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Abstract
Coronavirus disease 2019 (COVID-19) has grown to be global
public health emergency. The biosurfactants (BSs) are
surface-active biomolecules with unique properties and wide
applications. Several microbes synthesize secondary metab-
olites with surface–active properties, which have a wide range
of anti-inflammatory and anti-viral roles. The monocytes and
neutrophils are activated by bacteria, which subsequently
result in high secretion of pro-inflammatory cytokines (TNF-a,
IL-6, IL-8, IL-12, Il-18 and IL-1b) and toll-like receptors-2 (TLR-
2). Following the inflammatory response, BSs induce the pro-
duction of cationic proteins, reactive oxygen species (ROS)
and lysozyme, and thus can be used for therapeutic purposes.
This article provides recent advances in the anti-inflammatory
and antiviral activities of BSs and discusses the potential use
of these compounds against COVID-19, highlighting the need
for in-vitro and in-vivo approaches to confirm this hypothesis.
This suggestion is necessary because there are still no studies
that have focused on the use of BSs against COVID-19.
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Introduction
Surfactants are molecules with amphipathic properties
having hydrophilic and hydrophobic moieties that
reduce surface and interfacial tension between liquids or
biphasic systems as liquid/gas, liquid/liquid and solid/
liquid. Based on the origin, the surfactants have been
classified into chemical surfactants and biosurfactants
(BSs) [1]. BSs are secondary metabolites obtained from
several microorganisms including bacteria, fungi and
yeasts; classified based on their chemical composition
and their origin from microbes, including Pseudomonas
aeruginosa, Bacillus subtilis and Lactobacillus sp. [2]. They
are attached either intracellularly or extracellularly
during growth [3]. BSs are used in a wide range of ap-
plications since it is eco-friendly and biodegradable than
synthetic surfactants. In recent years, this has attracted
broad interest due to their unique properties like
specificity, low toxicity and smooth preparation. These
properties have gained attention in broad areas of
cleaning and other applications for commercialization
[4]. The unique features of BS opted for industrial ap-
plications such as petroleum, fertilizers, cosmetics,
www.sciencedirect.com
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Table 1

Classification of biosurfactants and its role in various potential medical applications.

Biosurfactant Structure Microorganism Potential medical applications Reference

Group Class

Glycolipids Rhamnolipids Pseudomonas aeruginosa,
Pseudomonas chlororaphis,
Pseudomonas fluorescens, Pseudomonas luteola,
Pseudomonas putida, Pseudomonas stutzeri,
Burkholderia glumae, Burkholderia plantarii,
Burkholderia kururiensis, Burkholderia
pseudomallei Streptococcus mutans,
Streptococcus oralis, Streptococcus sanguinis,
Neisseria mucosa, Actinomyces naeslundii.

Anti-microbial activity, cytotoxic activity [13,53–58]

Sophorolipids Torulopsisbombicola, Candida bombicola,
Rhodotorulabogoriensis, Candida albicans,
Candida glabrata,
Rhodotorulababjevae,Wickerhamielladomercqiae

Anti-viral, anti-microbial, anti-inflammatory and anti-
fungal activity

[12,27,55,59–66]

Mannosylerythritol lipids Pseudozyma antarctica, Ustilagomaydis Anti-microbial activity, anti-oxidant activity,
immunological and neurological property

[35,67–69]

Trehalolipids Rhodococcus erythropolis,
Nocardia erythropolis,
Mycobacterium sp., Arthobacter
sp.,Corynebacterium sp.

Anti-viral activity against herpes simplex virus and
influenza virus

[69]

Lipoprotein Surfactins/viscosin Bacillus subtilis, Bacillus licheniformis,
Pseudomonas libanensis, Pseudomonas
fluorescens

Anti-coagulant, anti-mycoplasma, anti-viral, anti-
bacterial, anti-inflammatory

[56,58]
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74 Environmental health: COVID-19
chemicals, foods, pharmaceuticals and more. They are
also used as emulsifiers, demulsifiers, foaming agents,
food ingredients and detergents. Generally, the BSs are
used in hand washes and for personal hygiene purposes
to prevent the viral transmission, get rid of viral disease
symptoms, acts as drug transport and also as anti-viral
facemasks [4]. An essential property of BS is the sur-
face and interfacial tension. Surface tension is defined as

the tension created between attractive intermolecular
forces in a molecule. The ability to minimize the surface
tension determined by the concentration of the surface-
active compound called critical micelle concentration
(CMC). The CMC is the minimum concentration
required to reduce the surface tension and induce
micelle formation. The primary function of BS is to
control the attachment and detachment of microorgan-
isms from the surfaces [5]. The structure of BS depends
on the presence of hydrophobic and hydrophilic moi-
eties. Hydrophilic moiety consists of peptides, amino

acids, mono-, di- and polysaccharides, whereas hydro-
phobic moiety consists of saturated and unsaturated
fatty acids. The BSs are differentiated based on mo-
lecular mass where the lower molecular mass molecules
reduce the surface, and interfacial tension and the
higher molecular weight efficiently function as emulsion
balancing agents. Based on molecular mass, the BSs are
classified as glycolipid, phospholipid, lipoprotein or
lipopeptide, polysaccharide-lipid complex or microbial
cell surface. Microorganisms also produce chemical-
based surfactants known as polymeric microbial surfac-

tants. Hence, the physiochemical properties of BSs and
their biomedical applications with the source and
chemical structure have been distinguished. The clas-
sification of BSs from various organisms and studies with
biomedical importance has been tabulated in Table 1.

Coronavirus disease 2019 (COVID-19), caused by a new
strain of coronavirus emerged in December 2019 and
became a global pandemic. The COVID-19 has grown to
be a global public-health emergency [6]. The severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is a
new member of the genus beta coronavirus, which ex-

hibits faster human-to-human transmission leading to a
worldwide public health emergency [7,8]. Once infected,
the patient mainly relies on the immune system to resist
SARS-CoV-2, with the supportive treatment being pre-
scribed if complications occur [9]. Meanwhile, scientists
confirmed that the first step in the SARS-CoV-2 patho-
genesis is the specific interaction of the virus with
angiotensin-converting enzyme 2 (ACE2), a master
regulator of the renineangiotensin system of host cells
through its spike protein [10]. Once the virus enters the
lungs, the immune system sends a large number of

immune cells to kill the virus [11]. Once the cytokine
storm is formed, the immune system is exaggerated and
kills the healthy cells [12]. Besides, the ability of the virus
to evade, the immune system is hugely problematic when
considering appropriate treatment and vaccine options.
Current Opinion in Environmental Science & Health 2020, 17:72–81
SARS-CoV-2 debilitates the equilibrium maintained by
the immune system and triggers the cytokine storm. The
significant difficulties found in COVID-19 patients have
been linked to the cytokine storm. In-depth research is
required to effectively manage the cytokine storm while
maintaining the immune system balance. On binding, the
spike protein is cleaved into two, and this induces a
conformational change facilitating the fusion of the virus

and its entry into the cell. Recently, Vellingiri et al. [6]
comprehensively discussed about the viral transcription,
translation and expression of viral proteins in the cells. BSs
in medical application has elevated during the past
decade. BS acts as a therapeutic agent due to its anti-viral,
anti-bacterial and anti-fungal property in fighting many
diseases [13]. Hence, this review focuses on the anti-
inflammatory and anti-viral properties of the BSs, and its
potential uses against as a strategy to treat or prevent
COVID-19 disease.

Anti-inflammatory potential of
biosurfactants
Phospholipase A2 (PLA2) functions in arachidonic acid
(AA) secretion. Various types of PLA2 collectively called
as cytosolic phospholipase-A2 (cPLA2). Inflammatory
response occurs due to the release of AA that is

converted to inflammatory mediators. AA acts as a pre-
cursor of eicosanoids secretion, which functions in
maintenance of inflammatory process. Mechanistically,
structural features of BSs were detected by toll like
receptors (TLR-2), and the BSs communicate with the
cell membranes and macromolecules and inhibit cPLA2

that initiate anti-inflammatory responses. In an in vitro
model, the pro-inflammatory cytokines were secreted by
neutrophils when induced with trehalolipids synthe-
sized by Rhodococcus ruber [14]. The glycolipids from
R. ruber were induced in mononuclear cells, and it was

revealed to mediate the production of interleukin-12
(IL-12), interleukin-18 (IL-18) and reactive oxygen
species (ROS) [15] and stimulated the production of
TNF-a, IL-1b and IL-6 [16]. Administration of surfac-
tin in rat and fish models decreased the pro-
inflammatory cytokines with an increase in the levels
of anti-inflammatory cytokines [17,18]. The BS surfac-
tin from Bacillus subtilis was observed to suppress
lipopolysaccharide-induced signaling pathways,
impaired macrophage function and IL-12 expression,
decreased TLR-4 protein expression with an increase in
the anti-inflammatory effect [19]. Surfactin from

Staphylococcus aureus significantly reduced the pro-
inflammatory cytokines, obstructed the lipoteichoic
acideinduced signaling pathway, increased STAT-3
phosphorylation and blocked the expression of heme
oxygenase-1 (HO-1). It has been established that
surfactin as an anti-inflammatory and neuroprotective
agent [20]. Similarly, limited studies were conducted,
and they revealed the potential effect of BSs from yeast
species with anti-inflammatory activity. Sophorolipids
(SLs) from Candida bombicola decreased immunoglobulin
www.sciencedirect.com
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Figure 1

Anti-inflammatory role of biosurfactants (BSs) against COVID-19: The above image depicts the hypothetical role of BSs as anti-inflammatory agents
against COVID-19. When the SARS-CoV-2 enters the cell, it binds to the ACE2 receptor following which the TMPRSS2 helps in the cleavage of S protein
into S1 and S2 subunits. Subsequently, the viral replication gets initiated resulting into NF-kB pathway, which stimulates the release of cytokine storm. In
this condition, providing the COVID-19 patients with BSs along with other drugs promises to suppress the production of NF-kB by triggering the heme-
oxidase 1 and TH1 macrophages, which in turn would reduce the effect of cytokine storm and inflammation in the patinets affected with COVID-19.
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E (IgE) level, mRNA expression of TLR-2, IL-6 and
STAT3 and lung inflammation [21,22]. Hence, the
study demonstrated that SLs downregulate the IgE
coding genes, thereby acting as an anti-inflammatory

agent and potential therapeutic compound [21,23]. In
an experimental rat model, SLs reduced sepsis-related
mortality and observed predicted to display anti-
inflammatory effects [24,25]. Similarly, in another rat
model study, SLs resulted in an improved survival rate,
decreased nitric oxide and modulated inflammatory re-
sponses [26]. Natural and synthetic SLs were demon-
strated to show a prominent anti-inflammatory activity,
spermicidal and anti-HIV activity [27]. The SLs reduce
the expression of inflammatory cytokines [25] and these
findings indicate that SLs would be a promising therapy

for anti-inflammatory or immunomodulation in chronic
inflammatory conditions. Mannosylerythritol lipids are
secreted by Pseudomonas antarctica, which has also
inhibited the inflammatory mediators, thereby creating
anti-inflammatory action [28]. From these studies, it is
clarified that the BSs from bacterial and yeast species
showed an anti-inflammatory activity and suggested to
be potential therapeutic candidate in treating inflam-
matory diseases. Also, more studies need to be
www.sciencedirect.com
conducted on the effects of anti-inflammation using
these BSs.
Biosurfactants anti-inflammatory role
against COVID-19
Once the SARS-CoV-2 enters the human host cell
through the ACE2 receptors, immediately the immune
system deploys a large number of immune cells to
respond against the virus especially by recruiting the
antigen-presenting cells [29]. It is reported that the

COVID-19-positive patients have high levels of cyto-
kine storm, which are also correlated with the viral load
in COVID-19 patients [30]. When the cytokine storm is
formed, the immune system is exaggerated and kills
healthy cells [12]. Moreover, when the levels of IL-6
and lymphocytes are higher, they inadvertently result
in increased pulmonary damage [31]. In addition to this,
the ability of the virus to evade the immune system is
hugely problematic when considering appropriate
treatment and vaccine options. The subsequent damage
can be caused either by direct infection of SARS-CoV-2

in cells, by hypoxemia due to lung damage or by an in-
direct injury caused by the immune and cytokine re-
sponses [32]. Excessive amounts of cytokines, such as
Current Opinion in Environmental Science & Health 2020, 17:72–81
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Figure 2

Possible anti-viral activity of biosurfactants (BSs) on SARS-CoV-2: On SARS-CoV-2 infection, BSs act on viral structures (spike protein and lipid
envelope) and ruptures the outer membrane and makes the virus inactive by targeting the genetic material. Once the viral structures are disrupted it forms
as a micelle and engulfs the structural parts and breaks down the materials to make it inactive.
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IL-1b and IL-18, are produced during the cytokine
storm and may cause irrevocable damage to various
organs. It is well known that the BSs have a major role in
defense against pathogenic infection as well as induce
anti-inflammation in the human body [33]. The glyco-

lipid and lipopeptide types of BSs have been effectively
used towards treating various anti-microbial diseases
[34]. One of its types, the surfactin, which is a natural
cyclic lipopeptide, has shown to have various biological
properties like anti-viral, anti-fungal and anti-cancer,
which is initiated by suppressing the signaling of cell
survivals, platelet aggregation and reducing the cytokine
storm by proposing anti-inflammatory effects [35].
Hence, the use of BS would be a possible way to mini-
mize the impact of cytokine storm caused due to SARS-
CoV-2 infection in the COVID-19-affected patients. We

propose a hypothetical mechanism of action of BS in
reducing the inflammation in the COVID-19 disease.
On binding of the SARS-CoV-2’s the S (Spike) protein,
it is cleaved into two; this induces a conformational
change facilitating the fusion of the virus and its entry
into the cell. The NF-kB pathway is a common pathway
Current Opinion in Environmental Science & Health 2020, 17:72–81
implicated in many pathologies and is activated by viral
N, S, 3a and 7a proteins. NF-kB, on activation, enters
the nucleus and catalyses the transcription of pro-IL-1b
and procaspase-1. When additional signals like increased
Ca2þ and ROS are detected, the pro-IL-1b and

procaspase 1 are cleaved into IL-1b and caspase 1. This
results in the production of cytokines such as (TNF-a,
IL-1B, IL-6, IL-2) and causes a cytokine storm that
results in necrosis and cell death. In COVID-19 pa-
tients, it is observed that there is an inhibition in the
production of heme, as it is responsible for the pro-
duction of biliverdin, ferrous iron and carbon monoxide,
which could limit the inflammation and stress caused
due to SARS-CoV-2 viral infection [36e38]. If the BS is
provided to the COVID-19 patients, then it could
suppress the production of NF-kB by stimulating the

HO-1 and TH1 macrophage cells [39]. This, in turn,
would reduce the production of cytokines such as TNF-
a, IL-1B, IL-6, IL-2, which will reduce the effect of
cytokine storm in the COVID-19 patients. This possible
mechanism has been depicted in Figure 1. Even it has
been reported that as the BSs are known for its
www.sciencedirect.com
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Table 2

List of clinical trials using surfactant compounds as a therapeutic agent against respiratory diseases.

S.No Study Intervention Disease Study
size

Description Status Country

1. Surfactant Administration Via Thin Catheter Using a
Specially Adapted Video Laryngoscope

Curosurf RDS 20 Surfactant administration via thin catheter
using a specially adapted VN scope

Active, not recruiting Israel

2. Surfactant for Neonate with Acute Respiratory
Distress Syndrome (ARDS)

Surfactant ARDS 200 Surfactant combined with mechanical
ventilation (MV) is given to the infant with
ARDS

Recruiting China

3. Aerosolized Surfactant in Neonatal RDS Surfactant RDS 159 Dose: 100 mg phospholipid/kg and 200 mg
phospholipid/kg

Active, not recruiting United States

4. Effects of Bolus Surfactant Therapy on Peripheral
Perfusion Index and Tissue Carbon Monoxide

Poractant alfa
Beractant

RDS 48 Poractantalfa: 200 mg/kg for n = 15 or
beractant: 100 mg/kg for n = 15 were
administered in a consecutive randomized
manner within the first 6 h of life

Completed Turkey

5. First in Human Study on Synthetic Surfactant CHF
5633 in Respiratory Distress Syndrome

Synthetic surfactants RDS 40 CHF5633 200 mg/kg synthetic surfactant
sterile suspension in 3.0 mL glass vials with
a total concentration of 80 mg/mL for
intratracheal administration. Single
administration

Completed United Kingdom

6. Surfactant Via Endotracheal Tube vs. Laryngeal
Mask Airway (LMA) in Preterm Neonates with
Respiratory Distress Syndrome

Remifentanil RDS 130 Additional premedication in the endotracheal
intubation/INSURE arm

Recruiting United States

7. A Multicenter, Randomized, Open Label Trial of a
New Animal Extracted Surfactant to Treat RDS in
Preterm Infants

Butantan RDS 327 Butantan surfactant: 100 mg/kg, IT, maximum
of 3 doses

Completed Brazil

8. The Effect of Surfactant Dose on Outcomes in
Preterm Infants with RDS

Surfactant RDS 2600 Two doses: 100–130 mg/kg and
170–200 mg/kg

Recruiting United Kingdom

9. Laryngeal Mask Airway (LMA) for Surfactant
Administration in Neonates

Curosurf RDS 103 – Completed United States

10. Very Early Surfactant and NCPAP for Premature
Infants with RDS

Surfactant RDS 278 – Completed Colombia

11. Surfactant Positive Airway Pressure and Pulse
Oximetry Trial (SUPPORT) in Extremely Low Birth
Weight Infants

Surfactant RDS 1316 – Active, not recruiting France

12. Exogenous Surfactant in Very Preterm Neonates
Presenting with Severe Respiratory Distress in
Prevention of Bronchopulmonary Dysplasia

Curosurf RDS 100 2.5 mL/kg instilled in the trachea Active, not recruiting France

13. Surfactant Application During Spontaneous
Breathing with CPAP or During Mechanical
Ventilation in the Therapy of IRDS in Premature
Infants <27 Weeks

Curosurf RDS 213 Conventional therapy with intubation, initiation
of MV and surfactant application

Completed Germany

14. Exosurf Neonatal and Survanta for Treatment of
Respiratory Distress Syndrome

Exosurf RDS 617 Infants received up to four intratracheal doses
of the surfactant

Completed United States

15. Pilot Trial of Surfactant Booster Prophylaxis for
Ventilated Preterm Neonates Less than or Equal to
1250 gm Birthweight Ver 4.0

Infasurf RDS 89 Infasurf 3 cc/kg instilled via endotracheal tube,
repeated 3 and 7 days later if infant stable
and continues to meet criteria

Completed Philadelphia

16. Perfusion Index Variability in Preterm Infants Treated
with Two Different Natural Surfactants for
Respiratory Distress Syndrome

Beractant
Poractant alfa

RDS 92 Beractant; both initial and subsequent dosing
are 100 mg/kg (4 mL/kg), which may be
given every 6 h up to four total doses.
Porcine lung extract, initial dosing is
200 mg/kg (2.5 mL/kg), and repeated

Completed Turkey

(continued on next page)
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1
emulsification role in drugs or vaccines would be highly
successful as they are produced naturally, which con-
tains non-toxic and non-pyrogenic immunological adju-
vants when mixed with conventional antigens for
treating COVID-19 disease [40]. Hence, these pieces of
evidence show that BSs play a huge role as immuno-
suppressive agents and could be highly used as a
combinational drug to relieve inflammatory responses

caused due to SARS-CoV-2 infection.
Biosurfactants anti-viral activity against
COVID-19
Certain BSs inactivates viruses due to physioechemical

reactions [41]. This hypothetical nature occurs only in
enveloped viruses. Generally, it is stated that BSs disturb
the viral membrane structures and disrupt the outer
covering [27].Thehydrophilic natureof theBSoccursdue
to the presence of acetyl groups that promotes anti-viral
activity [42]. Also, the hydrophobic nature with specific
number of carbon atoms inactivates the virucidal effects
[43]. High inactivation arises when the BS has a fatty acid
chain with 15 carbon atoms and one negative charge; in
addition, monomethyl esters showed viral inactivation in
semliki forest virus [43]. The antiviral activity of BSs has

been approved, and patents were obtained on treating
various viruses [44e48]. Evidential reports from these
studies can be applied in SARS-CoV-2 since it is an
enveloped virus; hence, themechanism of action has been
explained as follows.

As the SARS-CoV-2 virus enters the host cell, the
amphiphilic nature of BSs interacts with viral cell mem-
brane and enters the bilayered lipid membrane that
causes changes in permeability either by ion channel
formation or disruption of the membrane system. A
complete disintegration of the viral envelope and capsid

protein occurs during high concentration of BSs. The
disruptions of the lipid envelope and spike protein are
encapsulated into micelles and results in viral inactivity.
This micelle formation has the capability to function as
liposomes that could deliver the drug to the infection site
and also protects during hazardous conditions [49].
Hence, the nature of BSs to form as micelles would be an
effective drug delivery system in treating SARS-CoV-2
infection. Also, BS does not affect the viral replication
but inactivates the viral effects before adsorption or
penetration. The mechanism of anti-viral activity by BS

against SARS-CoV-2 is shown in Figure 2.
Recommendations
The COVID-19 disease, which is spreading vigorously,
has become a global threat across the world. Discovery of

any medicine or vaccine against this disease will be a
kingmaker for the people suffering from this deadly
infection. Hence, here we are recommending few
products that will be produced using BS as a more
potent way to get precautions or treatment from the
www.sciencedirect.com
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SARS-CoV-2 infection. The following are the
guidelines:

� The BS has multi-purpose use in various fields such as
food, pharmacology, cosmetics, detergents and so on.
But its anti-inflammatory property would be a novel
solution in targeting COVID-19 disease in multiple
ways.

� As always, cleaning our hands will protect us from this
virus. The strategy of using BS-encoded handwash or
hand sanitizers promises to be a more protective
shield against SARS-CoV-2 virus.

� The amphiphilic nature of the BS makes it easier to
interact with SARS-CoV-2’s lipid bilayer and would
enable the destruction of the viral genome, which
would facilitate easy clearance of the virus.

� The propensity of BSs towards drug delivery is high,
especially because of its emulsification property.

� Hence, it is highly advisable that using or producing

any drug from BSs along with conventional drugs or
vaccines for COVID-19 will be beneficial because of
its anti-viral and anti-inflammatory role against the
SARS-CoV-2 virus.

� The list of clinical trials and ongoing trials about BSs
as drugs against various respiratory disorders as well as
for COVID-19 have been depicted in Table 2.

� As it is evident that BSs are eco-friendly and less toxic,
it is recommended that its use in house-hold cleaning
products or detergents will target and kill the SARS-
CoV-2 virus.

� Another way of incorporating the BS in targeting the
virus is its use as a medicated chewing gum.

� Incorporation of the BSs from microbes along with
Indian medicinal plants promises to be highly
instrumental in clearing the viral load efficiently from
the human body.
Conclusion and future perspectives
Immunologists are working relentlessly to determine
the immunity against SARS-CoV-2 and how long it may
last [50]. Tremendous effort has been focused on
neutralizing the antibodies, which bind to the viral
proteins that directly prevent infection. Studies found
that levels of neutralizing antibodies against SARS-CoV-
2 remain high for a few weeks after infection but then
typically begin to wane. Various therapeutic approaches
have been recently discussed for COVID-19 [51].

Recently, there is an increased attention of BSs as
therapeutic agents, due to their immunosuppressive
potential and as a novel treatment molecule in most of
the immune diseases. Scientists are working very hard
for the best protection to the public before a vaccine is
being made available [52]. Microorganisms can synthe-
size a high number of BSs at industrial scale, and these
BSs from the microbial source could be anew move to-
wards COVID-19; this kind of study is warranted at the
current scenario to combat the pandemic situation.
www.sciencedirect.com
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