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Abstract Many studies showed electrocardiogram (ECG)

parameters are useful for predicting fatal ventricular

arrhythmias (VAs). However, the studies have several

shortcomings. Firstly, all studies lack of effective way to

present behavior of various ECG parameters prior to the

occurrence of the VAs. Secondly, they also lack of dis-

cussion on how to consider the parameters as abnormal.

Thirdly, the reports do not include approaches to increase

the detection accuracy for the abnormal patterns. The

purpose of this study is to address the aforementioned

issues. It identifies ten ECG parameters from various

sources and then presents a review based on the identified

parameters. From the review, it has been found that the

increased risk of VAs can be represented by presence and

certain abnormal range of the parameters. The variation of

parameters range could be influenced by either gender or

age. This study also has discovered the facts that averaging,

outliers elimination and morphology detection algorithms

can contribute to the detection accuracy.

Keywords Ventricular arrhythmia � Prediction � ECG
parameter � Behavior pattern

1 Introduction

Malignant spontaneous ventricular arrhythmias (VAs),

namely ventricular tachycardia (VT) and ventricular fib-

rillation (VF) can cause sudden cardiac arrest. Patients

who are susceptible to VT/VF always have a risk of sud-

den cardiac death [1]. Therefore, prediction of VT/VF

prior to their initiation is vital to avoid delay of rescue

actions [2].

Researchers has discovered that ECG signals comprise

non-invasive parameters that could reflect underlying VT/

VF [3–5]. The ECG parameters, such as fragmented QRS

(fQRS), heart rate variability (HRV), T peak-T end (TpTe),

heart rate turbulence (HRT) and T wave alternans (TWA)

have predictive value for the arrhythmic events [6–8]. In

this case, cardiac monitoring by analyzing the ECG

parameters is an effective way to determine future occur-

rence of the fatal VT/VF.

In order to track development of the ECG parameters as

promising predictors, a comprehensive review is necessary.

A few reports, such in [3, 4] seem can be considered falls

into this area. However, they lack of effective way to

present pattern of various ECG parameters prior to the

occurrence of the VAs. It is hard to distinguish the patterns

that represent increased risk of the arrhythmias from these

detailed reviews [3, 4]. This is because of authors of the

reviews tend to introduce the identified parameters without

grouping their similarity in patterns prior to the

arrhythmias.

Second, the reports are also not clearly in defining how

to consider the patterns as abnormal. For example,

researchers in [3] only present a hazard ratio for sudden

death due to abnormal QT prolongation, but not range of

the parameters that are considered as abnormal. In this

case, the researchers have to find out certain values that can
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represent the abnormality via either experiments or other

literatures. This process is scientifically proven time-

consuming.

Third, these reports have not included approaches to

increase detection accuracy of the parameters. The detec-

tion accuracy is important because the abnormal patterns

may undetected if the parameters fail to be accurately

identified. A report that is presented in [4] stated conflict-

ing results of prolonged QT interval (QTi) as predictors

when there are difficulties in measuring the QTi correctly.

The discussed problems so far leave three important

questions unanswered:

i. How to effectively present the patterns of the ECG

parameters prior to occurrence of the VAs?

ii. How to identify abnormal patterns for the

parameters?

iii. How to improve detection accuracy of the ECG

parameters?

These problems are selected to be solved since the

solutions are beneficial in two aspects. Firstly, they could

speed up the process of reviewing the parameters. It is

because the brief information of the parameters will be

firstly presented in a table before further discussion. The

solutions simplify relevant information for the ECG

parameters and thus researchers can have a clear idea of the

parameters. Secondly, they provide a way to improve

quality of researches. The researches that have unsatisfied

prediction result can apply the solutions in the review to

produce better outcome.

To address above the problems, this article covers

results of works as follows:

i. This paper groups the patterns for the increased risk

of the arrhythmias based on behavior changes of

these ECG parameters before the arrhythmias. Some

parameters are absent in normal condition of cardiac

patients, and only present before the VAs onset.

There are also parameters that indicate the future

VAs if prolong or decrease until certain ranges. The

behavior changes could be increase, decrease or

presence. The groups of the parameters will be

further discussed in details in Sect. 3.

ii. This paper describes abnormal behaviors of the

parameters according to their normal ranges. As

aforementioned, the parameters, which have value

either higher or lower than certain range, have been

considered as increased risk for the arrhythmic

events. For instance, patients with TpTe greater than

100 ms have increased risk of the VT/VF [7–9].

Gender could be a factor that affects the abnormal

range for the parameters, such as HRV and QTi

[10, 11].

iii. The parameters are mostly derived from two ECG

components, namely QRS duration and T-wave. This

paper has identified several suggested methods from

literatures to increase correct detection rate of the

parameters used in the VAs prediction.

This paper consists of six sections. It begins with an

Introduction section, followed by four sections that

describe ECG parameters that can predict the life-threat-

ening VT/VF, and ends with a Conclusion section. The first

section explains selection of the potential ECG parameters.

The next two sections are inline with the identified three

problems. And, the fourth section provides a discussion on

the selected ten ECG parameters that have predictive value

for occurrence of VAs.

2 Identification and Selection of ECG Parameters
that have Predictive Value for VA Onset

There are many ECG parameters that have been reviewed

before, such as early repolarization, QTi/QT dispersion,

signal-averaged ECG, and HRV [3, 4]. However, these

reviews still have disadvantages as stated in Sect. 1.

Moreover, there might have other new potential parameters

in the recent years. In this case, this paper will select the

source articles for review using approaches as shown in

Fig. 1.

As illustrated in Fig. 1, ECG parameters to be reviewed

are firstly identified based on existing reviews [3, 4]. This

is because some of the parameters in the reviews are still

relevant and reliable in recent studies. Moreover, to

increase reliability of this paper, the parameters that are

Fig. 1 Flow chart of identifying existing ECG parameters
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lack of related researches in last 10 years are removed. In

addition, the potential parameters that are newly discov-

ered in recent 5 years will be included in the review. Based

on the aforementioned selection, ten parameters from 25

articles will be included for review, as shown in Table 1.

Table 1 presents an overview for the ten parameters.

The first column in the table lists the identified ECG

parameters. The next column related to derivation of the

parameters from ECG signal components. The components

of a normal ECG signal are as illustrated in Fig. 2. From

the components of the ECG signals, the parameters are

used in predicting future arrhythmic event of a patient via

morphology based algorithms or measurable values, as

shown in third column. The last column states the predic-

tion of the arrhythmias are successful in patients with

certain diseases.

As it can be seen from the Table, the parameters are

derived from different ECG signal components, such as

QRS complex, which can be used for deriving fQRS, ER

and VLP. In addition, based on methods to identify

parameters, the parameters are categorized into morphol-

ogy based and measurable. QTc/QTvi/QTvi/QTd, HRV,

HRT, iCEB, QT dynamicity and TpTe are parameters that

can be easily measured if relevant ECG components are

detected. In some cases, the parameters might have dif-

ferent predictive result in patients with different diseases.

Therefore, the parameters are tested for various diseases.

The details are further discussed in the following

paragraphs.

As shown in Table 1, the parameters are derived from

different ECG signal components, such as QRS complex,

which can be used to derive fQRS, ER and VLP. In

addition, based on methods to identify parameters, the

parameters are categorized into morphology based and

measurable. QTc/QTvi/QTvi/QTd, HRV, HRT, iCEB, QT

dynamicity and TpTe are parameters that can be easily

measured if relevant ECG components are detected. In

some cases, the parameters might have different predictive

result in patients with different diseases. Therefore, the

parameters are tested for various diseases. The details are

further discussed in the following paragraphs.

Table 1 Overview of ECG parameters

ECG parameters Derived from Morphology based/

measurable

Prediction of VAs for patients with certain

diseases

QTc/QTvi/QTvi/QTd

[8, 23, 24]

QT interval Measurable Recurrence of VAs, EF, structural heart disease,

AMI

fQRS [18–21] QRS duration Morphology based ARVCM, HOCM, AMI, IDCM

ER [16, 22] QRS duration Morphology based recurrence of VAs, CAD

VLP [14, 15, 17] QRS duration-ST segment Morphology based BS, STEMI

HRV [28, 29] RR interval Measurable AMI

iCEB [30, 31] QT interval and QRS

duration

Measurable LQTS, BS

QT dynamicity [26, 27] QT interval and RR interval Measurable AMI, IDCM

HRT [6, 25] RR interval Measurable AMI

TWA [6, 25] T wave/ST segment Morphology based AMI

TpTe [7–9] T wave Measurable AMI, recurrence of VAs, Cha- Gas

AMI acute myocardial infarction, BS Brugada syndrome, ARVCM arrhythmogenic right ventricular cardiomyopathy, CAD coronary artery

disease, EF ejection fraction, HOCM hypertrophic obstructive cardiomyopathy, IDCM idiopathic dilated cardiomyopathy, LQTS long QT

syndrome, STEMI acute ST-segment elevation myocardial infarction

Fig. 2 Components of normal ECG signal
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Figure 3 shows that the ten parameters in Table 1 are

derived from six different components of the ECG signal.

64% of the parameters can be derived from QRS duration,

RR interval (RRi) and T wave; the rest are derived from QT

interval and ST segment. The former components are easier

to be acquired since they only involve detection of one

component of the signal, i.e. QRS complex, R wave or T

wave. Thus, most of the parameters, such as fQRS, HRV

and TpTe are derived from these components. Whereas, the

latter components require detection of both QRS complex

and T wave to derive the parameters, where failure

detection in either one component can cause the derivation

unsuccessful.

Figure 4 illustrates the differences of the parameters in

pie chart based on methods to identify parameters, which

can be categorized into two groups, i.e. morphology based

parameters and measurable parameters. Both occupy 40

and 60% of the pie chart respectively. The morphology

based parameters, such as fQRS and ER are based on

morphology detection algorithms to include all of their

possible variations [12, 13]. The morphology parameters

occupy smaller percentages because their detection have to

consider various morphologies of the parameters. Whereas,

the measurable parameters, such as HRV and QT interval

related parameters are measured after detection of the ECG

components. Using the value, abnormality of the parame-

ters can be determined.

The ECG parameters are useful in predicting the VAs for

patients with certain diseases. As shown in Fig. 5, 35%

studies assess predictive value of the parameters in patients

with acute myocardial infarction (AMI). This is because of

the arrhythmic events are usually occur during the natural

course of AMI [7]. In addition, the parameters [14, 15] are

also prevalent in patients with Brugada syndrome (BS),

which occupy 13% of the studies in total. The parameters are

less frequent in patients with other diseases, such as

arrhythmogenic right ventricular cardiomyopathy (ARVCM)

[15], recurrence of the VAs [8] and coronary artery disease

(CAD) [16]. Thus, there are fewer relevant studies.

3 The Ten Potential ECG Parameters

Section 2 identifies ten ECG parameters that have potential

values to demonstrate underlying ventricular arrhythmias.

These parameters are heart rate corrected QT interval

(QTc), QT interval variability (QTvi), QT interval disper-

sion (QTd), fQRS, early repolarization (ER), ventricular

late potentials (VLP), HRV, HRT, index of cardio electro

physiological balance (iCEB), QT dynamicity, TWA as

well as TpTe. The parameters have various behavior

changes prior to VA onset.

Table 2 shows the changes of the parameters prior to the

VAs onset can be grouped into three behaviors, i.e. pres-

ence, increase and decrease. The presence of three ECG

Fig. 3 Derivation of the ECG parameters

Fig. 5 Heart diseases and ECG parametersFig. 4 Morphology based and measurable ECG parameters
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parameters, namely VLP [14, 15, 17], fQRS [18–21] and

ER [16, 22] could be associated with an increased inci-

dence of ventricular arrhythmic events. These three

parameters appear precede the arrhythmic event. As listed

in Table 2, it is also found that the increased risk of the VT/

VF occurrence can be represented by either prolongation or

reduction of the parameters, based on certain abnormal

range. The increase or prolongation value of the parame-

ters, including TpTe [7–9], heart rate corrected QT interval

(QTc) [8] /QTvi [23] /QTd [8, 24], turbulence onset (TO) of

HRT [25], QT dynamicity [26, 27], as well as TWA [6, 25]

might indicate higher risk for the arrhythmias. Table 2 also

reveals that the increased risk of the arrhythmias can also

be represented by decrease or reduction in ECG parame-

ters, such as HRV [28, 29] and turbulence slope (TS) of

HRT [6, 25]. The iCEB [30, 31] is the most potential

predictor for predicting an increased susceptibility to tor-

sades de pointes (TdP) or non-TdP VT/VF based on its

increase or decrease value.

The increase or decrease of the parameters can be

identified according to certain ranges. In reviewed litera-

tures, researchers utilized two methods to define abnormal

ranges. Firstly, the researchers match the parameters with

predefined threshold values that indicate the abnormal

ranges. The parameters that have abnormal prolongation

prior to the arrhythmias are iCEB, QT dynamicity, QTc/

QTvi/QTd, TO of HRT, TWA and TpTe. Whereas, the

parameters that have lower values than normal heart con-

dition are HRV and TS of HRT. The parameters, such as

fQRS, VLP and ER, in which their presence indicate the

increased risk of VAs can also be identified using prede-

fined thresholds. The details of the parameters are dis-

cussed further in the following subsections. Secondly, the

researchers compare the parameters in two groups, namely

healthy people and patients prone to the arrhythmias [28].

Using extracted values from these two groups, the

researchers should identify threshold that represents higher

risk of VAs occurrence. This method may be more suit-

able for group of study subjects that have no gender and

age control. This is because of gender and age could be two

factors that affect the abnormal ranges.

In order to know whether the parameters are beneficial

in clinical practice to guide decision making, a cutoff for

predicted probability is needed. An optimal cutoff is

defined by decision context. Once the cutoff is selected,

clinical usefulness measures can be defined [32]. The

measures used in reviewed articles that listed in Table 1 are

P value (P), accuracy (Ac), sensitivity (Se), specificity (Sp),

positive predictive value (?P) and area under receiver

operating characteristic curve (ROC-AUC). According to

the reviewed literatures, P value is the most commonly

used measure. The P value is a probability of obtaining an

observed result, plus more extreme result, assuming the

truth of the null hypothesis. Statistically significant P value

(e.g. P\ 0.05) is not informative about data that are ana-

lyzing, i.e. the data are unlikely with a true null hypothesis

[33]. This provides substantial evidence that the null

hypothesis can be rejected. Whereas, ROC-AUC ranged

from 0 to 1. An area of 1 represents a perfect test; an area

of 0.5 represents a worthless test [6].

In addition, Ac is a ratio of total correct assessments to

all assessments, where Ac = (TN ? TP)/

(TN ? TP ? FN ? FP). Next, Se is related to an ability to

correctly identify patients with VT/VF risk, where

Se = TP/(TP ? FN). Sp is related to an ability to correctly

identify either normal people or patients with VT/VF risk,

where Sp = TN/(TN ? FP). And, ?P is a probability

where a patient with positive test is actually at risk of VT/

VF, where ?P = TP/(TP ? FP). These four measures

represent a perfect test if 100% is obtained. Using the

aforementioned clinical usefulness measures, the ten

potential ECG parameters are discussed together with their

behavior changes preceding VAs onset in the following

subsections.

3.1 Ventricular Late Potentials (VLP)

The VLP is a high-frequency and very-low-intensity signal

that is localized at the end of QRS duration, and on the

beginning part of ST segment [34], as shown in Fig. 6.

The presence of the VLPs can be identified using pre-

defined thresholds. According to studies [17, 35], the VLPs

exist if three conditions of a filtered QRS duration are met.

The first condition is the filtered QRS duration is at least

114 ms. And, the filtered QRS duration that has low

amplitude signal (\40 lV) in the terminal portion of the

filtered QRS duration of at least 38 ms. The last condition

is a root mean square of at most 20 lV in the terminal

portion of the filtered QRS duration of 40 ms.

Table 2 ECG parameters and their behaviours prior to ventricular

arrhythmias

ECG parameter Behavior

Presence Increase/prolongation Decrease

QTc/QTvi/QTd fQRS 4

ER 4

VLP 4

HRV 4 4

iCEB 4 4

QT dynamicity 4

HRT 4 (TO) 4 (TS)

TWA 4

TpTe 4
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The VLP that is detected from signal-averaged electro-

cardiogram (SAECG) system could be a useful VT/VF

predictor for BS and STEMI patients. The VLP has been

obtained from 24 h ECG monitoring produced a P value of

0.003 in a recent BS study [15]. This indicates that

assuming the VLP has no predictive value for BS patients,

an observed result or more extreme result is obtained in

0.3% of experiments. Moreover, another study [17] showed

that assuming the VLP has no predictive value for STEMI

patients, an observed result or more extreme result is

achieved in less than 5% of experiment.

3.2 Fragmented QRS (fQRS)

The fQRS is additional spikes within QRS duration without

bundle branch block [36], which can possess several

morphologies, such as additional R wave, notched R or

notched S wave [5, 37], as illustrated in Fig. 7.

In a recent study [12], researchers proposed an auto-

mated algorithm based on several thresholds for detection

the various morphologies of fQRS. The algorithm has two

important modules in which the details are discussed in the

relevant literature, namely fragmentation detection and

morphology identification. The fragmentation detection

module uses several rules for identifying extrema and

notches based on detailed discrete wavelet transform

(DWT) coefficients of QRS duration. On the other hand,

the morphology identification module encompasses rec-

ognization of six fundamental morphologies of fQRS and

other variations of RSR’ patterns.

The fQRS is a significant predictor for patients with

ARVCM [18], HOCM [19] and IDCM [21]. The fQRS on

12-lead ECG produced P\ 0.001 and P\ 0.05 in Can-

polat et al. [18] and Femenia et al. [19] studies respec-

tively. If the fQRS has predictive value for IDCM patients,

an observed result or more extreme result is obtained in

95.5% of experiments [21].

3.3 Early Repolarisation (ER)

Similar to both VLP and fQRS, the ER can also be detected

at QRS duration. ER is a notching or slurring morphology

of the terminal QRS in at least two contiguous inferior or

lateral leads [16, 38, 39], as depicted in Fig. 8. ER can be

benign or malignant. In general, malignant ER is associated

with older age, a significantly longer QRS duration and

increased sign of VAs [40]. A prominent J wave is a

noticeable finding just before the VA onset [22, 41]. In

addition, a horizontal or descending ST segment is also

often emphasized in reports of malignant ER [40, 42].

The notched ER and slurred ER patterns can be deter-

mined using an algorithm as shown in Kentta et al. study

[43]. The algorithm analyzes ECG leads independently and

classifies each lead as notched, discrete, slurred, or nega-

tive. In addition to these four categories, a fifth category,

indeterminate is used if the morphology of a lead cannot be

definitely classified by the algorithm.

The ER is associated with increased risk of fatal VT/VF

in patients with CAD [16] and VF history [22]. Based on

Patel et al. study [16], ER in 12-lead ECG has P = 0.005

and P = 0.03 in inferior leads (leads II, III, and a VF). The

ER is more common in inferior leads compared to other

leads. The P value of the ER for recurrent VF is 0.008 [22].

Assuming the ER has no predictive value for recurrent VF

patients, an observed result or more extreme result is

achieved in 0.8% of experiment.

3.4 T peak-T end (TpTe)

The TpTe is defined as time interval between T wave peak

amplitude and the end of T wave [44. TpTe can be a useful

predictor for patients with diseases, such as Chagas disease

[9], Brugada syndrome [44], and myocardial infarction

[7, 45].

The definition of abnormal prolongation for TpTe is

value larger than 100 ms [7–9]. The prolonged TpTe in

12-leads ECG and implantable cardioverter defibrillators

(ICD) indicates VT/VF risk in patients with AMI [7], VAs

history [8] and Chagas disease [9]. These three patient

groups have P value of less than 0.01, 0.006 and 0.07.

3.5 QT Interval Related Parameters (QT)

The QTi is measured from the start of Q wave to the end of

T wave [46]. QTc is QTi corrected for heart rate [8, 46].

QTd is difference between maximum and minimum of QTi

[24]. And, QTvi is a ratio comparing repolarization

Fig. 6 Morphologies of VLP Source [34]
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variability to HRV [47]. Equations for the QTi related

parameters are as shown in Eqs. 1, 2, and 3.

QTcðBazettformulaÞ ¼ QTix
p

1=RRð Þ ð1Þ

where RRi is measured from one R wave to the next R

wave before the QTi

QTd ¼ QTmax � QTmin ð2Þ

QTvi ¼ logð varianceQTi=meanQT
2

� �
= varianceRR=meanRR2
� �

Þ
ð3Þ

Fig. 7 Morphologies of fragmented QRS Source [36]

Fig. 8 Morphologies of early repolarization
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The abnormal ranges for QTc, QTd and QTvi are values

greater than 460 ms, 65 ms and -0.47 respectively [8, 48].

According to Cox [10], the normal QTi usually ranged

from 0.36 to 0.44 s. From these ranges, adult males have

shorter range than adult females, and people from age 1 to

15 are in between them, as shown in Table 3. According to

the table, QTi with value greater than 0.47 s is considered

as dangerous for any gender or age.

Measuring of the QT related parameters can detect

patients who are at increased risk of developing VT/VF and

with diseases such as structural heart disease [23], AMI

[24] and VAs history [8]. If the QTvi on ICD has predictive

value for patients with structural heart disease, an observed

result or more extreme is obtained in more than 96% of

experiments [21]. Assuming the QTi has no predictive

value for patients with no recurrence of VAs and AMI, an

observed result or more extreme result is achieved in less

than 1.1 and 0.1% of experiments respectively [8, 24].

3.6 T Wave Alternans (TWA) and Heart Rate

Turbulence (HRT)

The TWA is a repeating ABAB pattern in the morphology

and amplitude of T wave or ST segment [49], as illustrated

in Fig. 9. It reflects a continuum of cardiac electrical

instability [50].

The TWA can be either an independent predictor [51]

using Eq. 4 or a combined predictor with HRT [6, 25].

However, TWA might not be a useful predictor for exer-

cising individuals since it can be occurred in normal indi-

viduals at heart rates more than 120 beats/min [52].

Kscore ¼ P0:5 � l
r

ð4Þ

where l and r are mean and standard deviation of spectral

noise, P0.5 is alternans power at 0.5 cycles/beats and

(P0.5 - l) is alternans voltage. The TWA is considered as

significant if K score is more than three [53].

The HRT is a short-term fluctuation in sinus cycle length

that follows spontaneous ventricular premature complex, in

which consists of brief heart rate acceleration, followed by

more gradual heart rate deceleration [54]. The acceleration

is quantified by TO. The TO can be represented as Eq. 5.

TO ¼ RR1 þ RR2ð Þ � RR�2 þ RR�1ð Þ
RR�2 þ RR�1

� 100% ð5Þ

where RR-2 and RR-1 are two intervals immediately

preceding ventricular pre- mature complexes (VPC); and

RR1 and RR2 are two RR intervals immediately after

compensatory pause.

The another parameter derived from HRT is TS, which

represents the deceleration of heart rate. The TS can be

measured based on the maximum positive regression slope

assessed over any five consecutive sinus rhythm RR

interval within the first 15 sinus rhythm RR intervals after

ventricular premature contraction [25]. Therefore, the TO

can be defined as measure of relative shortening of RR

after pause of ventricular premature beat. Whereas, the TS

characterizes subsequent lengthening of RR [6].

Both HRT and TWA have different thresholds to iden-

tify abnormal behavior. The abnormal TO of HRT in

patients have value 0% and above. On the other hand, the

abnormal TS of HRT is value less than 2.5 ms per RRi

[25, 54]. And, the abnormal prolongation of TWA is value

more than 46 lV [6, 25].

The combined TWA and HRT on 12-leads ECG and

implantable cardioverter defibrillators (ICD) indicates VT/

VF risk in patients with AMI [6, 25]. According to Arisha

et al. study [6], a combined TO of HRT and TWA on

channel 1 has strong predictive performance for VT/VF,

where ROC- AUC = 0.8, P = 0.03 Se = 80% and

Sp = 79%. In addition, both abnormal TWA and HRT

have achieved P value 0.002 [25].

3.7 Heart Rate Variability (HRV)

The HRV has both time domain and frequency domain

variables that have predictive power for the arrhythmic

events. Examples of the time domain variables are standard

deviation of all RR/normal-to-normal (NN) intervals

(SDNN) and mean of RR/NN interval (RRm) [28], which

Table 3 Normal QTi ranges Source [10]

Age 1–15 Adult man Adult woman

Normal \0.44 s \0.43 s \0.45 s

Borderline 0.44–0.46 s 0.43–0.45 s 0.45–0.47 s

Prolonged [0.46 s [0.45 s [0.47 s

s second

Fig. 9 Measurement of TWA
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can be expressed as Eqs. 6 and 7; examples of the fre-

quency domain features are low frequency (LF) and high

frequency (HF) components [28, 55].

RRmean ¼ 1=n
X

RRi ð6Þ

SDNN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

X
ðRRi � RRmeanÞ2

q
ð7Þ

The abnormal HRV can be recognized by comparing

both normal range of HRV in healthy people and abnormal

range in patients prone to the arrhythmias. In average,

normal range of HRV for females is low than males [56].

Statistics for the normal ranges of HRV parameters are as

illustrated in Table 4. Comparison of both time domain and

frequency domain parameters amongst males and females

showed attenuated HRV in females. Among the HRV

parameters, SDNNi and LF are found significantly

decreased in females, i.e. P\ 0.05.

In this review, the HRV is the only one predictor that is

used in short term VT/VF prediction. Ebrahimzadeh et al.

[28] shows time–frequency and non-linear features of HRV

on 24 h ECG can predict the VT/VF that cause sudden

cardiac death. The prediction time is four minutes prior to

its occurrence, with accuracy more than 83%. Rozen et al.

study [29] also reveals that HRV is predictor for imminent

VT with 50% Se, 91.6% Sp and 84.5% ?P.

3.8 Index of Cardiac Electrophysiological Balance

(iCEB)

The iCEB is a hypothesized that equivalent to cardiac

wavelength, which is a product of effective refractory

period and conduction velocity (ERP 9 CV). It reflects

balance and imbalance of depolarization (QRS duration)

and repolarization (QTi) of the cardiac electrophysiology,

as shown in Fig. 10 [30, 31]. The iCEB can be represented

as in Eq. (8). Lu HR et al. [31] enhanced their previous

study [30], which investigated predictive value of iCEB in

both TdP and nonTdP mediated VT/VF. Based on [31]

study, females have higher value of iCEB compared to

males, which are mean of 4.583 and 3.989 respectively.

However, data in the study demonstrated that age has no

major influence on the iCEB.

iCEB ¼ QT=QRS ð8Þ

The iCEB increased prior to TdP VT/VF (LQTS) and

decreased before non-TdP VT/VF (BS). Assuming the

iCEB has no predictive value for both LQTS and BS, an

observed result or more extreme result is achieved in less

than 0.01% of experiments [31].

3.9 QT Dynamicity

The QT dynamicity represents relationship of QTi and RRi

[57], which measured by slope of linear regression of QTi/

RRi, as expressed in Eq. (9). The QT/RR slopes are dif-

ferent in females and males: females have steeper or higher

value slopes than males [26, 57].

QTdynamicity ¼ QTi=RRi ð9Þ

The QT dynamicity is a useful predictor for patients

with IDCM [26] and AMI [27]. The QT dynamicity on

Table 4 Comparison of HRV parameters between male and female

subjects Source [56]

HRV parameters Group of individuals P value

Males Females

Time domain (ms)

SDNN 140 ± 36 122 ± 33 0.09

SDANN 123 ± 34 111 ± 34 0.23

SDNNi 64 ± 19 52 ± 14 0.03

rMSSD 40 ± 14 40 ± 22 0.9

pNN50 14 ± 10 12 ± 7 0.43

Frequency domain (ms2)

Total power 4041 ± 3150 2750 ± 1493 0.07

VLF 2912 ± 2675 1843 ± 928 0.06

LF 788 ± 397 556 ± 346 0.04

HF 318 ± 251 312 ± 277 0.94

SDNN standard deviation of RR intervals, SDANN standard deviation

of average NN intervals, SDNNi SDNN index, a measure of vari-

ability due to cycles shorter than 5 min, rMSSD square root of the

mean squared differences of successive NN intervals, pNN50 number

of interval differences of successive NN intervals greater than 50 ms,

NN50/total number of NN intervals, VLF very low frequency, LF low

frequency, HF high frequency Fig. 10 Measurement of iCEB Source [31]
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12-lead ECG is significantly associated with the VT/VF

event (P\ 0.001). Assuming the QT dynamicity has no

predictive value for IDCM patients, an observed result or

more extreme result is obtained in less than 0.1% of

experiments [26].

4 Methods to Improve Detection
of the Parameters

Parameters detection is done after preprocessing, i.e.

denoise and restructure of ECG signals. However, false

detection of the parameters always happens. This may due

to misclassification of wide QRS duration as prolonged

QTi, irregular heart rhythms, as well as slow transition of

the signal around T wave end [10, 13]. In order to increase

correct detection rate of the parameters identified in

Sect. 3, three methods are suggested in this paper.

The first method is averaging, i.e. mean for datasets of

parameters. This method is useful to resist fluctuation

between the data of each parameter. In this case, Cox [10]

recommended to measure the QTi by averaging five or six

QTi. Similar for TS of HRT, calculation of TS is based on

maximum positive regression slope assessed over any five

consecutive sinus rhythm RR interval within the first 15

sinus rhythm RR intervals after ventricular premature

contraction [25].

The second method is handling of outliers. Presence of

outliers, even a very little amount can produce a significant

change in the parameters. After identified the outliers, either

tossing (removing the outliers) or interpolation (replacing

the outliers) can be performed [58]. The definition of outliers

may vary among the parameters. For example, there are

some recommendation for HRT detection during filtering of

RRi sequences. The filtering should include either substan-

tial beat to beat RR intervals difference that are more than

200 ms or substantial difference from an average of five

preceding sinus RR intervals that are more than 20%. And,

the filtering is recommended to exclude RR intervals that are

not in range of 300–2000 ms (outliers) [54].

The third method is application of morphology based

algorithms, in which as discussed in Sect. 3. This method is

faster than traditional visual assessment (determination of

the parameters by experienced ECG signal readers). And, it

is especially useful for detection of multiple variations of

ECG components such as fQRS and ER. The detailed

algorithms are as discussed in [12, 13, 43]. The morphol-

ogy detection algorithm for fQRS is based on number of

identified extrema and notches, point of occurrence of

discontinuities, as well as morphology of fragmentation

[12]. Whereas, the notched ER and slurred ER patterns are

determined using algorithm as in Kentta et al. study [43].

There are also some additional recommended settings in

the reviewed literatures for the parameters. For instance,

suggested frequency band for LF and HF in HRV are

0.04–0.15 and 0.15–0.4 Hz respectively [28, 55]. Whereas,

a higher cutoff frequency of low-pass filter (150 Hz) is

needed in order to detect fQRS, else additional spikes

within a QRS complex will be masked [36].

5 Discussion

As showed in Sect. 2, there are ten ECG parameters have

been reviewed, namely QTc/QTvi/QTvi/QTd, fQRS, ER,

VLP, HRV, HRT, TWA as well as TpTe. These parameters

are popular in recent studies and thus investigation

regarding to the parameters is necessary.

The aforementioned parameters have achieved signifi-

cant prediction results in most of the studies; however,

some literatures reported that predictive value of the

parameters in patients with certain heart diseases are

insignificant. From Table 1, it is showed that fQRS have

received more attention than other six parameters. The

fQRS is a possible new index to identify high-risk patients

in arrhythmic events [18], its prognostic role is less known

and therefore many studies are done to confirm its pre-

dictive value. In the study [59], fQRS in patients with

Chagas’s cardiomyopathy are failed to predict the

arrhythmic events, although there are many successful

evidences in patients with AMI [20], HOCM [19], as well

as ARVCM [18]. Similar to fQRS, the VLP is a poor

predictor in patients with NSTEMI and ARVCM [15, 17].

Furthermore, most of the reviewed literatures may only

reflect the occurrence of VT/VF after a few months or

years (long-term) [6–9], but not minutes or hours (short-

term). Only HRV has shown short-term predictive value

for the arrhythmic event [28, 29]. However, there is another

study found no significant association between short-term

prediction and parameters such as HRV and QTvi [60]. The

conflicting result of HRV as short-term predictor in both

studies [28, 60] may due to small sample size and HRV

parameters choose in the VAs prediction.

Section 3 has shown there are three main patterns of the

parameters that are associated with future VAs, i.e. pres-

ence, prolong and decrease. Among these patterns, the

presence of the fQRS, ER and VLP can be used for indi-

cating the arrhythmic events. However, the prolongation

and decrease of the parameters need a certain range to

determine whether the arrhythmia is coming. The ranges

that represent the abnormality of the parameters were also

discussed in Sect. 3.

The ranges can only be fit after the parameters have

been detected and measured. The detection can be missed

and the measurement can be inaccurate if lack of
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appropriate detection or measurement methods. The

methods are collected from literatures as in Sect. 4. Both

averaging and handling of outliers are suitable for all the

parameters. Short signal data is suggested to remove out-

liers [58]. Whereas long-term signal data might use aver-

aging method to produce better measurement result within

a shorter time. For parameters that cannot be measured

directly, such as ER and fQRS, morphology based algo-

rithms are helpful to include all of their possible variations.

This method is faster than visual interpretation by experi-

enced readers [43].

6 Conclusion and Future Works

In conclusion, this study reviewed ten ECG parameters for

prediction of VT/VF from 25 articles, as shown in Table 1.

Overall, this paper is significant as it achieved three main

objectives. Firstly, it provides a way to recognize the pat-

terns of parameters effectively. Using a table as shown in

Sect. 3, readers can quickly distinguish the patterns

between different parameters prior to occurrence of VAs,

i.e. presence, prolongation and reduction. Secondly, it

provides a discussion on methods to identify the abnormal

ranges of the parameters. The gender and age are factors to

influence abnormal ranges of some parameters. Thirdly,

this paper describes approaches to improve detection rate

of the parameters, as presented in Sect. 4. The approaches

are included averaging, outliers handling and application of

morphology detection algorithms. In future, ECG param-

eters for short-term prediction should be pursued. The

prediction could be more practical if applied in

portable smart devices, such as smartphone.
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