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Abstract: Guar (Cyamopsis tetragonoloba (L.) Taub.) is an annual legume crop native to India and
Pakistan. Seeds of the plant serve as a source of galactomannan polysaccharide (guar gum) used in
the food industry as a stabilizer (E412) and as a gelling agent in oil and gas fracturing fluids. There
were several attempts to introduce this crop to countries of more northern latitudes. However, guar
is a plant of a short photoperiod, therefore, its introduction, for example, to Russia is complicated
by a long day length during the growing season. Breeding of new guar varieties insensitive to
photoperiod slowed down due to the lack of information on functional molecular markers, which, in
turn, requires information on guar genome. Modern breeding strategies, e.g., genomic predictions,
benefit from integration of multi-omics approaches such as transcriptome, proteome and metabolome
assays. Here we present an attempt to use transcriptome-metabolome integration to understand the
genetic determination of flowering time variation among guar plants that differ in their photoperiod
sensitivity. This study was performed on nine early- and six delayed-flowering guar varieties with
the goal to find a connection between 63 metabolites and 1,067 differentially expressed transcripts
using Shiny GAM approach. For the key biomarker of flowering in guar myo-inositol we also
evaluated the KEGG biochemical pathway maps available for Arabidopsis thaliana. We found that
the phosphatidylinositol signaling pathway is initiated in guar plants that are ready for flowering
through the activation of the phospholipase C (PLC) gene, resulting in an exponential increase in the
amount of myo-inositol in its free form observed on GC-MS chromatograms. The signaling pathway
is performed by suppression of myo-inositol phosphate kinases (phosphorylation) and alternative
overexpression of phosphatases (dephosphorylation). Our study suggests that metabolome and
transcriptome information taken together, provide valuable information about biomarkers that can be
used as a tool for marker-assisted breeding, metabolomics and functional genomics of this important
legume crop.

Keywords: transcriptome-metabolome integration; differentially expressed genes; gene network
analysis; systems biology
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1. Introduction

Guar (Cyamopsis tetragonoloba (L.) Taub.) seeds serve as a rich source of a galactoman-
nan polysaccharide (guar gum) that is commonly used in food, cosmetic and oil industry
worldwide. Guar is a traditional legume crop of India and Pakistan, used as cattle feed
and green manure and that can be eaten as a green bean. Due to the high commercial
value of guar gum, many attempts have been made in the last few decades to introduce
this short-day legume crop to the countries in more northern latitudes. Attempting this,
researchers repeatedly reported a common issue – short day plants had delayed flowering
under conditions of long photoperiod which led to late seed maturation and, finally, to a
significant loss of yield (e.g., [1]).

Dissection of genes involved in flowering time of legume species is a complex task due
to a large number of genetic factors required for the initiation of the generative phase. At
least ten genes/QTLs are reported controlling the transition to flowering and maturation
in soybeans [2–5] and still no obvious progress in the cloning of these genes has been made.
Previously, we reported that the floral bud formation in guar may be triggered by one
certain length of daylight, but flowering per se (bud opening) – by another one. Moreover,
the onset of flowering time also depends on genetic factors related to the speed of seed
germination and the formation of the first true leaf [6]. Thus, focusing not just on the
flowering phenotype per se, but rather on the biochemical or metabolic landscape that
accompanies transition to flowering in guar can be useful in searching for genes responsible
for flowering time in this legume species.

Recently, we assessed the delayed flowering of guar under long daylight duration
conditions in terms of metabolome profiling [7]. A population of 96 guar genotypes segre-
gating for date of flowering due to different photoperiod sensitivity, was grown under long
daylight duration conditions. Sixty-five metabolites showed a significantly higher abun-
dance in early flowering genotypes in comparison to the late flowering genotypes. Among
them, seven molecules were suggested as possible biomarkers of early flowering: their
~10-fold increased concentrations in leaf tissues of early flowering guar plants consistently
indicated upcoming flowering. Among those key metabolites were liquiritigenin, tetronic
and cinnamic acid molecules, and also two inositol isomers (chiro-inositol, myo-inositol)
known to play a crucial role in early stages of plant embryogenesis [8].

In the present study we aimed to develop a systems biology approach in combining
metabolome profiling results with transcriptome information. First, we carried out a
supplementary metabolome profiling experiment and compared the obtained results. Next,
we focused on 63 identified metabolites profiles for an integrative study. We reveal genes
whose differential expression in early and late flowering genotypes is related to the dramatic
difference in concentrations of key metabolites associated with the onset of flowering of
guar under long day conditions. The metabolic pathway related to myo-inositol appears
to be a key component of the determination of delayed flowering under long-days in this
originally short-day species. This may provide targets for genome-assisted breeding to
broaden the cultivation area of guar to higher latitudes.

2. Materials and Methods
2.1. Study Design and Sample Collection

Five guar lines, including three early flowering and two delayed flowering lines on
the long day conditions, were selected for the study (Table 1). Seeds of each line were
collected each from a single plant during a field experiment in the Krasnodar region of
Russia. The plants were derived from five different accessions of the Vavilov Institute of
Plant Genetic Resources (VIR) collection. In 2018, an experiment was carried out to grow
seeds of each line under conditions of a long photoperiod in a greenhouse (St. Petersburg
region, 59◦53′39′ ′ N) [6]. In 2019, the experiment was replicated with the aim of performing
integrative profiling of the metabolome and transcriptome (this study).
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Table 1. Guar lines with different photoperiod sensitivity that showed consistent early or late
flowering time in experiments of 2018 and 2019 under the long day conditions.

Plant ID
Early or Delayed

Flowering on Long
Day Conditions

Line ID VIR Cat.
Number Origin Accession

34_1 Early 34 82 India landrace
34_2 Early 34 82 India landrace
34_3 Early 34 82 India landrace
97_1 Early 97 52,586 USA cv. Lewis
97_2 Early 97 52,586 USA cv. Lewis
97_3 Early 97 52,586 USA cv.Lewis
97_4 Early 97 52,586 USA cv.Lewis
69_1 Early 69 52,585 USA cv.Kinman
69_2 Early 69 52,585 USA cv.Kinman
28_1 Delayed 28 550 India landrace
28_2 Delayed 28 550 India landrace
28_3 Delayed 28 550 India landrace
75_1 Delayed 75 52,580 Pakistan landrace
75_2 Delayed 75 52,580 Pakistan landrace
75_3 Delayed 75 52,580 Pakistan landrace

VIR: Vavilov Institute of Plant Genetic Resources.

For all of the plants, the date of appearance of seedlings, first true leaf, first floral bud
and the date of the first bud opening were recorded. The genotype was recorded as “early
flowering” if it turned to the first floral bud formation within 42 ± 7.5 days from the first
true leaf appearance. Correspondingly, a genotype was assigned to the “delayed flowering”
group if it switched to flowering after 90 ± 0.1 days [7].

For further analysis of the metabolome and transcriptome, tissues of the third leaves
(the vegetative development phase that precedes flowering in guar) were collected from
three different plants per line listed in Table 1. For each plant, the terminal leaflet of the
third leaf was laterally separated into two halves – one for the metabolite extraction and
another for RNA isolation.

2.2. Metabolites Extraction, Derivatization, Identification and Statistical Analysis of Differentially
Expressed Metabolites between Groups of Lines with Contrasted Flowering Time under Long
Day Conditions

Metabolites were extracted from the leaf tissue using as previously described for
guar [9]. Leaflets’ halves were weighed and frozen in liquid nitrogen immediately after
harvesting in the greenhouse. Storage of samples was carried out at the temperature of
−80 ◦C. Metabolites of guar leaves were extracted in cold methanol in 1.5 mL Eppendorf
type microtubes (SSI, Lodi, CA, USA) for 1 h at +4 ◦C. Extract solution was transferred
to clear Eppendorf microtubes and evaporated using a vacuum concentrator (Labconco,
Kansas City, MI, USA).

Metabolome profiling of guar genotypes was performed as described earlier [7].
Derivatization was carried out by sialylation. For this purpose, dry metabolites were
dissolved in 20 µl internal standard tricosane (nC23, Sigma, St. Louis, MI, USA) in pyri-
dine solution (1 µg/µl). Silylation was performed using 50 µl N,O-Bis (trimethylsilyl)
trifluoroacetamide (BSTFA, Sigma). GC-MS analysis of the samples was performed with
a gas chromatograph system (Agilent 6850, Santa Clara, CA, USA) coupled with a mass-
spectrometer (Agilent 5975B). The system used a DB-5HT capillary column coated with
5% cross-linked diphenyl (30 m × 250 µm inner diameter, 0.25 µm film thickness; Agilent
J&W). 0.8 µm aliquot of the sample was added in spitless mode. Helium was used as a
carrier gas. The flow of the front inlet purge was 1 mL/min. Original temperature was
set to 70 ◦C. The temperature increased from 70 ◦C to 340 ◦C at the speed of 4 ◦C/min.
Temperature of 250 ◦C was used for injection. Full-scan mode of the mass spectrometry
data was 50 m/z – 800 m/z at a rate of 2 spectra scans per second. The chromatogram record-
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ing was performed on the signal of the total ion current by Agilent ChemStation software.
For GC-MS-analysis, three technical replicates of each genotype were used. Calculation
of concentration value for each detected metabolite was performed by averaging values
from all available replicates, taking into account a value of relative standard deviation
(RSD) [10,11].

Peak detection and measurement of integrated areas of peaks were carried out with
UniChrome 5.0.19.1162 (www.unichrom.com Accessed on 15 June 2021). Calculation of
relative concentration of metabolites normalized by weight of the sample and concentration
of the internal tricosane standard (1 µg/µl) was performed by methods of semi-quantitative
analysis. Identification of metabolites was performed with Automated Mass Spectral
Deconvolution and Identification System AMDIS 32 (http://www.amdis.net/ Accessed on
15 June 2021) using the NIST/EPA/NIH 08 Mass Spectral Library (http://www.nist.gov/
srd Accessed on 15 June 2021) and a database of mass spectrometric information, created
at the Komarov Botanical Institute. Then, results (10 largest peaks and Retention Index
(RI)) were verified by comparison with Golm Metabolome Database (http://gmd.mpimp-
golm.mpg.de/analysisinput.aspx Accessed on 15 June 2021). A metabolite was considered
identified if Match factor values exceeded a threshold of 700.

Multivariate statistical processing of metabolomic data was carried out using the
online analysis platform MetaboAnalyst 4.0 (http://www.metaboanalyst.ca Accessed on
15 June 2021) [12]. The data has been subjected to log transformation (generalized logarithm
transformation or glog) and pareto scaling (mean-centered and divided by square root
of standard deviation of each variable). Preprocessing of data for multivariate analysis
included also imputation of missing values. Missing values were replaced by half of the
minimum positive value in the original data. Data filtering was not performed.

2.3. RNA Extraction, Library Construction, Sequencing

RNA extraction was performed using the RNeasy Plant Mini kit (Qiagen, Hilden,
German). For library preparation RNA integrity was checked with Qubit and Bioanalyzer
2000 (reagents RNA Pico 6000, Agilent, Santa Clara, CA, USA). RNA samples with RIN
≥ 7 were selected for library preparation. Subsequent procedures of library preparation
were carried out based on PolyA selection with the reagent kit NEBNext Poly(A) mRNA
Magnetic Isolation Module (New England Biolabs, Ipswich, Massachusetts, USA) and
NEBNext Ultra II RNA Directional for PCR enrichment. High-throughput sequencing was
performed on an Illumina (San Diego, CA, USA) NovaSeq6000 machine with an SP cell for
single-end reads of 100 bp length.

2.4. Reads Quality Control

MultiQC V. 1.8. software was used for raw sequencing data quality control [13]. Trim-
momatic V. 0.39 [14] software with following parameters: Phred 33, leading:30, trailing:30,
sliding window:6:30, minlen 40 was applied to remove low quality reads and adapters from
raw reads. Illumina random sequencing error correction was performed with Rcorrector
V 1.0.3. [15] with default parameters. Possible human, bacterial and virus contamination
was removed using BBMap V. 38.75 [16] using an alignment approach. Also, probable
eukaryotic ribosomal RNA contamination was removed from raw reads using sortmeRNA
V. 4.2.0 software [16]. Ribosomal 5S, 18S, and 28S RNA subunit sequences that served
as a reference were downloaded from rfam V. 14.1 [17] and SILVA V. 138 [18] databases.
Processed reads were checked in MultiQC V. 1.8. and used as input data for RNA-Seq
de novo assembly and downstream analysis.

2.5. RNA-Seq de novo Assembly

For RNA-seq de novo assembly, rnaSPAdes V. 3.13.0 [19] and Trinity V. 2.8.5 [20] de novo
and reference-guided methods were tested. rnaSPAdes assembly pipeline uses a range
of k-mer values to generate optimal k-mer values for assembly automatically. For Trinity,
assemblers were tested with different k-mer values. Also k-mer values from the previous

www.unichrom.com
http://www.amdis.net/
http://www.nist.gov/srd
http://www.nist.gov/srd
http://gmd.mpimp-golm.mpg.de/analysisinput.aspx
http://gmd.mpimp-golm.mpg.de/analysisinput.aspx
http://www.metaboanalyst.ca
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de novo guar leaf transcriptome assembly were tested (k-mer = 25, k-mer = 32) [21,22].
Trinity de novo and reference-guided assemblies and rnaSPAdes V. 3.13.0 assembly were
compared using Transrate V. 1.0.3 [23] based on such assembly quality characteristics as
total number of transcripts, total and average length of assembled transcripts and N50.

A preliminary guar genome ~420 Mb assembly combining short and long reads with
~300× coverage created with MaSurca V. 3.3.8 [24] was used as a reference for Trinity
genome-guided method. Transcriptomic reads were aligned to the reference genome
using STAR V. 2.7.2 aligner [25] and assembled with Trinity. Assembly quality was
checked by aligning cleaned reads against the transcriptome assemblies using bowtie2 V.
2.4.1 [26]. To evaluate assembly quality Benchmarking Universal Single-Copy Orthologs
database (BUSCO) v4.0.0. [27] was used with default E-value cut-off parameter (1 × 10−3)
against two ortholog databases: embryophyta_odb10.2019-11-20 (1614 markers) lineage
and fabales_odb10.2019-11-20 (5366 markers) from OrthoDB v10. This analysis provides
us information about assembly integrity and completeness based on comparison of the
assembly with orthologous gene markers from selected databases (groups).

Clustering of transcripts was done using CD-HIT-EST from the CD-HIT V. 4.8.1 [28]
with sequence identity cut-off parameter 97% and length ≤ 200.

2.6. Differential Expression Analysis

For the downstream analysis all of these longest isoforms were searched using blastx
algorithm of blast+ V. 2.9.0 [29] against transcripts database made from Arabidopsis thaliana
transcripts downloaded from Phytozome V. 12.1 [30] using parameters of percent identity
cut-off > 70%, e-value cut-off 1 × 10−3 and maximum blast hits = 1. Isoforms abundance
was estimated with RSEM V. 1.3.2 [31] and filtered by Trinity V. 2.8.5 [20] plugin.

Differential gene expression was analyzed between the groups of early and delayed
flowering lines using the longest isoforms of transcripts. Differential expression was
assessed with the DESeq2 V. 1.26.0 R package [32] using a statistical model accounting
for differences among conditions (Early VS Delayed). Using this model, the possible
differences among lines within each group of early and delayed lines is kept in the residual.
This choice allows us to increase specificity of the analysis, but with the possible drawback
to decrease power of detecting DEGs. Normalization was done by median of ratios, as
included in the DESeq2 package. The most significant transcripts were filtered and saved
based on adjusted p-adjusted values < 0.05.

2.7. Enrichment of Differential Expressed Genes (DEGs)

To obtain a first insight into the biological meaning and functions of the differentially
expressed transcripts, gene set enrichment analysis (GSEA) was performed using the
Clusterprofiler V. 3.12.0 R package [33]. For this purpose all transcripts were ranked
according to their log2fc values and compared to gene lists from org.At.tair.db database v
3.12 from the Bioconductor package for GO-ontology analysis.

To confirm whether the differentially expressed genes belong to functional categories
related to flowering processes we performed a Gene Set Enrichment Analysis (GSEA).
The 11,684 DE transcripts were first assigned into different functional categories defined
for A. thaliana (org.At.tair.db V 3.12, https://bioconductor.org/packages/release/data/
annotation/html/org.At.tair.db.html Accessed on 15 June 2021 ) via GO-ontology.

2.8. Relationship between Metabolites and Transcripts: Shiny GAM Network Construction

Shiny GAM online software (https://artyomovlab.wustl.edu/shiny/gam/ Accessed
on 15 June 2021) [34] was used for transcripts and metabolites integration based on graph
scoring. For this approach, 63 metabolites mapped to KEGG database and 10,663 of the
DE transcripts with a BLAST hits against Arabidopsis transcripts from Phytozome V. 12.1
database that satisfied the criteria of base mean expression >10 (10 reads per transcript)
were used.

https://bioconductor.org/packages/release/data/annotation/html/org.At.tair.db.html
https://bioconductor.org/packages/release/data/annotation/html/org.At.tair.db.html
https://artyomovlab.wustl.edu/shiny/gam/
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Network construction was performed in the following way: differential expression
for genes was converted to differential expression for reactions. This was performed
by converting all genes that code enzymes to a biochemical reaction that they take part
in. The gene with the minimal p-value was selected and its p-value was assigned as the
reaction p-value. All reactions without p-values were discarded as having no expressed
enzymes. Reactions in our network were interpreted as nodes. For downstream gene
network analysis groups of reactions that have at least one common metabolite and the
same most significant gene were collapsed into single nodes. The network construction
was performed under default parameters.

3. Results
3.1. Gas Chromatography–Mass Spectrometry Metabolomic Analysis

Metabolite profiling by GC-MS was performed as previously described, repeating the
same 2018 experiment with the same guar population, each genotype represented with at
least three technical replicates [7]. As a result, 98 peaks were detected for all samples. Analysis
using GMD and NIST libraries identified 69 metabolites. These metabolites were merged
with the KEGG database (https://www.genome.jp/kegg/pathway.html Accessed on 15 June
2021) Arabidopsis IDs and, finally, a matrix of 63 metabolites was obtained (Table S1).

Comparing results of two years of experiments (2018 and 2019), we found that the
metabolome detected for the same guar genotypes differs significantly depending on the
growing conditions. In the experiment of each year, the plants were grown under the same
natural conditions of lighting, humidity and temperature. However, there were differences
between the growing conditions in the 2018 and 2019 experiments. Consequently, the
same plants at the same developmental stage reached different heights and accumulated
different biomass in 2018 and 2019 (Figure S1).

As a result, the number of metabolites, whose concentrations differed significantly in
early flowering (EF1) and delayed flowering (DF1) plants, varied from 65 (2018) to 36 (2019),
having 14 metabolites in common. Eleven of them were significant by FDR criteria for
the both years. Among them there were five key metabolites (myo-inositol, chiro inositol,
tetronic acid, cinnamic acid, liquiritigenin), which we proposed earlier as biomarkers of
early flowering in guar [7].

3.2. RNA Sequencing and Quality Control

Fifteen cDNA poly-A enriched libraries were sequenced with NovaSeq6000 to generate
4.1 Gbp of raw single-end reads. Each cDNA library corresponded to approximately
26–30 million single-end reads. After all filtering steps ~80% of initial reads per sample
were retained for downstream analysis (Table S2).

3.3. RNA-Seq de novo Assembly

RNA-seq de novo assembly was performed using rnaSPAdes V. 3.13.0 [19] and Trinity
V. 2.8.5 [20] de novo and reference-guided methods. The comparative statistics of the
assemblies were obtained by Transrate V. 1.0.3. (Table 2). From 102,539 contigs with
mean length of 936 bp to 132,825 transcripts with mean length of 539 bp were generated
using genome-guided Trinity assembly and rnaSPAdes assembler with default k-mer
values, respectively. N50 value ranged from 1394 for rnaSPAdes to 1661 Trinity genome-
guided assembly.

All assemblies were subjected to Benchmarking Universal Single-Copy Orthologs
(BUSCO) analysis to assess completeness of assembled transcriptomes. Two datasets
of single-copy orthologs (Embryophyta and Fabaceae) were used. Trinity genome-guided
assembly which had the highest number of BUSCO complete groups compared to other
assemblies (90.8% for Embryophyta, 82.4% for Fabaceae) was selected for further analysis
(Table S3).

https://www.genome.jp/kegg/pathway.html
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Table 2. Results reflecting assemblies’ parameters obtained by Transrate.

Metrics
Results

rnaSPAdes Trinity de novo
32-mer

Trinity de novo
25-mer

Trinity
Genome-Guided

Number of contigs 132,825 102,909 112,788 102,539
Shortest contigs (bp) 131 197 201 186
Longest contigs (bp) 40,377 59,908 59,908 14,406

Number of bases (bp) 78,453,910 91,396,199 103,168,619 96,000,969
Mean length (bp) 539 888 914 936

Number of contigs over 1000 bp 22,143 307 32,499 32,819
Number of contigs over 10,000 bp 95 29,453 229 3

Mean ORF % 56 54 54 54
N90 (bp) 317 324 343 357
N70 (bp) 792 862 901 980
N50 (bp) 1394 1586 1615 1661
N30 (bp) 2243 2427 2404 2359
N10 (bp) 16,753 4939 4231 3634

GC% 40 41 40 39
Mean of overall alignment rate of the

transcripts against assembly (%) 96 97 99 96

Trinity genome guided assembly contains 102,539 contigs corresponding to 79,863 uni-
genes (Table 2). Unigenes represent the number of unique assembly contigs or scaffolds
located in the same isoform cluster. To improve the accuracy of the unigenes clusterization,
all 102,539 transcripts from Trinity genome-guided assembly were clustered using CD-HIT.
In total, 96,447 clusters of all revealed isoforms were retained.

So far, several transcriptome assemblies for guar were reported in literature: among
them one specific to roots [35] and two specific to leaves [21,22]. The latter studies focused
on leaf tissue which was picked up from 21-day-old seedlings. In our experiment leaf
material was collected on the 48th day after sowing. At this particular developmental stage,
less photoperiod-sensitive genotypes have accumulated all the necessary metabolites to
start the flowering process, while genotypes sensitive to the photoperiod have not. Overall,
transcriptome obtained in this study is comparable with assemblies previously reported
for guar (Table 3).

Table 3. Comparative statistics of transcriptome assemblies available for guar.

Assembly Metrics Assembly (Genome-Guided Trinity,
this Study)

Assembly Tanwar
et al., 2017 [21]

Assembly
Al-Qurainy et al., 2019 [22]

N50 1661 1035 2552
Total unigenes 79,863 61,508 62,146

Average transcript length (bp) 936 679 1045

3.4. Differential Expression Analysis

Out of 96,447 clusters of isoforms obtained after CD-HIT clusterization, only 78,015 longest
isoforms were kept for the further analysis of differential expression. These were equally
distributed across all 15 guar libraries under analysis. The mean number of transcripts per
library varied from 225 up to 348 with the average raw counts depth for all samples of 264
(Table S4).

PCA biplot based on all the 78,015 longest isoforms shows the repartition of the
fifteen guar plants belonging to five distinct lines. Figure 1 shows that Early and Delayed
flowering genotypes can be readily separated.
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Figure 1. PCA biplot showing coordinates of early and delayed flowering guar lines according to the
expression level of 78,015 transcripts which corresponds to the longest isoforms. For each line, three
different plants were assessed for gene expression level. Plant ID (Table 1) is prefixed with E (Early)
or D (Delayed).

Differential gene expression was estimated using RSEM and DESeq2 R packages
between groups of Early Flowering (EFl) and Delayed Flowering (DFl) guar lines. The
first group consisted of the nine plants belonging to lines 34, 69, 97 and the second group
combined the six plants belonging to lines 75 and 28.

11,684 out of the 78,015 transcripts were successfully annotated with A. thaliana BLAST
analysis against the Phytozome database and kept for further analysis. Significant differen-
tially expressed (DE) transcripts were identified based on adjusted p-value < 0.05. p-values
were uniformly distributed with a small deviated fraction of DEGs with p-values < 0.05
(Figure S2). Negative log2fc values indicated decreased gene expression in EFl genotypes
when compared with the global mean. Respectively, positive log2fc values mean a gene
overexpression in EFl plants.

As a result, a list of 1067 DE transcripts was obtained, combining 533 overexpressed
and 534 down-regulated transcripts in Early flowering genotypes in comparison to Delayed
flowering ones (Tables S5 and S6, Figure S3).

3.5. Gene Ontology (GO) Enrichment Analysis

Guar transcripts were assigned into functional categories of A. thaliana. The 11,684
blasted DE transcripts classified to 64.41% of guar transcripts were attributed to biological
processes (BP) known for A. thaliana, 55.6% to molecular functions (MF) and 68.03% to
cellular components (CC).

Figure 2a suggests that the most of the biological pathways suppressed in Early
flowering plants are related to response to abiotic stimulus, like temperature and light
reactions. Among them were genes regulating photoperiod pathways, e.g., ELF6 encoding
zinc finger domain-containing protein (AT5G04240), photoreceptors (e.g., CKL4:AT4G28860,
JAC1:AT1G75100, SPA1:AT2G46340, ckl3:AT4G28880, PHOT2:AT5G58140), response to heat
(GFA2:AT5G48030), (Table S7).
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Figure 2. Clusterprofiler GO enrichment results showing activation or suppression of genes in Early flowering guar geno-
types in comparison with Late flowering genotypes for the functional categories: (a) Biological Process (BP); (b) Molecular
Function (MF); (c) Cellular Component (CC).

On the other hand, floral organ development pathway is expectedly activated only
in Early flowering plants by overexpression of genes responsible for gynaeceum develop-
ment and carpel formation (HEC1:AT5G67060) and regulation of shoot apical meristem
and leaf development (AFO:AT2G45190). The AGL6 gene, which encodes a MADS-box
transcription factor and positively regulates FLOWERING LOCUS T (FT) in Arabidopsis,
was also overexpressed in EFl guar genotypes. Accordingly, several biological processes
related to transcription and RNA biosynthetic processes were activated in EFl plants.

Apart from the genes whose overexpression or down expression in EFl genotypes
can reasonably be assumed, there were also DE transcripts belonging to common and
housekeeping pathways. The possible reason is that some genes can be classified in
biological processes as related to floral organ development and at the same time were
assigned by their molecular function to DNA binding or DNA binding transcriptional factor
activity, e.g., HEC1:AT5G67060, AFO:AT2G45190, AGL6:AT2G45650, KNAT2:AT1G70510,
INO:AT1G23420, SPL9:AT2G42200, SEP1:AT5G15800.

3.6. Integrative Approach for Metabolites and Transcripts Analysis Using Shiny GAM
Network Application

Shiny GAM software was used to construct a gene network allowing the integration of
selected transcripts and metabolites. 10,663 guar transcripts, represented by the longest iso-
forms which were successfully aligned with BLAST against A. thaliana transcriptome, with
the number of reads for each transcript >10, were uploaded into the Shiny GAM network.
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On the other hand, the metabolite matrix containing concentrations of 63 metabolites was
used as metabolite input. Not all the metabolites could be implemented in the network, as
some metabolites were involved in different biosynthesis pathways and connected with
the different genes, appearing in the plot several times. As a result, a gene network with
98 nodes (metabolites) and 125 edges (genes) was constructed (Figure 3).

Figure 3. Transcriptome-metabolome network obtained with Shiny GAM. Green edges correspond to genes downregulated
in Early flowering plants, red edges correspond to overexpressed genes. Green nodes correspond to metabolites whose
negative log2fc value means lower concentrations in EFl plants compared to DFl plants, red nodes are metabolites ‘overex-
pressed’ in EFl. The nodes with increased size correspond to metabolites with significant p-value in 2019. Dark grey small
nodes indicate metabolites with p-value > 0.05.

In the Shiny GAM network one can see 16 significant metabolites, 15 of them showed
significantly higher concentration in EFl guar plants as compared to DFl plants (Figure 3).
9 out of 16 metabolites integrated into the gene network were connected with significant
DE genes encoding enzymes involved in the nearest biochemical reaction (Table 4). Of
greatest interest were the “key” metabolites detected in both the 2018 and 2019 studies
examining metabolites associated with flowering time in guar and suggested as biomarkers
of early flowering.
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Table 4. Description of significant metabolites-transcripts connection presented in Shiny GAM network.

Metabolite Name
(Shiny GAM)

Metabolite
log2fc (2019)

Metabolite
p-Value (2019)

Metabolite
p-Value (2018)

Connected Genes in
Shiny GAM

Gene
log2fc
(2019)

Gene
p-Value
(2019)

C00243
(Lactose) −1.726 0.001 nd AT1G72990 (BGAL17) −0.711 0.001

C00137
(Myo-inostiol) 0.670 1.55 × 10−6 1.12 × 10−7 AT2G47180 (ATGOLS1) −3.017 2.6 × 10−10

C00811 (4-Coumarate) 2.243 5.62 × 10−4 6.53 × 10−7 AT1G65060
(4CL3) −1.034 2.36 × 10−6

C00258 (D-Glycerate) 0.415 0.043 0.006 AT1G80380 (GLYK) −0.303 0.039
C00158
(Citrate) 1.119 1.36 × 10−4 3.45 × 10−5 AT1G10670

(ACLA-1) 0.497 0.001

C00149
(S-Malate) 0.467 9.87 × 10−5 0.006

AT2G13560 (NAD-ME1);
AT5G58330

(NADP-MDH)

−0.220;
−0.630

0.042;
0.004

C01595
(Linonate) 0.493 0.003 nd AT5G04040 (SDP1) −0.9 0.055

C00049 (L-Aspartate) 0.621 0.009 nd AT2G30970 (ASP1);
AT5G22300 (NIT4)

−0.386;
0.533

0.097;
0.006

C00065 (L-Serine) 0.393 0.008 0.001 AT1G55920
(ATSERAT2;1) −1.448 5.492 × 10−5

Lactose was the only metabolite with negative log2fc in early flowering genotypes
(Table 4). This metabolite was connected with BGAL17:AT1G72990 gene that encodes
beta-galactosidase 17 involved in lactose hydrolysis. BGAL is one of the glycosidases found
to have increased activity during seed germination of legume species. For example, β-
Galactosidase activity was reported during the course of mung bean germination, where it
possibly participates in the mobilization of cell wall polysaccharides: the enzyme activity
increased from day 1 after imbibition, approached a high level around day 5 and remained
about the same until day 9 [36]. Since expression of the β-galactosidase genes are subjected to
developmental regulation, we hypothesized that at the stage of the third true leaf in rapidly
developing EF1 plants, the mobilization of cell wall polysaccharides in cotyledons has
already been completed, which led to a decrease in the expression of the BGAL17:AT1G72990
gene as well as the concentration of lactose. On the other hand, there is strong evidence that
in Arabidopsis BGAL genes are regulated by abiotic and biotic stresses [37].

3.6.1. 4-Coumarate (Cinnamic acid)

4-Coumarate is the main substrate for the CoA ligases involved in the biosynthesis
of flavonoids and many other low molecular weight phenylpropanoids, as well as in
guaiacol lignin formation [38]. Thus, suppression of the 4CL3:AT1G65060 gene encod-
ing 4-coumarate CoA ligase is expected to be associated with the higher concentration
of 4-Coumarate metabolite, since it is responsible for conversion of 4-Coumarate into
p-coumaroyl CoA [39]. Besides flavonoid biosynthesis, 4-coumarate CoA ligase (4CL)
together with the phenylalanine ammonia-lyase (PAL) enzyme is involved in the phenyl-
propanoid pathway in plants. Genes encoding these enzymes are coordinately activated
in response to developmental cues [40]. In the Shiny GAM network two genes from
the phenylpropanoid pathway 4CL3:AT1G65060 (4-coumarate CoA ligase isoform 3) and
PAL2 were down-regulated in EFl plants resulting in expected higher accumulation of the
4-Coumarate metabolite.

3.6.2. D-Glycerate

GLYK (D-glycerate 3-kinase) catalyzes the last reaction of the photorespiratory C2
cycle and is one of the core enzymes of plant carbon assimilation. This enzyme converts
glycerate into 3-phosphoglycerate (3PGA) during the final step of photorespiration in the
chloroplast [41]. Thus, downregulation of the GLYK:AT1G80380 gene could explain the high
concentration of D-Glycerate metabolite detected in EFl guar plants (Figure 3). AT1G80380
which encodes GLYK in Arabidopsis, displays phytochrome-regulated alternative splicing
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probably due to changes in alternative promoter selection: a long mRNA encodes plastid-
localized GLYK (ptGLYK) in the light, and a short mRNA encodes cytoplasmic GLYK
(cytGLYK) with truncation of the N-terminal transit peptide in darkness. Because we
choose to include the largest isoforms in the integrative analysis, we assume that the long
plastid-localized GLYK transcripts, expected to be overexpress in EFl plants in the light, are
present in the Shiny GAM network.

3.6.3. Citrate

ACL (ATP-citrate lyase) is located in the cytosol and responsible for generating the
cytosolic pool of acetyl-CoA by catalyzing the ATP- and CoA-dependent cleavage of
citrate [42]. The ACL antisense RNA Arabidopsis plants exhibit delayed flowering compared
to wild-type plants. Arabidopsis flowering induction is highly sensitive to alterations in
ACL-derived acetyl-CoA metabolism. Reductions in ACL activity to 35% of wild-type
levels generate a pronounced altered phenotype; such plants do not flower and thus cannot
reproduce [43]. In our experiments citrate metabolite was overrepresented in EFl guar
plants and the connected ACLA-1:AT1G10670 gene was also upregulated. Since ATP-citrate
lyase catalyzes acetyl-CoA biosynthesis from citrate, the synthesis of the latter is maintained
at a high level in early flowering plants.

3.6.4. S-Malate

Shiny GAM connected down regulation of NAD-ME1:AT2G13560 gene with the high
concentration of S-Malate in EFl plants. The NAD-dependent malic enzyme 1 (NAD-
ME1:AT2G13560) converts (S)-malate to pyruvate and CO2. Recently, NAD–ME1 gene was
reported as the most likely candidate gene underlying the Met.II.15 QTL in Arabidopsis
leading to altered regulation of several glucosinolate (GSL) biosynthesis pathway genes in
a time-dependent manner [44]. It was showed that NAD–ME1:AT2G13560 underlies a com-
plex regulatory network dependent upon the day–time. Moreover, NAD–ME1:AT2G13560
co–expressed with CRY2 (Cryptochrome 2) and PHYA (Phytochrome A), which are the key
components of the circadian oscillator complex [45].

3.6.5. Myo-Inositol

One of the key metabolites, namely myo-inositol, was described earlier as a biomarker
of early flowering in guar [7]. Downregulation of a gene (ATGOLS1:AT2G47180) encoding
galactinol synthase is associated with the higher concentration of myo-inositol in EFl plants
(Figure 3). Galactinol synthase is a key enzyme in the raffinose biosynthesis pathway,
catalyzing synthesis of galactinol from UDP-galactose and myo-inositol (GolS or GAS, EC
2.4.1.123). It looks logical that a down expression of the enzyme leads to an increase in
myo-inositol, so the pattern of regulation of the galactinol synthase gene and the concentra-
tion of myo-inositol in guar plants as established by Shiny GAM looks consistent. It was
suggested that myo-inositol may participate in cold-induced transcription of the gene in
Medicago falcata (MfGolS1) providing multiple tolerances to abiotic stresses [46]. On the
other hand, in Arabidopsis the seed germination was faster in knockout mutants targeting
ATGOLS1:AT2G47180 compared with wild-type plants, suggesting that Arabidopsis galacti-
nol synthases 1 (ATGOLS1::AT2G47180) negatively regulates seed germination [47]. As we
reported earlier, the flowering time in guar depends on genetic factors that determine the
speed of seed germination and the formation of the first true leaf [6]. Thus, we assume that
a difference in expression of an ATGOLS1:AT2G47180 gene may contribute to the difference
in flowering time between EFl and DFl genotypes.

3.7. Myo-Inositol as a Biomarker of Flowering Time

To reveal other possible links between myo-inositol key metabolite and genes under-
lining the Shiny GAM network, we evaluated the KEGG myo-inositol phosphorylation
pathway (ath04070) map available for A. thaliana, also known as phosphatidylinositol
signaling pathway.
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To get an insight into the interaction of myo-inositol with up/down regulation of
differentially expressed transcripts we mapped differential expression data to the biochem-
ical pathway and colored participating genes by log2fc value (Figure 4). Clusterprofiler
software identifies genes as differentially expressed based on log2fc only, not taking into
account their p-value. Therefore, not all DE genes colored on the phosphatidylinositol
signaling pathway map (Figure 4) have a p-adjusted value < 0.05 (Table 4).

Figure 4. Putative transcripts involved in the phosphatidylinositol signaling pathway in guar based on homology with
Arabidopsis thaliana on KEGG map obtained by Clusterprofiler (pathway ath04070). The red-green scale is the mean value of
log2fc. Green labels correspond to down-regulation in early flowering genotypes, red labels to up-regulated transcripts,
grey labels to transcripts with no significant difference between conditions. The target metabolite is unphosphorylated
myo-inositol marked by a circle.

Six enzyme entries were overexpressed in EFl guar plants (namely, 3.1.3.25, PLC,
PTEN, 3.1.3, 2.7.8, 3.1.3.57, colored by red on Figure 4), while six enzyme entries were
down-regulated (namely, PIKFYVE, PI4K, PIP5K, 2.7.1.107, 2.7.4.24, 2.7.1.59 marked by
green). When enzymes with the highest or lowest log2fc values from these two groups
were analyzed, a remarkable pattern emerges (Table 5). Almost all the genes overexpressed
in EFl guar plants (positive log2fc) encoded phosphatases, catalyzing dephosphorylation
of myo-inositol phosphates (InsPs). The latter are presented in the phosphatidylinositol
signaling pathway by metabolites of variable phosphorylation on a carbohydrate core -
myo-inositol (marked by circle on Figure 4). Conversely, all the down-regulated genes
(negative log2fc, Table 5) encode phosphate kinases, responsible for myo-inositol phos-
phorylation. On the metabolite chromatograms obtained by GC-MS-metabolomic analysis
a clear distinctive peak was assigned to myo-inositol in its free, dephosphorylated form.
Thus, the recorded high concentration of this metabolite in EF1 plants could now be ex-
plained by the orchestral suppression of myo-inositol phosphorylases and alternative
overexpression of phosphatases, which catalyze InsP hydrolysis by cleavage of phosphate.
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Table 5. Description of differentially expressed guar transcripts involved in the phosphatidylinositol signaling pathway based on homology with Arabidopsis thaliana on KEGG map
obtained by Clusterprofiler (pathway ath04070).

Enzyme
Entry Gene Name Definition

(RefSeq)
Arabidopsis
thaliana ID

Gene
log2fc

Gene
p-Value

MetaCyc Database
Reaction

3.1.3.25 IMPL1 myo-inositol 1-phosphate
monophosphatase AT1G31190 0.1375 0.3832 1D-myo-inositol 3-monophosphate + H2O→myo-inositol +

phosphate

3.1.3.25 IMPL2 inositol-phosphate phosphatase AT4G39120 0.3604 0.0600 1D-myo-inositol 3-monophosphate + H2O→myo-inositol +
phosphate

3.1.3.25 VTC4 L-galactose-1-phosphate phosphatase AT3G02870 0.3508 0.0522 β-L-galactose 1-phosphate + H2O→ L-galactopyranose
+ phosphate

PTEN PTEN2
phosphatidylinositol-3,4,5-

trisphosphate
3-phosphatase

AT3G19420 0.1911 0.1132
1-phosphatidyl-1D-myo-inositol 3-phosphate + H2O→ a

1-phosphatidyl-1D-myo-inositol
+ phosphate

3.1.3.57 SAL1 Inositol polyphosphate 1-phosphatase AT5G63980 0.2393 0.0582
D-myo-inositol (1,4)-bisphosphate + H2O→ 1D-myo-inositol

4-monophosphate
+ phosphate

PLC PLC1 Phosphoinositide-specific
phospholipase C family protein AT5G58670 1.9714 0.10466 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + H2O→ a

1,2-diacyl-sn-glycerol + D-myo-inositol (1,4,5)-trisphosphate + H+

PIKFYVE FAB1A 1-phosphatidylinositol 3-phosphate
5-kinase AT4G33240 −0.6137 0.0185 1-phosphatidyl-1D-myo-inositol 3-phosphate + ATP→

1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate + ADP + H+

P14K ATPI4K_ALPHA Phosphatidylinositol 4-kinase alpha 1 AT1G49340 −0.2559 0.0727
1-phosphatidyl-1D-myo-inositol + ATP

1-phosphatidyl-1D-myo-inositol 4-phosphate +
ADP + H+

2.7.11.59 ITPK3 Inositol 1,3,4-trisphosphate 5/6-kinase
family protein AT4G08170 −0.4706 0.0392 D-myo-inositol (1,3,4)-trisphosphate + ATP→ D-myo-inositol

(1,3,4,5)-tetrakisphosphate + ADP + H+

2.7.1.107 DGK1 diacylglycerol kinase 1 AT5G07920 −0.8194 0.00438 ATP + 1,2-diacyl-sn-glycerol→ a 1,2-diacyl-sn-glycerol 3-phosphate +
ADP + H+

2.7.4.24 ATVIP1
diphosphoinositol-pentakisphosphate

kinase;
PP-IP5 kinase

AT3G01310 −0.9682 0.1076
ATP + phytate→ 1D-myo-inositol 1-diphosphate

2,3,4,5,6-pentakisphosphate
+ADP

PIP5K PIP5K1 phosphatidylinositol-4-phosphate
5-kinase 1 AT1G21980 −0.5195 0.00026 1-phosphatidyl-1D-myo-inositol 4-phosphate + ATP→ a

1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + ADP + H+
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Among the six overexpressed genes there was phospholipase C (PLC:AT5G58670) -
the enzyme playing an important role in signal transduction pathways. PLC hydrolyzes
phosphatidylinositol-4,5-bisphosphate (PIP2), a phospholipid that is located in the plasma
membrane, releasing inositol 1,4,5-trisphosphate (InsP3), a key signaling molecule. We
could not detect the ‘heavy’ InsP3 metabolite and other inositol phosphates in our analysis
using GC-MS approach, the high-performance liquid chromatography (HPLC) should be
used instead. Nevertheless, the activation of PLC:AT5G58670 genes in EF1 plants indicates
that the signaling pathway was initiated, and a high concentration of the free form of
myo-inositol can serve as a marker of the onset of this process.

4. Discussion

In the present study we employed ‘omics’ technologies and systems biology, aiming
to provide solutions to a key issue that arises in breeding practice. How to manage the
genetic determinism of flowering time is often a first critical step when introducing a
new agricultural crop into unusual environmental conditions. Flowering time is a key
agrobiological trait for crops and dissection of genes controlling the flowering phenotype
is one of the major issues of plant geneticists. In this study we establish a link between the
metabolome landscape, accompanying transition of guar plants to the generative stage,
with the transcriptome profiling.

The transcriptome analysis of three early flowering and two delayed flowering guar
lines (using respectively nine and six cDNA libraries from individual plants) was done
using Illumina NovaSeq6000 technology. Approximately 25 million single end reads from
each sample were used to generate de novo transcriptome assembly for guar that contained
102,539 contigs. We used a genome-guided transcriptome assembly approach, employing
results of our previous study [48]. That allowed us to identify the largest number of
unigenes published for guar so far. However, since a reference annotated genome is not
yet available for guar, the consequent differential expressed study faced some challenges.

Only 15% of 78,015 identified guar transcripts were successfully annotated via A.
thaliana BLAST and could be used for subsequent DE analysis. As a result, 533 genes were
found overexpressed in Early flowering lines as compared to Delayed flowering lines,
and 534 were down-regulated correspondingly. Gene set enrichment analysis showed
that among the overexpressed genes were those involved in the pathways of floral organ
development. This indicates that the developing stage of the third leaf of guar is the correct
stage for identifying the genes responsible for the onset of flowering.

Many DE genes, showing high log2-fold change value did not pass the adjusted p-
value < 0.05 threshold probably due to significant variation between genotypes within the
Early and Delayed phenotype group. For example, the Flowering Time gene (FT:AT1G65480),
which is supposed to play a role in distinguishing between EF1 and DF1 plants, showed a
high value of log2fc = 2.4, but not a significant value of p = 0.1918.

A higher sample size could remove this discrepancy. However, it should be taken
into account that in a sample of unrelated genotypes the early flowering phenotype can be
achieved in different ways; therefore, it is not at all necessary that a particular candidate
gene be expressed in the same way in all analyzed early flowering plants. That is one of the
reasons why the transcriptome analysis has been supplemented with metabolome profiling.

We previously suggested that a particular metabolomic landscape is established
when a guar plant is ready to switch to flowering. Seven key molecules were proposed as
potential biomarkers of early flowering in guar genotypes on a stage of the third true leaf [7].
Here, we confirm that there are key metabolites whose high concentrations in tissues of the
third true leaf indicate the upcoming onset of flowering, even if the metabolome profile
detected by GC-MS approach can vary depending on growing conditions.

Next, we used an integrative approach to understand the gene expression network
underlying the metabolic landscape that accompanies the onset of flowering in guar. Shiny
GAM network application links a gene expression to the nearest biochemical reaction
product. This integrative analysis was only available for those guar transcripts that were
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successfully blasted against A. thaliana transcriptome, which means 15% of the 78,015 tran-
scripts detected. On the other hand, some of the guar metabolites were not included
in the integrative analysis, since the corresponding transcripts were not available in the
Arabidopsis gene network. Finally, many of the guar metabolites successfully integrated into
the Shiny GAM network showed no significant difference between EF1 and DF1 plants. As
a result, we were able to analyze genes associated with only 16 significant metabolites, six
of which were overrepresented in EF1 plants compared to DF1 plants in two-year replicates
of the metabolome profiling experiment.

In some cases, as revealed by Shiny GAM network, a higher concentration of the
metabolite was associated with the suppression of the enzyme for which the metabolite
served as a substrate. On the other hand, for the key metabolite D-Glycerate an interesting
finding was reported about the connected D-glycerate 3-kinase gene, that is proved to regu-
late by the phytochrome phyB, depending on the light conditions. Assuming that flowering
time can be affected by the photoperiod sensitivity of guar genotypes, the polymorphism
of the phyB gene between EFl and DFl plants can be hypothesized and may be assessed
in follow-up work. The most interesting finding was the connection of S-Malate metabo-
lite and the NAD-dependent malic enzyme 1 (NAD-ME1:AT2G13560). In Arabidopsis the
gene was recently reported as the most likely candidate gene for metQTL, regulating
several secondary metabolites biosynthesis pathway genes in a day-time-dependent man-
ner coexpressing with the circadian oscillator complex [44]. Thus, a polymorphism of
the NAD-ME1:AT2G13560 gene, affecting its expression in the EFl and DFl plants can be
hypothesized.

The main finding of our metabolites-transcripts integrative study is the revealed
pattern of the phosphatidylinositol signaling pathway that is presumably initiated in EFl
plants ready for flowering due to the activation of the phospholipase C (PLC:AT5G58670)
gene and leads to an exponential increase in the amount of myo-inositol in its free form.
This free form of myo-inositol is detected in our GC-MS chromatograms. The signaling
pathway is performed by suppression of at least five myo-inositol phosphate kinases (phos-
phorylation) and alternative overexpression of three phosphatases (dephosphorylation)
(Table 5). The interconversion of the phosphorylation states of Phosphoinositides (PIs) by
specific kinases and phosphatases, followed by recruitment of PI-specific effectors, is pre-
cisely the key mechanism by which the spatiotemporal regulation of PI-mediated biological
processes (e.g., receptor-mediated signaling, vesicular traffic, cytoskeleton rearrangement,
and regulation of channels and transporters) is achieved [44].

Myo-inositol was proposed earlier as a key biomarker of the early flowering in guar [7].
The higher concentration of this metabolite can be detected in tissues of the third true
leaf – the developmental stage that precedes first floral bud appearance [7]. In this study,
we took one step forward to understand the biochemical processes underlying the higher
myo-inositol concentrations in early flowering guar plants. The next step must be taken to
understand which external stimuli trigger the phosphatidylinositol signaling pathway in
guar under the long day conditions and what kind of genetic polymorphism influences
differential expression of PLC gene in early and delayed flowering plants. Our study
suggests that metabolome and transcriptome information taken together, provide valuable
information about biomarkers that can be used as a tool for marker-assisted breeding,
metabolomics and functional genomics of this important legume crop.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12070952/s1. Figure S1: Photos of the plants of the same development stage in the
conditions 2018 study and 2019 study; Figure S2: Q-Q plot of visual checking of p-values distribution;
Figure S3: Volcano plot with highlighted significant DE transcripts selected by p-value and log2(FC)
criteria; Table S1: The table contains 63 metabolites from this study (2019) with crossed metabolites
from a previous study (2018) with KEGG identifiers and statistical parameters; Table S2: Information
about the total number of reads for each sample before and after the filtration procedure and GC
content; Table S3: Information about BUSCO runs for each constructed assembly (Trinity genome
guided, Trinity de novo 25mer, Trinity de novo 32mer, rnaSPAdes); Table S4: The counts depth

https://www.mdpi.com/article/10.3390/genes12070952/s1
https://www.mdpi.com/article/10.3390/genes12070952/s1


Genes 2021, 12, 952 17 of 19

for each of the 15 samples under the study; Table S5: The table contains list of top upregulated
(overexpressed) transcripts (533) selected by p-adjusted values < 0.05; Table S6: The table contains list
of top downregulated (overexpressed) transcripts (534 selected by p-adjusted values < 0.05; Table S7:
The table contains all transcripts with blast hits against Arabidopsis thaliana.
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