor-associated
protein), eventually forming a mitophagosome (Nguyen et al.,
2016). The mitophagosomes subsequently fuse with lysosomes,
where the damaged mitochondria are degraded.

Receptor-Mediated Mitophagy
In addition to the PINK1-Parkin pathway, certain mitophagy
receptor proteins, mostly integral mitochondrial proteins, can
interact with autophagy machinery to mediate mitophagy.
These include the OMM proteins FUNDC1 (FUN14 domain
containing 1), BNIP3 (BCL2 interacting protein 3), NIX
(Nip3-like protein X), Bcl2L13 (Bcl2-like protein 13), and
FKBP8/FKBP38 (FK506−binding protein 8), and the IMM
phospholipid cardiolipin (Rodger et al., 2018). These proteins
promote mitophagy in a PINK1-Parkin independent manner in
response to various cellular stimuli ranging from stress signals
like hypoxia to developmental signals during differentiation of
erythrocytes, retinal ganglion cells (RGCs), and cardiomyocytes,
and also during reprogramming of somatic cells to iPSCs
(Schweers et al., 2007; Liu et al., 2012; Gong et al., 2015;
Esteban-Martínez et al., 2017; Xiang et al., 2017). Despite
having an efficient mitochondrial QC system functioning in cells
during various disease conditions especially in neurodegenerative
diseases, these pathways usually become affected or impaired,
which is discussed in detail in the following section.

IMPAIRMENT OF MITOCHONDRIAL QC
IN AD

Neurons showing abnormal accumulation of damaged
mitochondria and autophagic vacuoles in soma, axons,
synapses, and degenerating neurites is one of the prominent
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phenotypes seen in AD (Nixon et al., 2005; Baloyannis, 2006;
Trushina et al., 2012; Cai and Tammineni, 2016). This indicates
that mitochondrial QC could be compromised in AD. Mounting
evidence suggests impaired mitophagy as one of the contributing
factors in AD pathogenesis (Kerr et al., 2017). Therefore, the
functional status of mitochondrial QC in the context of AD is
discussed below.

mtUPR, the mitochondrial QC that helps maintain
mitochondrial proteostasis, is shown to be chronically activated
in sporadic and familial AD patient brains. Sporadic AD patients
showed ∼40–60% upregulation of mtUPR genes, while familial
AD patients showed ∼70–90% upregulation (Beck et al., 2016).
Chronic activation of this pathway could be a compensatory
neuroprotective mechanism against the aberrant accumulation
of misfolded and damaged mitochondrial proteins as well as the
toxic protein aggregates during AD pathogenesis (Beck et al.,
2016). However, sustained activation of this pathway in a chronic
state could possibly shift its protective role to a deleterious one.
Therefore, further investigations are required to understand the
role of this sustained chronic activation of mtUPR in AD.

The activity of the cytosolic 26S proteasome system, which
can selectively degrade damaged OMM proteins, was shown
to be impeded in AD (Bonet-Costa et al., 2016). A mutant
form of ubiquitin Ub+1 that is selectively detected in AD
patient brains inhibits the degradation of polyubiquitinated
substrates by 26S proteasome (Lam et al., 2000). This
inhibition of 26S proteasome in AD can adversely affect both
mitochondrial and cellular proteostasis, further contributing
to the accumulation of abnormal protein aggregates, thus
exacerbating the AD pathogenesis.

Recent reports suggest an impaired mitophagy pathway as a
potential contributing factor in AD. Studies investigating the role
of parkin-dependent mitophagy in AD revealed that, in mutant
hAPPTg neurons and AD patient brains, there is increased
recruitment of parkin, LC3, and p62 to damaged mitochondria.
This suggests the induction of mitophagy in the early stages of
disease progression (Ye et al., 2015). However, mutant hAPPTg
neurons showed aberrant accumulation of mitophagosomes and
increased retention of damaged mitochondria in enlarged and
clustered LAMP1 (lysosomal-associated membrane protein 1)-
positive vesicles. This indicates that despite the induction of
mitophagy in early stages, the degradation of cargo is not very
efficient, possibly due to compromised lysosomal function (Orr
and Oddo, 2013; Kerr et al., 2017). Studies showed that familial
AD PS1 (presenilin 1) mutations increased lysosomal alkalization
and decreased lysosomal hydrolytic activity, thereby implicating
compromised lysosomal function as a contributing factor in
AD (Coffey et al., 2014). Additionally, with disease progression,
there is significant reduction in cytosolic parkin levels in AD
patient brain samples, which is indicative of inefficient mitophagy
(Ye et al., 2015; Cai and Tammineni, 2016). Therefore, this
evidence suggests that mitophagy impairment in AD could
be a combined effect of compromised lysosomal function and
decreased mitophagy proteins.

Parkin-dependent mitophagy is also affected in tau-mediated
AD pathogenesis. A recent study showed that the expression
of both human wild-type (htau) and mutant tau (hP301L) in

neuroblastoma cells reduced parkin translocation to damaged
mitochondria. The reduction in parkin translocation was
significantly higher in cells expressing mutant tau (Cummins
et al., 2019). This reduction in parkin translocation is due
to the aberrant interaction of the projection domain of tau
with parkin, thereby sequestering it in the cytosol. This
was also shown in vivo in the C. elegans nervous system,
wherein htau expression reduced mitophagy while the mutant
tau completely inhibited mitophagy (Cummins et al., 2019).
Therefore, aberrant interaction of tau with parkin can impair
mitophagy, contributing to AD pathology, in addition to the
occurrence of tau-mediated mitochondrial dysfunction.

A recent study by Fang et al. (2019), showed that the levels
of mitophagy-related proteins Bcl2L13, PINK1, and BNIP3L/NIX
were reduced and mitophagy initiation proteins such as phospho-
ULK1 (Ser555), and phospho-TBK1 (Ser172) were inactivated
in AD patient samples. This reduction in mitophagy-related
proteins was also shown in iPSC-derived cortical neuronal
cultures generated from familial (APP/V717L) and sporadic
AD (apolipoprotein E4 (APOE4)/E4) patients. Additionally, in
iPSC-derived cortical neurons, the levels of other mitophagy-
related proteins like FUNDC1, Bcl2L13, AMBRA1 (BECN1-
regulated autophagy protein 1), and MUL1 (mitochondrial
ubiquitin ligase activator of NFKB-1) were also shown to be
decreased, further confirming the impairment of mitophagy in
AD. Another study by Martin-Maestro et al. (2019) also reported
the impairment of the mitophagy pathway in APP- and tau-
overexpression models. This study showed a reduction in PINK1
and parkin translocation to damaged mitochondria in APP- and
tau-overexpression models, suggesting the role of compromised
mitophagy in the accumulation of damaged mitochondria in AD
models. Apart from neurons, mitophagy in microglia was also
shown to be reduced by∼60% in the hippocampus of AD mouse
models with a concomitant increase in damaged mitochondria
(Fang et al., 2019). As microglia play an important role in
high energy requiring functions like phagocytosis, an increase in
damaged mitochondria due to compromised mitophagy might
lead to subsequent energy deficiency, making the microglia-
associated functions less efficient (Figure 3). Since a reduction in
levels of mitophagy-related proteins and a concomitant decrease
in mitophagy contribute to AD pathogenesis, gene therapy-
mediated overexpression of mitophagy-related proteins could
potentially increase mitophagy flux and thereby have beneficial
effects (Khandelwal et al., 2011; Du et al., 2017).

Besides the proteins involved in mitophagy, mitochondrial
dynamics and biogenesis-related proteins have also been shown
to be linked with AD pathogenesis. Reports show cases of
excessive mitochondrial fission and decreased mitochondrial
fusion in AD (Cai and Tammineni, 2016). Mitochondrial
fission proteins like DRP1, mitochondrial fission factor (MFF),
mitochondrial dynamics protein (MiD51), FIS1, and MiD49 were
shown to be upregulated in AD, causing excessive fragmentation
of the mitochondrial network (Oliver and Reddy, 2019). It was
also shown that elevated levels of S-nitrosylated DRP1 and
aberrant interaction of DRP1 with Aβ and phosphorylated tau
further lead to increased mitochondrial fission (Cho et al., 2009;
Manczak and Reddy, 2012a). In addition to the upregulation
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FIGURE 3 | Effect of compromised mitophagy on neurons and microglia
during AD progression. (A) Neurons and microglia maintain a healthy pool of
mitochondria with the help of effective quality control (QC) mechanisms such
as mitophagy. (B) Compromised mitophagy of AD-affected neurons leads to
accumulation of damaged mitochondria and mitophagosomes. Mitophagy is
also impaired in activated microglia, which contributes to their reduced
phagocytic efficiency during AD pathogenesis. (C) Degeneration of neurons
during the late stages of AD due to increased Aβ and tau pathology.

of fission proteins, mitochondrial fusion proteins like MFN1,
MFN2, and OPA1 are shown to be downregulated in AD (Oliver
and Reddy, 2019). Therefore, excessive fission combined with the
downregulation of mitochondrial fusion can lead to bioenergetic
inefficiency, which can contribute to neuronal dysfunction in AD.

The expressions of genes associated with mitochondrial
biogenesis like PGC-1α, NRF2, and TFAM are shown to
be reduced in postmortem brain tissue samples obtained
from AD patients (Rice et al., 2014; Kerr et al., 2017).
Sirtuins, an evolutionarily conserved family of NAD+-dependent
deacetylases that regulate multiple cellular pathways including
mitochondrial biogenesis and mitophagy, are also known to
be affected in AD. SIRT1 is a nuclear sirtuin that plays a
role in the upregulation of PGC-1α and the activation of
autophagy/mitophagy genes such as ATG7, ATG6, LC3, and
NIX/BNIP3L (Fang et al., 2016; Kerr et al., 2017). Studies have
shown the levels of SIRT1 to be significantly reduced in the
parietal cortex of AD patient brain samples. Further analysis
suggests a negative correlation of SIRT1 mRNA and protein
levels with tau accumulation and disease progression (Julien
et al., 2009). Levels of SIRT3, a mitochondrial sirtuin that has
a role in p62 clustering onto ubiquitinated mitochondria and
autolysosome formation, were reduced in AD (Tseng et al., 2013;
Yang et al., 2015). Overall, these findings suggest that impairment
in mitochondrial QC combined with abnormal mitochondrial
dynamics and biogenesis can contribute to AD pathogenesis,
and targeting these pathways therapeutically may be a promising
strategy for AD treatment.

MODULATION OF MITOPHAGY IN AD—A
THERAPEUTIC APPROACH

As impaired mitochondrial function and QC play an important
role in AD pathogenesis, pharmacological interventions
improving mitochondrial function and QC have been evaluated
in various AD models. Along with pharmacological modulation,
various lifestyle interventions like intermittent fasting, caloric
restriction and vigorous exercise that were shown to induce
mitochondrial biogenesis, reduce oxidative stress, and enhance
autophagy could also have a beneficial effect on improving
mitochondrial health in AD (Halagappa et al., 2007; Mattson,
2015; Nencioni et al., 2018). A recent study by Fang et al.
(2019), showed that pharmacological modulation of mitophagy
ameliorated Aβ and tau pathology as well as its associated
cognitive defects in various AD models. Three potent mitophagy
inducers, namely urolithin A (UA), actinonin (AC), and
nicotinamide mononucleotide (NMN), identified in a screen,
rescued the AD pathology.

UA, a metabolite derived from polyphenol ellagitannins, is
reported to be a potent mitophagy inducer in neurons and
muscles. In human neuroblastoma SH-SY5Y cells, UA treatment
increased the levels of a set of mitophagy-related proteins such as
parkin, full-length PINK1 (F-PINK1), p-ULK1 (Ser 555), BECN1,
AMBRA1, and Bcl2L13, leading to mitophagy induction. In a
C. elegans AD model with pan-neuronal expression of Aβ42,
UA treatment reduced overall Aβ levels and improved memory.
This improvement in cognitive function was dependent on the
key mitophagy genes pink-1 and pdr-1 (mammalian homolog of
parkin). The protective role of UA in AD through mitophagy
seems to be conserved across species, as an APP/PS1 transgenic
mouse model also showed improved learning and memory
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retention along with a reduction in levels of amyloid peptides
Aβ42, Aβ40 and extracellular Aβ plaques with UA treatment
(Fang et al., 2019). UA treatment ameliorated AD pathology
by inhibiting phosphorylation of tau in a mitophagy-dependent
manner in both C. elegans and mice models that recapitulate
tau-mediated AD pathology.

AC, a naturally occurring antibacterial agent, was also shown
to induce neuronal mitophagy and exhibited similar effects
on AD pathology as does UA treatment. The mitophagy
induction by AC treatment on a C. elegans AD model
was dependent on key mitophagy genes pink-1, pdr-1,
and dct-1 (mammalian homolog of BNIP3 and BNIP3L).
Like UA treatment, AC also improved cognitive ability and
mitochondrial health and reduced Aβ plaque burden in AD
models, recapitulating both Aβ and tau pathology across species
(Fang et al., 2019).

Supplementation with NAD+ precursors such as
nicotinamide riboside and NMN has been reported to ameliorate
pathological features in neurodegenerative disease models like
AD and PD (Hou et al., 2019). Nicotinamide riboside treatment
showed decreased tau phosphorylation and improved synaptic
and cognitive function in two AD mouse models, 3xTgAD
mice and 3xTgAD/Polβ+/− (Hou et al., 2018). In a recent
study, administration of NMN also showed similar cognitive
improvement and AD pathology inhibition in APP/PS1 and
3xTgAD mouse models and in C. elegans models, and this
was shown to be mediated via mitophagy induction (Fang,
2019; Fang et al., 2019; Lou et al., 2019). As NAD+ acts as
a cofactor for multiple proteins, such as sirtuins (SIRT 1-7),
PARP (poly [ADP-ribose] polymerase), CD38, and SARM1
(sterile alpha and TIR motif-containing 1), all having an
important role in the regulation of the autophagy/mitophagy
pathway, mitophagy induction using NAD+ precursors can be
a promising therapeutic approach for treating AD pathology
(Maynard et al., 2015; Fang, 2019).

Apart from pharmacological modulation of mitophagy, a
genetic approach for mitophagy induction was also shown
to be effective in ameliorating AD pathogenesis. Transgenic
overexpression of two key mitophagy proteins, PINK1 and
parkin, not only improved mitochondrial health through
mitophagy induction but also resulted in reduced Aβ levels
and AD pathology. Studies showed that gene therapy-mediated
overexpression of PINK1 reduced oxidative stress and Aβ

levels in an AD mouse model overexpressing mutant APP
(Du et al., 2017). This helped alleviate Aβ-induced synaptic
dysfunction and cognitive decline. PINK1-mediated mitophagy
induction also helped eliminate the mitochondrial pool of Aβ,
further contributing to the reduction in total Aβ levels. It
was also shown that PINK1 kinase activity is essential for
ameliorating AD pathology and cognitive decline in the AD
mouse model, as the kinase-deficient PINK1 mutant did not
show the protective effect of PINK1 on AD (Du et al., 2017).
In addition to PINK1, parkin was also shown to have
a role in mediating intraneuronal Aβ clearance. A triple-
transgenic AD (3xTg AD) mouse model injected with lentiviral
parkin showed increased ubiquitination and clearance of
intracellular Aβ aggregates, with a concomitant reduction

of extracellular Aβ plaques (Khandelwal et al., 2011). It
also stimulated BECN1-dependent autophagy and clearance
of damaged mitochondria through mitophagy induction. The
parkin-mediated Aβ clearance was also associated with reduced
oxidative stress, restored mitochondrial function, improved
efficiency of the TCA (tricarboxylic acid) cycle, increased
glutamate synthesis, and a re-established neurotransmitter
equilibrium, thus making it a prospective candidate for gene
therapy against AD pathology (Khandelwal et al., 2011).
Further investigations are required to understand the detailed
mechanisms underlying the role of PINK1 and parkin in the
context of AD. Since genetic modulation can involve ethical
considerations, extensive studies regarding aspects of gene
therapy are required before considering it as a therapeutic
avenue in treating AD.

Apart from removing damaged mitochondria, recent
reports suggest that mitophagy also plays a role in
alleviating inflammation, that could be used to modulate
neuroinflammation in neurodegenerative diseases such
as AD. A study by Sliter et al. (2018) showed that the
mitophagy-related proteins PINK1 and parkin helped mitigate
STING-induced inflammation. The role of mitophagy in
alleviating neuroinflammation was further shown in a
recent study where induction of mitophagy in microglia,
which are phagocytic immune cells in the brain, reduced
neuroinflammation and AD pathogenesis (Fang et al., 2019).
During AD progression, microglia exhibit increased levels of
pro-inflammatory cytokines such as tumor necrosis factor-
α (TNF-α) and interleukin-6 (IL6) along with decreased
production of anti-inflammatory cytokine IL-10 due to their
persistent activated state (Hickman et al., 2008; Lautrup
et al., 2019). Additionally, there is activation of the NLR
family pyrin domain containing 3 (NLRP3) inflammasome
as well as increase in the levels of cleaved caspase-1 in AD
models, indicating neuroinflammation (Heneka et al., 2013).
Pharmacological induction of mitophagy using UA and AC
treatment caused increased expression of microglia-enriched
transcriptional regulator IRF7 (interferon regulatory factor
7), engulfment-associated protein CD68, and microglial
proliferation marker CD116/CSF2RA, further shifting the
microglial population to its phagocytic state. Increased
microglial phagocytic activity caused through mitophagy
induction promoted enhanced engulfment and removal of
Aβ plaques in APP/PS1 AD mice. Along with the enhanced
microglial phagocytosis, UA- and AC-induced mitophagy
was also shown to increase the levels of anti-inflammatory
cytokine IL-10 and to reduce the levels of pro-inflammatory
cytokine TNF-α and IL-6 in a PINK1-dependent manner.
Mitophagy induction is also associated with decreased
activation of the NLRP3 inflammasome, with reduced levels
of its downstream effectors such as cleaved caspase-1 and
proinflammatory IL-1β in APP/PS1 AD mouse model. These
results, combined with the reduction in insoluble Aβ plaques,
indicate that pharmacological restoration of mitophagy in
microglia increases its phagocytic activity and mitigates NLRP3-
dependent neuroinflammation in AD models, thus ameliorating
AD pathology (Fang et al., 2019; Lautrup et al., 2019).
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Therefore, modulation of mitophagy in AD may play a protective
role in both neurons and microglia, making it a promising
therapeutic target for AD treatment.

CONCLUSION

Maintaining mitochondrial integrity is an essential factor that
contributes to the effective functioning of a cell. Therefore,
any dysfunction in mitochondrial QC pathways can have a
detrimental effect on cells like neurons that are critically
dependent on mitochondria. Emerging evidence suggest that
defects in mitochondria and mitochondrial QC could be
one of the primary contributing causes for AD progression.
Studies conducted in different AD models across species
have revealed that abnormal mitochondrial function, defective
mitochondrial dynamics, and compromised mitophagy lead to
increased oxidative stress, synaptic dysfunction, neuronal loss,
and cognitive decline, thereby contributing to enhanced AD
pathology. Owing to the role of mitophagy in AD progression,
therapeutic interventions modulating these pathways have been
evaluated in different AD models. These studies have shown
that mitophagy induction plays a protective role in ameliorating
AD pathogenesis by reducing the Aβ plaque burden and
neuroinflammation thus delaying cognitive decline. Even though
there is significant progress in this field, further research directed
towards developing and validating more potent mitophagy
inducers is the need of the hour. Eventually, such drug-like
mitophagy inducers could be employed as an effective therapeutic
strategy against AD pathogenesis.
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