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Abstract

Oncostatin M is a pro-inflammatory cytokine previously shown to
promote marked cartilage destruction both in vitro and in vivo
when in combination with IL-1 or tumour necrosis factor alpha.
However, the in vivo effects of these potent cytokine
combinations on bone catabolism are unknown. Using
adenoviral gene transfer, we have overexpressed oncostatin M
in combination with either IL-1 or tumour necrosis factor alpha
intra-articularly in the knees of C57BL/6 mice. Both of these
combinations induced marked bone damage and markedly
increased tartrate-resistant acid phosphatase-positive
multinucleate cell staining in the synovium and at the front of
bone erosions. Furthermore, there was increased expression of

RANK and its ligand RANKL in the inflammatory cells, in
inflamed synovium and in articular cartilage of knee joints treated
with the cytokine combinations compared with expression in
joints treated with the cytokines alone or the control. This model
of inflammatory arthritis demonstrates that, in vivo, oncostatin M
in combination with either IL-1 or tumour necrosis factor alpha
represents cytokine combinations that promote bone
destruction. The model also provides further evidence that
increased osteoclast-like, tartrate-resistant acid phosphatase-
positive staining multinucleate cells and upregulation of RANK/
RANKL in joint tissues are key factors in pathological bone
destruction.
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Introduction
Bone is an important skeletal extracellular matrix, and bone
erosions are a major characteristic in rheumatoid arthritis
(RA). The cytokines IL-1 and tumour necrosis factor (TNF)
alpha play key roles in promoting joint inflammation, synovi-
tis and cartilage/bone resorption [1,2]. These cytokines are
overexpressed in RA cartilage and synovial membranes,
and raised levels are found in synovial fluid and sera that
correlate with disease activity and cartilage/bone destruc-
tion in RA [3-5]. Anti-IL-1 and TNF-α therapies in animal
arthritis models and anti-TNF-α in humans with RA have
been shown to significantly reduce arthritis incidence,
inflammation and joint destruction [1,6-8], suggesting that
the mediating pathways of joint damage are, at least in part,
mediated by IL-1 and/or TNF-α.

Oncostatin M (OSM), a cytokine produced by activated T
cells and macrophages, is structurally and functionally
related to the IL-6 cytokine family. Raised levels of OSM are
detected in synovial macrophages and synovial fluids of RA
patients [9-11], and the levels correlate with markers of
joint inflammation and destruction [3,10]. OSM causes
joint inflammation, synovitis and structural damage in exper-
imental animals [12,13]. Blockade of OSM ameliorates
joint inflammation and cartilage damage in collagen-
induced arthritis [14]. OSM has been found to enhance the
differentiation and proliferation of osteoblasts during bone
development and also induces the formation of osteoclasts
and bone erosions [15-17]. These data indicate an impor-
tant role for this cytokine in chronic joint inflammation and
cartilage/bone damage. Furthermore, growing evidence
from in vitro and in vivo studies suggests that OSM
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appears to be an important cofactor with other pro-inflam-
matory cytokines such as IL-1, TNF-α and IL-17 in mediat-
ing cartilage/bone destruction [9,18,19]. When these pro-
inflammatory cytokines are overexpressed in combination
with OSM in murine joints, a marked increase in damage to
the joint tissues is observed [20,21].

RANKL is a TNF superfamily member and an essential
mediator of osteoclastogenesis. It is produced from oste-
oblastic-stromal cells, synovial fibroblasts, chondrocytes
and activated T lymphocytes [22,23]. This TNF-related
cytokine and its receptor, RANK, are considered key fac-
tors in osteoclast differentiation, and RANK signalling is
vital for osteoclast activation and survival [24,25]. RANKL
binds directly to RANK on pre-osteoclasts and osteoclasts,
initiating signal transduction that results in the differentia-
tion of osteoclast progenitors as well as activation of
mature osteoclasts, and therefore is implicated in the oste-
oclastogenic process in erosive arthritis [22,24].

The biological activity of RANKL is regulated by the soluble
decoy receptor osteoprotegrin (OPG), a TNF-receptor
superfamily member that is secreted by stromal cells and
osteoblasts [26]. OPG competitively inhibits RANKL bind-
ing to RANK on the cell surface of osteoclast precursor
cells and mature osteoclasts, thus inhibiting the osteoclas-
togenic actions of RANKL [27]. The levels of OPG and
RANKL in osteoblastic and stromal cells are often recipro-
cally regulated in vitro and in vivo by bone active cytokines
and hormones [28]. Excessive production of RANKL and/
or deficiency of OPG may therefore contribute to the
increased bone resorption typified by the focal bone ero-
sions and peri-articular bone loss in RA.

We have recently shown in a murine model that OSM in
combination with IL-1 or TNF-α synergistically promoted
inflammation and cartilage degradation and increased
matrix metalloproteinase expression [20,21]. Since bone
erosions are also a major pathological feature of RA, we
examined the effects of these cytokine combinations on
bone in this model. In the present study we confirm that
OSM exacerbates the effects of both IL-1 and TNF-α with
respect to bone breakdown, osteoclast formation and the
expression of RANK/RANKL, and further confirm that this
rapid model of inflammatory arthritis is suitable for studies
of RA.

Materials and methods
Adenoviral vectors and delivery of cytokines
Replication-defective recombinant adenoviruses engi-
neered to overexpress murine IL-1β, TNF-α and OSM were
as described previously [11,20,21], as was the empty con-
trol vector (Add170) [11]. Previous studies have validated
these adenoviruses as an effective means of cytokine over-
expression in synovial tissues [13,15,20,21]. All animal

studies were compliant with the Canadian Council on Ani-
mal Care guidelines and were approved by the Animal
Research Ethics Board at McMaster University, Canada.

C57BL/6 mice were purchased and housed until 12–14
weeks old. Mice were injected intra-articularly with adeno-
virus (5 × 106 plaque-forming units [pfu]/vector/joint) or
PBS as previously described [13,20]. Briefly, anaesthesia
was maintained with isofluorane, knees were swabbed with
70% ethanol and a 5 µl volume (treatment) was injected
into the synovial space. The contralateral knee was treated
with control vector or with PBS. One knee (n = 4 mice per
treatment) was injected with combinations of vectors or
with each vector alone combined with control vector to
ensure that the total dose of vector was equivalent for each
knee (1 × 107 pfu/joint). The animals were sacrificed at day
7 after administration.

Histology and histopathological scoring
The whole knee joints were dissected away from the limbs
and were fixed with 7% formaldehyde in phosphate buffer
(pH 7.4) overnight. Subsequently, joints were decalcified in
10% EDTA in phosphate buffer (pH 7.4) for 10 days at
4°C, and were then processed for paraffin embedding and
sectioning (5 µm). Sections were stained with H&E. Bone
damage was rated 0–5 (0 = normal, to 5 = severely
affected) according to the following semiquantitative rating
scale [29]: 0, none; 1, minimal (not readily apparent on low
magnification); 2, mild (more numerous areas of resorption
but not readily apparent on low magnification); 3, moderate
(obvious foci of resorption, numerous osteoclasts); 4,
marked (large erosions extending into bone cortices, more
numerous osteoclasts); and 5, extensive erosions (mark-
edly disrupted joint architecture). All scoring was per-
formed blind with respect to the specific treatment.

Immunohistochemistry and tartrate-resistant acid 
phosphatase staining
Immunohistochemistry was performed with anti-RANK and
anti-RANKL polyclonal antibodies (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA), using the VECTASTAIN Elite
ABC Kit PK 6101 (Vector, Burlingame, CA, USA). Forma-
lin-fixed paraffin sections were deparaffinized, rehydrated
and incubated with 10 mM sodium citrate, pH 6.0, for 2
hours at room temperature, and then with 3% H2O2 for 15
min. Thereafter, the sections were blocked with 1.5% nor-
mal sheep serum for 30 min, and were then incubated with
primary antibody directed against RANK (rabbit polyclonal
antibody raised against the epitope corresponding to
amino acids 317–616 mapping at the carboxy terminus of
RANK of human origin [H-300]) or against RANKL (rabbit
polyclonal antibody raised against the epitope correspond-
ing to amino acids 46–317 of RANKL of human origin [FL-
317]) for 90 min at room temperature. After rinsing, sec-
tions were incubated with biotinylated secondary antibody
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for 30 min followed by avidin–biotin complex for 30 min
according to the manufacturer's instructions (Vector). The
signals were developed by 3,3'-diaminobenzidine tetrahy-
drochloride chromogen solution (DAKO Ltd, Ely, UK) and
were counterstained with hematoxylin. A rabbit IgG anti-
body (X0936; Dako, Carpinteria, CA, USA) was used as a
specificity control that gave no positive staining (data not
shown).

Tartrate-resistant acid phosphatase (TRAP) enzyme was
detected in paraffin sections (5 µm thick) using a commer-
cial acid phosphatase leukocyte kit (Sigma, St Louis, MO,
USA) according to the manufacturer's protocol.

Statistical analysis
All data are presented as the mean ± standard error of the
mean. Statistical significance was assessed by the two-
tailed unpaired Student's t test for comparisons between
the means of two groups. P ≤ 0.05 was considered
significant.

Results
Intra-articular overexpression of OSM in combination 
with either IL-1 or TNF-α induces bone damage
The morphology of H&E-stained sections from all treated
joints (5 × 106 pfu/vector/joint) was assessed, and indi-
cated that the contralateral joints treated with the control
vector showed no evidence of bone damage (Fig. 1a).
Administration of each cytokine alone caused a moderate
synovial hyperplasia and bone erosions (Fig. 1b,1c,1d).

For the OSM + IL-1 combination (Fig. 1e,1f), pronounced
bone destruction was observed with severe synovial hyper-
plasia and soft tissue inflammation. Prominent features of
this arthritic lesion were the marked bone erosion, espe-
cially in the area of the bone and cartilage junction where
marked synovial proliferation was seen with evidence of
significant angiogenesis (Fig. 1e). Some areas of bone ero-
sion and disconnection were seen with evidence of marked
synovial invasion and multinucleated cells (Fig. 1e,1f). Sim-
ilar results were obtained for the OSM + TNF-α combina-
tion (Fig. 1g,1h). A number of channels developing links
between the synovial tissue and the bone marrow were
seen (Fig. 1g) with focal bone erosions (Fig. 1h).

Semiquantitative evaluations of bone damage [29] indi-
cated an increase in the severity and extent of bone ero-
sions with both of the cytokine combinations compared
with the individual cytokines alone (P < 0.05) (Fig. 2).

Intra-articular delivery of OSM with either IL-1 or TNF-α 
leads to an increase in TRAP-positive cells
No TRAP-positive staining cells were found in the control
joints (Fig. 3a), but there was evidence of TRAP staining at
the synovium–bone interface in joints treated with OSM, IL-
1 or TNF-α (Fig. 3b,3c,3d, respectively).

When OSM was combined with IL-1 a substantial increase
in the number of TRAP-positive staining cells was found at
the leading edge of the synovium–bone interface (Fig. 3e),
at sites within the synovium (Fig. 3f) and at the pannus–
subchondral bone junction (Fig. 3g). These cells were often
interposed between the bone surface and the 'erosive
front' of the synovium and bone (Fig. 3h). At many sites of

Figure 1

Bone damage caused by oncostatin M (OSM) in combination with either IL-1 or tumour necrosis factor alpha (TNF-α) in murine jointsBone damage caused by oncostatin M (OSM) in combination with 
either IL-1 or tumour necrosis factor alpha (TNF-α) in murine joints. 
Adenovirus vectors overexpressing murine OSM, IL-1 or TNF-α were 
injected intra-articularly into the right knee joints of mice at 5 × 106 

plaque-forming units [pfu]/vector/joint. The left knee joints were 
injected with the empty control vector. All joints received a total of 1 × 
107 pfu/joint, and all animals were sacrificed at day 7 following adminis-
tration. Sections (5 µm) were stained with H&E. (a) Control, (b) OSM, 
(c) IL-1, (d) TNF-α, (e), (f) OSM + IL-1, and (g), (h) OSM + TNF-α. The 
joints showed a moderate (b–d) to severe (e–h) synovial hyperplasia 
and an infiltration of inflammatory cells. Marked synovial hyperplasia 
with angiogenesis was also seen with bone erosions (arrows) and bone 
fractures, with evidence of synovial invasion (e and g). b, bone; bm, 
bone marrow; f, bone fracture; m, muscle; s, synovial cells; v, blood ves-
sel. (a)–(e), (g) Bar = 50 µm; (f), (h) bar = 20 µm.
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focal bone erosion (as in Fig. 1), TRAP-positive multinucle-
ated cells were seen at the erosion front and in the syn-
ovium (Fig. 3e,3f), as well as in erosion pits in the bone (Fig.
3h). Furthermore, TRAP-positive staining cells were also
seen in the area of cartilage/bone junctions and also in the
pannus and synovium away from the eroded bone surface
(Fig. 3f,3g).

Similar results were seen in the joints treated with OSM +
TNF-α where TRAP-positive cells were aligned on the bone
surface (Fig. 3i,3j,3k,3l). Multinucleated cells were also
seen at the bone surface (Fig. 3i,3j) and in deep pockets
where bone was eroded (Fig. 3k). TRAP-positive cells were
also seen within the synovial tissue and the area of carti-
lage/bone junctions (Fig. 3l).

Intra-articular delivery of OSM with IL-1 or TNF-α 
elevates RANK and RANKL expression
There was little or no RANK-positive staining in synovial tis-
sues taken from control joints (Fig. 4a). Increased RANK
expression associated with inflammatory and synovial cells
was observed following treatment with TNF-α (Fig. 4b), and
similar levels of expression were observed for OSM and IL-
1 (data not shown). RANK expression was increased fur-
ther, especially at the bone erosion fronts, when OSM was
combined with IL-1 or TNF-α (Fig. 4c,4d). Interestingly,
RANK appeared to be expressed as a gradient from the

synovial tissue where increased numbers of RANK-positive
cells were observed close to the cortical bone and perios-
teum of the patella, the femur and the tibia. Diffuse RANK
staining in the superficial layer of cartilage was seen for the
joints treated with each of the vectors separately (see Fig.
4b; some data not shown), and this staining was more
intense in the joints treated with OSM + IL-1 or with OSM
+ TNF-α (Fig. 4e,4f).

No RANKL staining was evident in the control joints, either
in the cartilage (Fig. 4g) or in the synovium (data not
shown). Treatment with all the individual vectors alone
induced a similar positive staining for RANKL in synovial
cells and in the infiltrating (inflammatory) cells (Fig. 4h).
There was a marked increase in RANKL expression, con-
sistent with the increase in inflammatory cells and synovial
inflammation, in the joints treated with the combinations of
OSM + IL-1 (Fig. 4i) or OSM + TNF-α (Fig. 4j). Within the
articular cartilage there was very diffuse RANKL staining for
both the control and each individual cytokine vector alone
(data not shown), while strong RANKL expression was
seen for both cytokine combinations close to the articular
surface (Fig. 4k,4l).

Discussion
In the present study, we demonstrate for the first time that
overexpression of OSM in combination with either IL-1 or
TNF-α causes profound bone damage with osteoclast for-
mation and activation, and increased expression of RANK/
RANKL in inflammatory cells, in inflamed synovium, in artic-
ular cartilage and at the invading front of bone erosions.

It has been long recognized that pro-inflammatory
cytokines are intimately associated with bone destruction
during RA. IL-1, TNF-α and OSM have all been reported to
induce joint inflammation and cartilage/bone destruction in
vitro and in vivo [1,2,9,13]. Elevated levels of these
cytokines are found in the synovial fluid of RA patients, and
these levels correlate with disease activity and cartilage/
bone destruction [2,5,9,12]. Recent studies indicate that
cytokines such as TNF-α and IL-1 are likely to synergize
with RANKL to promote bone loss [30-33]. Indeed, TNF-α
stimulates differentiation of osteoclast precursors after
priming by <1% of the amount of RANKL normally required
to induce osteoclast formation [31]. TNF-α induces IL-1
production, and both IL-1 and RANKL function as osteo-
clast survival/activation factors [33]. In the inflammatory
arthritides such as RA, TNF-α and IL-1 may therefore pro-
mote bone loss by amplifying RANKL effects. This is exem-
plified in transgenic mice overexpressing the human TNF-α
gene; these mice exhibit an erosive arthritis, which is
improved by administration of OPG, of neutralizing anti-
TNF-α antibodies, or of the bisphosphonate pamidronate
[34]. OSM-induced expression of RANK/RANKL in a
murine arthritis model has also been reported [15].

Figure 2

Quantitative analysis of bone damageQuantitative analysis of bone damage. Mice (n = 4 for each treatment 
group) were injected with the adenoviral vectors expressing oncostatin 
M (OSM), IL-1 or tumour necrosis factor alpha (TNF-α) as described in 
Fig. 1. Sections (5 µm) were stained with H&E and were scored for 
bone damage as described in Materials and methods. The values repre-
sent the mean ± standard error of the mean for each treatment group 
(the control scored 0). The total scores are the combined scores of the 
four mice in each treatment group. Statistical differences between each 
treatment within experiments were determined using Student's t test: * 
P ≤ 0.05.
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In the present study, the combination of OSM with TNF-α
significantly induced RANKL expression in inflammatory
cells, in inflamed synovium and in articular chondrocytes. A
number of factors contribute to arthritic cartilage/bone
destruction in RA, including the proliferation of synovial
cells, the influx and interaction of inflammatory cells, and
the maintenance of a destructive fibroblastic phenotype,
which result in the final loss of cartilage and bone. Indeed,
CD14+ monocytes/macrophages have been shown to be
osteoclast precursors within the inflamed synovium that
promote bone resorption following differentiation [35]. In
support of this we found evidence of high numbers of
TRAP-positive multinucleate cells in the synovial tissues of
mice treated with OSM + IL-1 or with OSM + TNF-α
combinations.

As well as inducing marked synovial hyperplasia, angiogen-
esis and inflammation as described previously [20,21],
marked bone erosions were also evident. Active synovial
cells can cause bone erosions as well as produce factors
that can themselves induce synovial proliferation, inflamma-
tion, osteoclast formation and activation. Angiogenesis
contributes to synovial growth and leukocyte recruitment,
thus potentiating disease progression [36]. The matrix met-
alloproteinases released by active synovial cells are also

involved in angiogenesis, tissue invasion and inflammatory
cell migration [37], as well as in osteoclast activation,
migration and bone resorption [38,39]. The high levels of
RANK/RANKL expression, the synovial hyperplasia, the
angiogenesis and the osteoclast activity that the OSM + IL-
1 or OSM + TNF-α treatments induced was associated
with pronounced bone damage in this murine model with a
similar pathology to that of active RA. Our previous studies
have shown that these cytokine combinations upregulate
matrix metalloproteinases [20,21].

TRAP is used as a molecular marker enzyme for chondro-
clast/osteoclast differentiation, the function of which is
considered to relate to cartilage/bone resorption [40]. The
cytokine combinations used in this study induced an
increased number of TRAP-positive staining multinucleated
cells at the pannus and cartilage/bone junctions compared
with joints injected with the cytokines alone. The expression
of TRAP activity by the multinucleated cells located within
erosion pits and bone disconnection sites provides strong
evidence of their osteoclast-like nature. The mechanism of
induction of TRAP-positive multinucleated cells could be
related to the marked induction of RANK/RANKL expres-
sion and the interactions between osteoblast and osteo-
clast precursor cells that is crucial for osteoclast

Figure 3

Increased tartrate-resistant acid phosphatase (TRAP)-positive staining following treatment with oncostatin M (OSM) with either IL-1 or tumour necrosis factor alpha (TNF-α) in murine jointsIncreased tartrate-resistant acid phosphatase (TRAP)-positive staining following treatment with oncostatin M (OSM) with either IL-1 or tumour 
necrosis factor alpha (TNF-α) in murine joints. Mice were injected intra-articularly with adenoviral vectors as described in Fig. 1, and the animals were 
sacrificed at day 7 following administration. (a) No significant TRAP-positive cells outside the bone marrow were seen in control joints. Some TRAP-
positive staining cells were located at the synovium-bone interface in (b) OSM-treated joints, (c) IL-1-treated joints and (d) TNF-α-treated joints. In 
both the (e)–(h) OSM + IL-1 and (i)–(l) OSM + TNF-α combinations, significant TRAP-positive staining was located at the front of the synovium–
bone and the pannus–subchondral bone junctions, which were interposed between the bone surface and the 'erosive front' of the synovium (e, i and 
j). At many sites of focal bone erosions (arrows), TRAP-positive multinucleated cells were seen at the erosion front within the synovium (e, h–j), and 
within erosion pits in the bone (h and k). Furthermore, TRAP-positive staining cells were also seen at the cartilage/bone junction (l). b, bone; bm, 
bone marrow; c, cartilage; f, fracture; m, muscle; mn, multinucleated cells; s, synovial cells. (a)–(d), (g)–(l) Bar = 50 µm; (e), (f) bar = 20 µm.
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development [15]. We also found that treatment with OSM
increased the numbers of TRAP-positive cells at the
invading front of bone erosion sites and at the bone sur-
face, as well as in the synovium. This differs from a recent
report that OSM induced synovial inflammation and
increased the expression of IL-6, RANK and RANKL, but
did not stimulate osteoclast activity [15]. The same authors
also found marked growth plate damage, and determined
that OSM-induced inflammation and proteoglycan deple-
tion were IL-1 dependent [41].

Conclusion
Using gene transfer technology we have provided evidence
of a murine model with an aggressive pathological pheno-
type that closely resembles RA in terms of inflammation,
angiogenesis, and cartilage and bone destruction. These
data further highlight the pro-inflammatory nature of OSM
and confirm a potential role for these potent cytokine com-
binations in the joint destruction characteristic of inflamma-
tory arthritic diseases.
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