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The objective of this study is to develop a method for alleviating a novel pattern

interference toward achieving a robust myoelectric pattern-recognition control system.

To this end, a framework was presented for surface electromyogram (sEMG) pattern

classification and novelty detection using hybrid neural networks, i.e., a convolutional

neural network (CNN) and autoencoder networks. In the framework, the CNN was

first used to extract spatio-temporal information conveyed in the sEMG data recorded

via high-density (HD) 2-dimensional electrode arrays. Given the target motion patterns

well-characterized by the CNN, autoencoder networks were applied to learn variable

correlation in the spatio-temporal information, where samples from any novel pattern

appeared to be significantly different from those from target patterns. Therefore, it was

straightforward to discriminate and then reject the novel motion interferences identified

as untargeted and unlearned patterns. The performance of the proposed method was

evaluated with HD-sEMG data recorded by two 8 × 6 electrode arrays placed over the

forearm extensors and flexors of 9 subjects performing seven target motion tasks and

six novel motion tasks. The proposed method achieved high accuracies over 95% for

identifying and rejecting novel motion tasks, and it outperformed conventional methods

with statistical significance (p < 0.05). The proposed method is demonstrated to be

a promising solution for rejecting novel motion interferences, which are ubiquitous in

myoelectric control. This study will enhance the robustness of the myoelectric control

system against novelty interference.

Keywords: human-machine interactions, novelty detection, neural networks, electromyography, pattern

recognition

INTRODUCTION

Surface electromyograms (sEMG) have become a popular choice for controlling powered
prosthetic devices because it can directly reflect the neural and muscular activities associated
with motion intentions in a non-intrusive way (Parker et al., 2006). In the last few
decades, a considerable number of studies have focused on the sEMG-based man–machine
interface. Hand prosthesis (Hahne et al., 2018; Li et al., 2021), exoskeleton robots (Shi et al.,
2021), and wearable devices (Moin et al., 2021) frequently use sEMG as a control source.
Traditionally, myoelectric control was implemented using a pair of antagonistic muscles,
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each of which corresponded to one degree of freedom (DoF)
based on their sEMG amplitudes (Finley and Wirta, 1967;
Childress, 1969). However, few DoFs can be controlled due
to the requirement of various muscle pairs. For decades,
myoelectric pattern recognition (MPR) has garnered substantial
attention since it enables dexterous control of multiple DoFs.
The MPR technique utilizes machine learning algorithms to
classify motion tasks based on statistical representations from
sEMG signals. Many studies have asserted high classification
accuracies for recognizing multiple motion tasks with several
techniques or their combinations, including pre-processing,
feature engineering, classification, and post-processing (Hudgins
et al., 1993; Engelhart et al., 1999; Englehart and Hudgins, 2003;
Hargrove et al., 2010; Zhang and Zhou, 2012; Chen and Wang,
2013; Wang et al., 2016; Zhang et al., 2017). Although promising
outcomes have been reported in well-controlled laboratory
settings, the MPR approach has yet to be widely used in clinical
settings. As many studies stated, some issues including novel
motion interference (Scheme et al., 2011; Tomczyński et al., 2015;
Ding et al., 2019), electrode shift (Hargrove et al., 2008; He
and Zhu, 2017), or variation in force and limb orientation (Al-
Timemy et al., 2015; Cheng et al., 2018; Nougarou et al., 2019) can
significantly decay practical performance of the MPR systems.
Among them, the novel motion interference is a critical issue for
implementing a MPR system in real-world scenarios.

In most typical MPR systems, classifiers are always trained
with a restricted set of patterns and can then classify data samples
from those patterns. However, a large number ofmotion patterns,
instead of a specific few, may be involved by users in their daily
life activities. As a result, the trained classifier in the MPR system
may unavoidably fail to identify any unlearned pattern. These
unlearned patterns, namely novel motion tasks, may probably
be classified as one of the learned patterns by mistake. Figure 1
illustrates that, although the classifier can map the samples from
two target motion tasks (blue and red dots) to two categories
well, the samples from novel motion tasks (purple and yellow
dots) that are not fed to the classifier in the training procedure
fall into one part of the boundary erroneously. Accidental
incorrect predictions of MPR systems that predominantly deliver
negative feedback are undoubtedly a cause of frustration and
discouragement. Therefore, it is critical to reject novel motion
tasks in MPR systems.

Many studies in this area have been conducted to alleviate
the novel motion interference (Liu and Huang, 2009; Scheme
et al., 2011, 2013; Amsuess et al., 2015; Tomczyński et al.,
2015; Ding et al., 2017, 2019; Robertson et al., 2019). Generally
speaking, common solutions to this issue can be explained to
design a filtering scheme that could only pass through target
motion patterns while rejecting any unlearned novel motion
patterns. The implementation concepts of these filtering schemes
can be divided into two categories: one is based on confidence
(Scheme et al., 2013; Tomczyński et al., 2015; Robertson et al.,
2019) and the other uses a one-vs.-all classification rule (Liu and
Huang, 2009; Scheme et al., 2011; Amsuess et al., 2015; Ding
et al., 2017, 2019). As representative examples of the confidence-
based schemes, Scheme et al. (2013) and Robertson et al. (2019)
utilized the classifier to provide a confidence score for each

FIGURE 1 | A scenario of novel motion interference involved in routine

myoelectric pattern recognition (MPR) system.

decision and subsequently rejected samples from novel motion
tasks with a score below the threshold. Similarly, Tomczyński
et al. (2015) used the output entropy function of an artificial
neural network to discriminate between target and novel motion
tasks. The basic idea of the one-vs.-all classification rule is to
model each known class, i.e., target motion task, by primarily
learning from a training set containing only the samples of
that class, and then a test sample will be rejected if it does
not belong to any known class. Liu and Huang (2009) and
Ding et al. (2019) suggested using an algorithm termed support
vector data description (SVDD) to build multiple one-vs.-all
classifiers. Scheme et al. (2011) employed a multiclass binary
classification combined with a majority voting method to reject
samples of novel motion tasks. Recently, Amsuess et al. (2015)
and Ding et al. (2017) suggested an efficient rejection architecture
based on the Fisher linear discriminant analysis (LDA) and the
Mahalanobis distance (MD), where the MD was used to cast-
off interference of novel motion tasks. The novel motion tasks
conceived in these studies are too ideal: they are always consistent
patterns recorded while performing a particular gestural task,
although all of the aforementioned studies claimed to increase
MPR performance in practical application. However, in practice,
complicated novel motion tasks are more likely to be involved in
using an MPR system. When an intact-limbed user is equipped
with a gestural interface using myoelectric control and common
functional hand/finger tasks are selected as control commands
(which is always the case), some daily activities, such as writing,
typing, andmouse manipulation, produce novel patterns of other
tasks occupying the same hand. They are similar to the target
motion tasks, and therefore, it is difficult to identify and reject
them by the control board. Meanwhile, prosthesis users may
have the same problem when executing unconscious muscle
contractions during daily movement. Thus, the aim of this study
is to improve novelty rejection performance given complicated
novel motion tasks in a real-life situation.

To alleviate the interference of unavoidable and complicated
novel motion tasks, it is essential to implement sufficient
information sensing for well-characterizing motion intentions
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and advanced methods for mining such information. In the
field of sEMG recording and myoelectric control, the 2-
dimensional flexible high-density electrode array has recently
become popular. The recorded high-density sEMG (HD-sEMG)
conveys additional spatial information rather than the routine
temporal or spectral information inherent in the single-channel
sEMG signal. Many studies achieved significant improvements in
the myoelectric control performance using HD-sEMG (He and
Zhu, 2017; Zhang et al., 2017; Cheng et al., 2018; Nougarou et al.,
2019). However, how to mine spatial information is still an open
question. Deep learning and a convolutional neural network
(CNN) have recently revolutionized several fields of data science,
such as natural language processing (Kim, 2014), computer
vision (Krizhevsky et al., 2012), and reinforcement learning
(Mnih et al., 2013). Also, many studies claimed a significant
improvement in myoelectric control using CNN (Atzori et al.,
2016; Wei et al., 2019). There is no doubt that CNN serves
as a strong and useful tool for extracting spatial information
to describe images. Thus, using CNN to describe HD-sEMG
seems to be a reasonable and feasible choice. Furthermore, in
the field of novelty detection, autoencoder has been recognized
as a successful solution based on the assumption that it can
model variable correlations of normal/target samples into a
lower-dimensional subspace in which the abnormal/novel and
target samples are significantly different (Sakurada and Yairi,
2014; Erfani et al., 2016; Zhou and Paffenroth, 2017). It is also
straightforward to detect HD-sEMG pattern novelty using the
autoencoder method.

In this study, the primary contribution is to resolve the
interference from novel, changeable, and unpredictable motion
tasks through applying hybrid neural networks to HD-sEMG
data. The proposed framework of hybrid neural networks
consists of two parts: one is a motion classification module
using a CNN to characterize spatial information from HD-
sEMG accurately, and the other is a novel motion detection
module that employs autoencoder networks. Specifically, we
first obtained feature representation of HD-sEMG using CNN
and then learned inherent patterns of target samples with
autoencoder networks. Thus, the sample from novel motion tasks
can be identified by judging whether it can be fitted with any
trained autoencoder.

METHODS

Subjects
Nine volunteers were recruited to participate in the data
collection experiment (six males, three females, all right-hand).
The Ethics Review Board of the University of Science and
Technology of China has approved the experimental protocol.
The recruited subjects were intact-limbed and able-bodied
without any known neuromuscular injury or disorder. They aged
25.11 ± 1.61 years [mean ± standard deviation (SD), ranged
from 22 to 27 years]. The purpose and method of the experiment
were orally described in detail to all individuals before any
procedure of the experiment, and all subjects gave informed and
signed consent.

FIGURE 2 | Experimental setup and scenario. (A) An overview of the

experimental setup including electrode arrays concealed in the black armband

(1), data recording device (2), and a computer with software interface to

monitor the recorded signals in real time (3). (B) The placement of two pieces

of high-density electrode arrays for collecting high-density surface

electromyogram (HD-sEMG) data from forearm flexors and extensors. (C) An

illustration of 13 motion tasks, including seven control/target motion tasks

(T1–T7) and six interference/novel motion tasks (N1–N6).

Experiments
As shown in Figure 2, two pieces of flexible high-density
electrode array were developed to gather HD-sEMG signals from
the forearm extensors and flexors. Each array has 48 monopolar
sEMG channels that were organized in a 6 × 8 grid. The two
arrays form a 12 × 8 matrix with 96 channels. The electrode
diameter was 4mm, and the interval between two consecutive
electrodes was 15mm. Also, a customized device was used to
record and save sEMG signals, as shown in Figure 2A. The
sEMG signals were initially amplified by a two-stage amplifier
with a gain of 60 dB before being processed by a built-in band-
pass filter (20–500Hz). The signals were then sampled using
a 16-bit analog-to-digital converter at a 1 kHz sampling rate.
A USB cable was used to transport all digitalized data to a
computer. During the experiments, the subjects sat comfortably
in a height-adjustable chair. Before both electrode arrays were
securely inserted, the subject’s forearm skin was cleansed with
70% isopropyl alcohol. On both arms of the subject, two reference
electrodes were attached to the olecranon.

We defined seven target motor tasks as the control
commands of the MPR system, and they were wrist pronation
(T1)/supination (T2), wrist extension (T3)/flexion (T4), hand
opening (T5)/closing (T6), and shooting (T7). Then, six novel
motion tasks were selected as control disturbances to the
system. They were defined and grouped into two categories. One
included simple and distinct motion tasks: pinch (N1), radial
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FIGURE 3 | The proposed framework for target motion classification and novel motion rejection.

deviation (N2), and ulnar deviation (N3). Previous studies always
considered motion tasks in this category. The other contained
dynamic motion tasks: mouse manipulating (N4), handwriting
(N5), and keyboard typing (N6). They were included as a result
of common occurrences in regular office activity. All tasks are
illustrated in Figure 2C. For each task of T1–T7 andN1–N3, each
subject was required to perform isometric muscle contraction
with 10 repetitions. For each repetition, subjects were asked to
hold a mild muscular contraction for 5 s. For each task of N4–
N5, subjects were instructed to do each activity for about 1min to
simulate a real-world scenario. In addition, enough rest between
repetitions/tasks was given to minimize muscular fatigue.

Novel Motion Rejection Using Hybrid
Neural Network
Figure 3 shows the architecture proposed in this study, which
includes two modules, a motion classification module and
a novelty detection module. The HD-sEMG signals are first
processed into feature images, and the subsequent CNNs are
adopted to identify the target motion tasks while further
extracting feature representations based on inputted feature
images. Next, the feature representations outputted by the CNNs
are fed to an autoencoder network, which aims to reject any novel
sample and, meanwhile, pass through target samples. Thus, if a
test sample comes from one target motion task, the loss from
the novel motion detection module should be small, and the final
command is determined by themotion classificationmodule. It is
noted that only samples from target motion tasks are supplied to
train the whole architecture. The details of the proposed method
are described as follows.

Data Segmentation and Feature Extraction
The sEMG signals were first segmented into a series of
overlapping windows, each having a window length of 250ms
and an increment of 150ms. An amplitude thresholding

approach was used to eliminate the windows from quiescent
sEMG signals, with the threshold set to the mean plus three times
the SD of the baseline signals averaged over all the channels.
In this study, three typical time-domain (TD) features of the
sEMG signals, namely mean absolute value (MAV), waveform
length (WL), and root mean square (RMS), were chosen for their
intuitive ability to depict muscle contraction intensity. Please
note that both the MAV and the WL were selected from the well-
known Hudgin’s TD feature set. As a result, one window of the
sEMG signal in the form of 12×8×250 was converted into a 12×
8×3 feature matrix, with 12×8 representing channel distribution
in the combination of both the 2-dimensional electrode arrays.
Each processed feature matrix, equivalently viewed as a feature
image, was considered as a basic sample in the following target
pattern classification and the novel pattern detection analyses. At
last, we randomly split the feature images (i.e., samples) of the
target motion tasks into training, validation, and testing datasets
with percentages of 64, 16, and 20%, respectively, to learn and
fine-tune the model hyperparameters.

Motion Classification Module
To better characterize the spatial information of HD-sEMG,
the well-established CNN technology has been adopted in this
module. The core advantage of the CNN is its ability to extract
task-oriented spatial features autonomously and directly from
inputted images, as shown in the upper part of Figure 4. The
forward convolution pass is computed as

Ox,y = f
(

∑

i

∑

j (Wi,j × Ix+i,y+j)+ b
)

(1)

where Ox,y represents the value of output feature map at (x, y),
Wi,j is the filter value at (i, j), Ix+i,y+j is the value at (x + i, y + i)
of the inputted matrix, and b is the bias. In the upper part
of Figure 4, the inputted I is the WL feature that comes from
one sample of wrist pronation motion. Both forearm flexors
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FIGURE 4 | The configuration of the convolutional neural network (CNN) used

in the motion classification module. Here, the “Conv” refers to a convolutional

layer, and the two notations in the subsequent parentheses represent filter

numbers and size in the current layer, respectively. One example of forward

convolution pass is also illustrated in the upper part.

and extensors produced strong muscular contraction, and the
corresponding image exhibited two highlights in specific regions.
Thus, the hypothetical sharpness filter W, which is likely to be
learned by CNN, can effectively represent two strong activation
zones and can restrain other flat areas, as shown in the matrix
O. As a result, many adaptive spatial filters in the CNN can be
combined to visualize image patterns such as sharpness, edges,
and textures autonomously, which is hard to be characterized in
a hand-craft manner.

The architecture of the neural network is demonstrated in the
bottom part of Figure 4, consisting of four blocks. Block 1 of the
net includes two convolutional layers and two ReLU (Krizhevsky
et al., 2012) non-linear activation functions. Besides, 32 filters
with 3× 3 size are applied in each convolutional layer. In blocks
2–4 of the net, several dense layers with different numbers of
nodes (the number in the subsequent parenthesis in Figure 4)
are included. Activation functions of ReLU and Softmax are
attached following the different dense layers. We also appended
dropout layers with a 0.8 rate in blocks 2–3 to prevent overfitting
(Srivastava et al., 2014).

Similar to the study by Tomczyński et al. (2015), the
cross-entropy loss was adopted to help optimize the network
parameters. The loss function is computed as

L = −
∑M

c=1 yx,c log
(

px,c
)

(2)

where M is the number of motion classes. In the equation, yx,c
represents a binary indicator (0 or 1), and it is equal to 1 only
if the current sample x truly belongs to class c. The probability
predicted by the net for the sample x belonging to class c is px,c.

FIGURE 5 | The configuration of the autoencoder adopted in the novelty

detection module. Here, the number in the parentheses refers to the number

of nodes of the layer.

The benefit of this function is to produce damped outputs for
samples that are not related to specific motion tasks (Tomczyński
et al., 2015). Next, we trained the network with mini-batch
gradient descent using the AdaDelta algorithm (Zeiler, 2012).
The batch size is set to 16, and the learning rate was 0.05 for 100
training epochs.

Novelty Detection Module
Given the trained CNN from the previous module, the next step
is to build autoencoder networks for detecting novel motion
tasks. As shown in Figure 5, the autoencoder adopted in this
study is constituted with several dense layers. There are two
parts, both encoder and decoder, which commit to capturing
inherent patterns of target motion tasks by embedding inputted
data into a lower-dimensional subspace (Zhou and Paffenroth,
2017). For each target motion task, an autoencoder was built. The
training set {x (1) , x (2) , . . . , x(n)} for one motion task, where
x(i) ∈ R

D represents a vector with D variables and n is the
number of sample vectors, was assumed. This set was obtained as
the outputs from block 3 of the well-trained CNN. These vectors
were regarded as feature representations after inherent spatial
information was well characterized, as mentioned in Figure 3.
Thus, in this module, the input feature vector is in the form of
512×1 (the nodes of block 3 in the CNN is 512). In this study, the
autoencoder only consisted of dense layers because it was one of
the basic neural network components. The calculation between
two consecutive dense layers is similar to the aforementioned
forward convolution pass, and the details can be found in the
study by Zhou and Paffenroth (2017).

During the training phase, we first compressed the training
data into lower-dimensional latent space and subsequently
reconstructed the output {x̂ (1) , x̂ (2) , . . . , x̂(n)}. Empirically, the
reconstruction error is computed via a mean squared error in the
training phase, and it is assigned to be the Bray-Curtis distance
(Bray and Curtis, 1957) in the testing phase, which is given as:

E (i) =
∑D

k=1|xik−x̂ik|
∑D

k=1(xik+x̂ik)
(3)
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Many distance metrics are applicable to be used as the loss
function. The above settings were determined through some
pre-tests according to the optimal performance. We trained the
network with mini-batch gradient descent using the stochastic
gradient descent algorithm. The batch size was set to 16. The
learning rate was initialized with 0.1 for the first 600 training
epochs, and it decreased to 0.01 for another 300 epochs.

After the subspace was determined in the testing procedure,
a testing sample was first projected into the subspace and was
subsequently reproduced to reconstruct the original sample. The
reconstruction error in Equation 3 is defined as an anomaly score,
and the score is supposed to be low if the sample is truly from the
target motion task, whereas the score is large with samples from
novel motion tasks. Thus, for each target motion task, a threshold
should be applied to the score to reject novel motion classes.
In fact, there is a trade-off for the threshold determination. A
lower threshold may reject more novel samples at the cost of
unavoidable rejection of some target samples as well, while a
higher threshold may weaken the power of novelty detection and
rejection. In this study, we defined a recall factor describing the
proportion of samples belonging to each target pattern that could
be correctly identified as the labeled target pattern (which were
not regarded to be the novelty). Evidently, the threshold of each
target pattern was controlled by the recall factor: the threshold of
each target pattern was set as the largest anomaly score among
the correctly identified samples, given a specific recall factor;
a higher recall factor led to a higher threshold for each task.
In this study, we selected a consistent recall factor shared by
all target motion tasks and subjects, and then thresholds for all
tasks were determined accordingly. Given the validation dataset,
a sensitivity analysis was conducted by adjusting the recall factor
from 0 to 1. It was equivalent to adjusting the task-specific
thresholds. The recall factor, as well as thresholds, could be finally
set according to the optimal performance of the novelty rejection
and task pattern classification.

After any testing sample was assigned to belong to any of the
target motion tasks (other than novelty), its task pattern label
was finally determined as the output of the motion classification
module. The hybrid neural networks, i.e., the CNN and the
autoencoder networks, were combined to solve the problem of
novel motion rejection.

Furthermore, the architecture of all of the aforementioned
networks was defined by a series of pre-tests to get optimal
results. All of the algorithms were written in Python using the
Keras framework , and they were tested on a laptop with an Intel
Core i7 processor, 16 GB of RAM, and an NVIDIA GeForce
GTX 1050 Ti GPU. The source codes are published online for
further clarification.

Performance Evaluation and Statistical
Analysis
To get an intuition of how the features extracted from CNN are
arranged in a high-dimensional space, t-distributed stochastic
neighbor embedding (t-SNE) (van derMaaten andHinton, 2008)
was applied for visualization. The t-SNE is a powerful algorithm
for dimensionality reduction that is well-suited for embedding

high-dimensional data for visualization in the space of two or
three dimensions. The algorithm calculates a similarity measure
between pairs of samples in the high and low-dimensional spaces.
As a result, comparable samples are modeled by neighboring
points with a high probability, whereas dissimilar samples are
modeled by distant points.

Further, two common MPR methods were implemented for
performance comparison against the proposed method. One was
a conventional MPR method using a TD feature set and an
LDA classifier (Englehart and Hudgins, 2003), denoted as the
LDA method in this study. The other method was suggested in
Amsuess et al. (2015) and Ding et al. (2017), which combined
the LDA method with MD to expand its capability of novelty
rejection. It was denoted as the LDA-MD method, and it was
used to transform the feature data using LDA before calculating
the MD. Similar to the proposed method in this study, the
MD value was regarded as an anomaly score reflecting the
probability of the sample belonging to target motion tasks. On
this basis, a threshold needed to be applied. Therefore, we used
the same recall factor to control the setting of the threshold, given
the validation dataset. When implementing both comparison
methods, four TD features (Englehart and Hudgins, 2003) were
extracted from each sEMG channel. Then, for each window,
all features were concatenated into a 384-dimensional (96 ×
4) vector.

To evaluate the novelty rejection performance and to establish
criteria for setting appropriate thresholds (involved in both
the LDA-MD method and the proposed method), a receiver
operating characteristic (ROC) curve was obtained. Plotting the
true positive rate (TPR) against the false positive rate (FPR) at
various threshold levels yields the ROC curve. This curve gives
a plot of the threshold effect on the accuracies for identifying
target/novel samples. The ROC curve’s area under the curve
(AUC) was utilized as a metric, which indicates how well a
model can differentiate between classes. A higher AUC represents
the better performance of correctly distinguishing novelty from
all target motion tasks. In addition, after the threshold was
determined according to the ROC curve, the classification
accuracy of each motion can be calculated as

Acc = Number of correctly classified samples
Number of all samples

(4)

where samples of six novel motion tasks shared just one label, i.e.,
the novelty.

Multiple paired samples t-test was applied on AUC or
accuracy to compare novelty rejection performance of both the
LDA-MD method and the proposed method, respectively. In
addition, a one-way repeated-measure ANOVA was applied on
accuracies to examine the effect of the method (three observation
levels: the LDAmethod, the LDA-MDmethod, and the proposed
method) onmotion classification performance. Post-hocmultiple
comparisons with LSD adjustments were made if necessary. The
significance level for this study was set at 0.05. SPSS software
was used for all statistical analyses (ver. 24.0, SPSS Inc. Chicago,
IL, USA).
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FIGURE 6 | Distribution of different feature sets visualized by a t-distributed stochastic neighbor embedding (t-SNE) algorithm. All data samples from one

representative subject are used as an example.

FIGURE 7 | Anomaly scores, i.e., reconstruction errors, derived from applying seven autoencoders on the testing dataset from one representative subject,

respectively. Each autoencoder was only trained with the data from one target motion task. The threshold for each autoencoder is shown in a red horizontal line.

Please note that the threshold was determined from the validation dataset using samples of the corresponding task, while all samples in the testing dataset (including

both target and novel tasks) are shown in each subplot, to demonstrate the usability of our strategy for determining thresholds.

RESULTS

Feature Visualization With t-SNE
Figure 6 provides an insight about the class separability when the
data are characterized by the TD feature set, the TD feature set
processed by the LDA, and the feature representation obtained
by the CNN in the proposed method. We can observe that the
TD feature set exhibited weak separability between the target
and novel samples, with almost all classes overlapping with each
other seriously. When the LDAmethod further processes the TD
features, it was found that samples from each of the target motion
tasks were concentrated into a small region, while the samples

from novel motion tasks were scattered around. However, the
partial samples from wrist pronation and novel motion tasks
were still mixed. Finally, when applying the proposed method,
we noticed that the samples were well separated by their true
target motion labels and that samples from novel motion tasks
were scattered around.

Performance of Rejecting Novel Motion
Tasks
As shown in Figure 7, when samples of one target motion task
were fed into their corresponding well-trained autoencoder, the
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FIGURE 8 | The received operating curves (ROC) derived from the testing datasets for different subjects using the routine Fisher linear discriminant analysis and the

Mahalanobis distance (LDA-MD) method (A) and the proposed method (B), respectively. In each subplot, the bold blue curve is the mean curve averaged across all

subjects and the pink region represents the standard deviation. Three points in the curves marked with circle numbers indicate different threshold settings. The

LDA-MD method yielded a low true positive rate (TPR) of 0.65 at a low false positive rate (FPR) of 0.05 (the point 1), and its TPR was improved to 0.85 at a FPR of 0.2

(the point 2). By contrast, the proposed method had a TPR of 0.85 at a very low FPR of 0.03 (the point 3).

TABLE 1 | Classification accuracies (%) of identifying the target and novel motion tasks averaged across all subjects using three methods, respectively.

Method Target motions Novel motions

Avg. Pinch Radial deviation Ulnar deviation Mouse manipulating Writing Typing

LDA 95.30 0 0 0 0 0 0

LDA-MD 84.13 63.00 95.22 90.00 80.96 78.77 75.25

The proposed method 83.00 97.33 98.77 95.55 99.44 97.22 98.44

The bold values indicate the highest value for each column.

anomaly scores, i.e., reconstruction errors from Equation 3,
were quite minor, whereas samples from other motion tasks
(including other remaining target motion tasks and the novel
motion tasks) had much bigger scores. Thus, for each auto-
encoder, an appropriate threshold was required to identify most
of the corresponding target samples and meanwhile to reject
other samples.

Figure 8 illustrates the ROC curves derived from the testing
dataset for different subjects when both the LDA-MD method
and the proposed method were applied (we omitted the LDA
method because of its lack of ability in rejecting novel motion
tasks). The ROC curve showed the trade-off between sensitivity
(i.e., TPR) and specificity (i.e., 1-FPR) under different threshold

settings. The AUC values obtained by the proposed method
were significantly higher than those obtained by the conventional
LDA-MDmethod (0.91±0.03 for the LDA-MDmethod vs. 0.93±
0.02 for the proposed method, p < 0.05). Besides, the “steepness”
of ROC curves was also critical since it was ideal for maximizing
the TPR while minimizing the FPR. It was found that the mean
ROC curve of the proposed method was able to approximate
the top-left corner (high TPR under the condition of low FPR)

as compared with that of the LDA-MD method, indicating a
performance improvement. In practice, appropriate thresholds
need to be set to keep a low FPR of no more than 5% to ensure
a high level (about 95%) of novelty rejection accuracy. According
to Figure 8B, the proposed method was able to yield a low FPR
of around 3%, whereas the TPR was about 85%. Considering that
the recall is the TPR by definition, we intentionally set the recall
factor at 0.85 for the appropriate setting of thresholds. Please
note that both the recall factor and the TPR were calculated with
the validation and testing datasets, respectively. Therefore, they
were slightly different in values due to the same distribution of
target samples in both datasets. In the following analyses, we set
thresholds for all target motion tasks by means of applying a
consistent recall factor of 0.85 to the validation dataset when both
methods were used.

Performance of Identifying All Motion
Tasks
Table 1 illustrates the average classification accuracies of all the
subjects using three methods. When compared to the routine
LDA method, the LDA-MD method and the proposed method
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achieved lower classification accuracies of target motion tasks
(95.30± 2.00% for the LDAmethod, 84.13± 2.22% for the LDA-
MD method, and 83.00 ± 1.60% for the proposed method, p <

0.05 for comparisons between any two of the three methods).
There were no differences between the LDA-MD and the
proposed method according to the one-way repeated-measure
ANOVA (p = 0.87). In terms of the rejection of novel motion
tasks, however, the routine LDAmethod failed to reject any novel
sample, with an accuracy of 0%. By contrast, the LDA-MD and
the proposed methods were able to identify and subsequently
reject novel motion tasks (63.00 ± 29.44% vs. 97.33 ± 3.67%
for the pinch motion, 95.22 ± 3.51% vs. 98.77 ± 1.64% for the
radial deviation motion, 90.00 ± 11.12% vs. 95.55 ± 7.74% for
the ulnar deviation motion, 80.96 ± 19.63% vs. 99.44 ± 1.13%
for the mouse manipulation, 78.77 ± 17.00% vs. 97.22 ± 7.59%
for writing, and 75.25 ± 20.79% vs. 98.44 ± 1.94% for typing).
Also, the paired samples t-test informed the proposed method
significantly outperformed the LDA-MD method (p < 0.05 for
all comparisons).

The confusion matrix is shown in Figure 9 in the prediction
of target motion tasks (T1–T7) and novel motion tasks (N1–
N6). The proposed method can accurately detect novel motion
tasks (> 95% for all novel motion tasks). Besides, we surprisingly
found that, although some samples from target motion tasks
were misclassified, most of these samples were predicted as
novel motion tasks, other than misclassifications to other target
motion tasks.

Figure 10 depicts a representative example of a raw sEMG
signal in one channel, as well as recognition decisions from the
LDA and the proposed method. The LDA-MD method failed to
reject these novel motion tasks in time during the complicated
motion tasks, such as mouse manipulation, writing, and typing.
On the other hand, the proposed method can detect and reject
samples from novel motion tasks with pinpoint accuracy. Also,
we found that the misclassifications using the proposed method
were prone to occur at the transient phase of different target
motion tasks.

DISCUSSION

Novelmotion interference is amajor issue that limits the practical
applications of myoelectric control systems in the creation of
human–machine interfaces. In this study, hybrid networks that
consist of CNN and autoencoder networks are proposed to
alleviate the interference. First, we utilize CNN to extract spatial
information from HD-sEMG. Recently, the emergence of the
HD-sEMG techniques has injected new vitality into the field
of myoelectric pattern-recognition control. The extra spatial
information derived from HD-sEMG offers more benefits for
overcoming specific bottleneck problems in the myoelectric
control than the mainly temporal information conveyed by the
sEMG time series collected from typical separate electrodes.
Figure 6 demonstrates the separability of the CNN feature
representations, where most samples of target motion tasks are
clustered into some small regions, and samples of novel motion
tasks are very likely to be scattered into the blank area between

those regions, facilitating the discrimination between the target
motion patterns and the novelty patterns. This phenomenon
proves our hypothesis that the use of CNN as a powerful tool for
characterizing spatial information in feature images redounds to
identifying different patterns, no matter whether they are learned
or not.

Given the feature representations from CNN, the next
challenge is to reject novel motion samples. It is difficult to find
statistical correlations from the data with high dimensions. In
this study, thus, autoencoder is applied because of its advantage
in non-linear novelty detection of high dimensional data
(Sakurada and Yairi, 2014). Figure 7 shows that all autoencoders
can capture the correlation of the inherent variables within their
training data, and only the testing data from the given motion
can be fitted with the trained model. However, given each well-
trained autoencoder, some samples truly from the target motion
task still had exceptionally higher anomaly scores. One possible
explanation is a data variation, such as instantaneous variations
in the non-stationary physiological signal (i.e., sEMG) and
unconscious changes during voluntary muscle contractions (e.g.,
force level fluctuations), although all subjects were instructed to
hold each target motion task at a stable and a medium force
levels. Such data variations are usually unavoidable, especially
at the transient phases of the task motion performance. Given
the data variations, a portion of samples may be regarded
as outliers. Nevertheless, due to the good performance of the
autoencoder, the anomaly scores from the training motion task
and other motion tasks could be well separated only by a simple
threshold, where most samples from the training motion task
can be reserved while the samples from the rest motion tasks
can be completely discarded. From the ROC curves reported
in Figure 8, the proposed method was found to outperform the
routine LDA-MD method, with the AUC improved significantly
from 0.91 to 0.93 (p < 0.05). Further, from the “steepness” of
ROC curves, we found that the most meaningful contribution
of the proposed method was its ability to maintain a high TPR
(around 85%) while achieving a very low FPR (close to 0%). This
implies that there exists a recall factor as well as its determined
thresholds, which can identify and reject almost all novel motion
tasks completely at a very low cost of losing a small portion
of target samples. Nevertheless, although the routine LDA-MD
method was able to achieve a relatively high AUC (above 90%),
approximating to that of the proposed method, it failed to keep a
low FPR while maintaining a high TPR. Its inferior performance
in novelty rejection may be attributed to the limited capability
of well characterizing spatial information in feature images. The
LDA-MD method flattened each feature image into a vector,
probably leading to the loss of useful spatial information. In
addition, the MD approach employed a simple rejection strategy,
and it was not able to mine variable correlations adequately.

According to the classification accuracies of differentmethods,
although the routine LDA method achieved high performance
with around 95% accuracy when identifying target motion tasks,
it cannot reject any novel motion tasks. With the ability of
novelty rejection, the LDA-MD (Amsuess et al., 2015; Ding et al.,
2017) and the proposed method have to sacrifice a portion of
target samples, which may have ambiguous patterns and be
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FIGURE 9 | A confusion matrix in the prediction of all motion tasks using the proposed method, when the recall factor is set to 0.85. The data samples from all

subjects are summarized in the same matrix. T1–T7 indicate seven target motion tasks, and N1–N6 indicate six novel motion tasks.

inconsistent with most samples in the training dataset. These
ambiguous target samples are very likely to be correctly identified
by the LDA method that divides the whole feature space into
multiple subspaces without considering the problem of novelty
interference and predicts all samples as target patterns according
to the class probabilities. Thus, compared to the LDA method,
the LDA-MD method achieved a little bit lower accuracy for the
classification of target motion tasks (around 85%), and this is
also the case for the proposed method, without any difference
between them (p = 0.87). However, in terms of rejecting novel
motion tasks, the LDA method inevitably misclassifies all novel
samples into target motion tasks. In addition, the proposed
method obtained high accuracies of around 97% across all tasks,
and it outperforms the routine LDA-MD method with statistical
significance (p < 0.05).

Besides, the relatively low classification accuracies of target
motion tasks obtained by the proposed method can also
be attributed to the strict threshold adopted in this study.
This threshold was chosen intentionally to suppress the FPR
approximating to 0%, resulting in an unavoidably decreased
tolerance to data variations of the target samples. The confusion
matrix in Figure 9 also supports the previous assumption that
almost all the misclassified samples of target motion tasks are
predicted to be the novel motion. Further, it was also reasonable
to find that these misclassified target samples mainly occurred
in the task transient-phase (Figure 10) because the motion
task pattern in these periods tended to change and became

ambiguous. In practice, the MPR control system can make
a series of decisions in an interval of very short time (in a
window length of 250ms) at a relatively high frequency (at a
frequency of 6.67Hz given a window increment of 150ms) to
ensure continuous control. When performing a specific target
motion pattern, the occasional misclassifications into the novelty
are ephemeral, and they are rejected by the controller without
any response. Therefore, such occasional commands missing
in a stream of correct commands may not affect the user’s
experience, which may be easily compensated with appropriate
post-processing methods designed for correcting and smoothing
the control commands.

It is worth noting that the novel motion tasks simulated in this
study are much more complicated compared to previous studies
(Scheme et al., 2011; Amsuess et al., 2015; Tomczyński et al.,
2015; Ding et al., 2017, 2019). It can be found that most previous
studies mainly simplified the novelty detection issue: each novel
motion task was performed with an isometric muscle contraction
producing a consistent pattern. In this study, six novel motion
tasks were investigated, including three “static” motion tasks
with isometric muscle contractions (they were consistent with
those in previous studies) and additional three dynamic motion
tasks. Given this database, the conventional LDA-MD method
yielded satisfactorily high accuracies for rejecting both static and
stable novelty patterns, namely the ulnar deviation and the radial
deviation (95.22± 3.51% and 90.00± 11.12%, respectively). This
finding in the current study was consistent with previous reports

Frontiers in Neurorobotics | www.frontiersin.org 10 March 2022 | Volume 16 | Article 862193

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wu et al. Novel Motion Rejection

FIGURE 10 | An example of the raw one-channel sEMG signal from a representative subject (A) and its corresponding classification decisions using the LDA-MD

method (B) and the proposed method (C), respectively. T1–T7 indicate seven target motion tasks, and N1–N6 indicate six novel motion tasks. The orange dots are

the “ground truth” of task patterns; the green dots represent correct classifications; and the red asterisks indicate some wrong classifications.

TABLE 2 | The comparison of the proposed method and previous works.

Method category Representatives Capabilities

Static novel

motion tasks

Dynamic novel

motion tasks

Mining spatial

information

Confidence based • Scheme et al., 2013 × √ ×
• Tomczyński et al., 2015

√ × ×
• Robertson et al., 2019 × √ ×

One-vs.-all classification rule • Liu and Huang, 2009
√ × ×

• Scheme et al., 2011
√ × ×

• Amsuess et al., 2015
√ × ×

• Ding et al., 2017
√ × ×

• Ding et al., 2019
√ × ×

• The proposed method
√ √ √

“×” means not to support the capability; “√” means to support the capability.
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(Amsuess et al., 2015; Ding et al., 2017). When the number
of novel motions increased, however, the LDA-MD method
failed to correctly reject the pinch task with a low accuracy of
63.00 ± 29.44% due to its similarity in pattern with other target
motion tasks. Furthermore, many samples from three dynamic
motion tasks were prone to be misclassified by the LDA-MD
method into the wrist pronation task, which led to low accuracies
(from 75.35 to 80.96%). The reason may be attributed to the
simultaneous involvement of the wrist pronation pattern in the
dynamic novel motion tasks (i.e., mouse manipulating, writing,
and typing), which were believed to involve larger pattern
variations. By contrast, the proposed method outperformed the
LDA-MD method by improving the accuracies of rejecting all
novel motion tasks to a much higher level of around 95%.
Given the challenging protocol with enormous data variations
in dynamic novelty patterns, the proposed method still achieved
satisfactory performance, further demonstrating its advance in
overcoming a variety of novel interferences in real applications.

Overall, the attributes of the proposed method are
summarized in Table 2 to emphasize its uniqueness compared to
prior methods. It should be noted that the proposed method can
effectively identify and target novel motion tasks due to its good
ability to mine spatial information.

Finally, there are several limitations in the present work.
First, some misclassifications in transient and sustained phases
of myoelectric signals do not make the control process smooth.
Thus, some advanced technologies, such as the classification
of transient signals (Kanitz et al., 2018) and advanced post-
processing approaches (Yu et al., 2019), may help to improve
the user experience. Besides, we regard each data sample at
each time index to be independent, i.e., we might ignore
temporal correlations within each myoelectric pattern. Although
the performance is already sufficient without such sequential or
temporal information, we can try some video processingmethods
by considering temporally correlated information (Simonyan
and Zisserman, 2014). In addition, the proposedmethod achieves
inferior accuracy in classifying target motions compared with
the LDA method. The ideal solution should achieve high
classification accuracy for both target and novel motions. The
ongoing study is performed to construct more robust methods
to improve the rejection performance while improving the ability
to classify target motions. At last, the field of robot control is
gradually attracting attention (Luo et al., 2019, 2021; Su et al.,
2020a,b). It is no doubt that rejecting novel motions while
controlling robots will increase the robustness. In future, we will
evaluate the proposedmethod under real robot control scenarios.
These topics will be the focus of our future work.

CONCLUSION

This study proposed a method for alleviating novel motion
interference toward achieving robust myoelectric pattern-
recognition control. A framework using hybrid neural networks,
i.e., CNN and autoencoder networks, were adopted. The CNN
was used to characterize spatial information from HD-sEMG.
Then, the autoencoder networks are applied to learn variable
correlations in the spatial information and subsequently to
reject novel motion tasks. The proposed method achieved high
rejection accuracies while the routine methods failed to correctly
reject novel motion tasks, demonstrating that it is a promising
solution for novel motion rejection that can be used to enhance
the robustness of myoelectric control systems.
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