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Abstract

Parallel visual search mechanisms have been reported previously only in mammals and birds, and not animals lacking an
expanded telencephalon such as bees. Here we report the first evidence for parallel visual search in fish using a choice task
where the fish had to find a target amongst an increasing number of distractors. Following two-choice discrimination
training, zebrafish were presented with the original stimulus within an increasing array of distractor stimuli. We found that
zebrafish exhibit no significant change in accuracy and approach latency as the number of distractors increased, providing
evidence of parallel processing. This evidence challenges theories of vertebrate neural architecture and the importance of
an expanded telencephalon for the evolution of executive function.
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Introduction

Prioritising sensory information is a fundamental problem for all

animals. Even the relatively large human brain [1] can process

only a fraction of the potential input [2]. The most efficient way to

process information is to process multiple fragments of information

in parallel, such as evaluating several objects in visual search to

detect a target [3,4]. A critical marker of parallel processing is that

time and accuracy to locate a target does not increase when the

number of items to evaluate is increased. Although prior work has

demonstrated contrast detection, or saliency, mechanisms in

numerous species [5], there is no direct evidence for parallel

processing in visual search by fish.

Given the adaptive benefits of being able to find a target mate,

predator, or prey efficiently, parallel visual search should be

common. Surprisingly, parallel visual search has thus far only been

discovered in primates [4], rats [6], and pigeons [7]. Such visual

processing abilities are thus often thought to be supported only by

neural circuits in cortical areas [8]. Consistent with a cortex-

dependent mechanism, animals lacking an expanded telenceph-

alon like honeybees [9] use serial visual search mechanisms and

cannot assess multiple items in parallel.

It has been suggested that birds are able to match primates in

cognitive sophistication as a result of convergent evolution [10],

perhaps through adaptation of shared rudimentary circuits. If so,

then one would predict that other vertebrates, such as fish, would

be able to perform parallel search despite the lack of an expanded

telencephalon and ‘high-level’ cortex. Primate studies have

considered the role of the superior colliculus [11], a midbrain

area that might be the homologue of the optic tectum in zebrafish;

however the superior colliculus is often dismissed, with most

favouring either parietal cortex [12] or primary visual cortex [13]

for parallel search.

Here we assessed whether the zebrafish might utilize parallel

mechanisms for visual search in the absence of an expanded

telencephalon [14]. Cholinergic-mediated attentional mechanisms

[8] are thought to mediate parallel processing, and cholinergic

neural circuits are present in zebrafish [15], with similar

connectivity to that seen in mammals [14]. Surprisingly, although

the zebrafish relies on vision extensively, most studies of zebrafish

examine low-level oculomotor reflexes rather than higher-level

visual behaviours [16]. Recently, however, we reported that

zebrafish are capable of acquiring and maintaining an attentional

set for colour in a discrimination task [17]. Zebrafish can also

carry out visual feature binding for social behaviours like shoaling

[18]. Building on these observations we hypothesized that more

complex behaviours dependent on the optic tectum may be

possible even in the absence of the functional architecture of the

mammalian visual, parietal and frontal cortices. These prior

studies in zebrafish assessed neither how much information could

be processed nor reported whether the information processing

load influenced the latency of processing and response. Here we

addressed the issue of processing load and latency for the first time

by requiring fish to learn an abstract visual search task that would

allow for an assessment of whether such processing was serial or

parallel.

Methods

Ethics Statement
All animal work was carried following approval from the Queen

Mary Research Ethics Committee, and under licence from the

Animals (Scientific Procedures) Act 1986. Care was taken to

minimize the numbers of animals used in this experiment in

accordance with the ARRIVE guidelines (http://www.nc3rs.org.

uk/page.asp?id=1357; see Checklist S1). Specifically, we exam-

ined data from previous pilot studies and studies with other species
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to carry out a power calculation and assess the minimum number

of animals necessary for the expected effect size with power of 0.8.

Subjects
The subjects were 11 adult zebrafish (,1 year old at start of

testing, AB wild-type strain, n= 5 male), bred and reared in a UK

Home Office licensed aquarium facility. The fish were kept at

28uC on a 14 hr:10 hr light:dark cycle (lights on 9 am) and housed

in aquarium water (de-ionized water with added marine salts). The

test tanks temperature was also approximately 28uC (27uC 62).

All tanks were fitted with air-lines and regularly monitored for

water quality. Tank water was changed weekly. The experimental

unit was fish nested in tank (i.e., tank was added to statistical

models as a random effect). Fish were fed only during behavioural

testing, except at weekends. During this time, fish were fed three

times each a day; twice with brine shrimp (morning and late

afternoon) and a mid-day feed of flake food. A session comprised

20 discrete trials so that the maximum number of brine shrimp

was 200 ml (delivered with the mechanism shown in Figure 1B),

with supplemental food provided after testing if the fish received

fewer than five rewards. Following testing, the fish were returned

to our breeding stock.

Apparatus
Testing was performed in a transparent glass tank (Figure 1A)

with dimensions (L 6W 6H) 30 cm 6 12.5 cm 6 20 cm. The

areas where the stimuli were presented were (L 6 W) 10 cm x

6 cm. Water level was maintained at 15 cm. The testing tank was

located within a light-and sound-attenuating box, and the

experimenter controlled the barrier and food delivery. The

background was clear, but in a darkened environment. Habitution

time was unnecessary due to the fish having prior experimental

experience. A trial started with the lifting of the transparent gate

and presentation of the visual stimuli on a 15 inch flat screen

monitor (60 Hz) adjacent to one wall of the tank. A PowerPoint

presentation was used to generate images that were presented on

the computer screen in a pseudo-random order with respect to

both side and location. Randomized partial counterbalancing was

employed by random selection of as many sequences as fish so as

to minimize order effects with each fish subject to a different order.

Stimulus presentation with computer monitors has been estab-

lished in other areas of zebrafish behaviour, such as anti-predator

[19] and social [20] behaviour. The barrier was lifted via a pulley

system outside of the box. The pulley was lowered and the gate

was weighted, and thus lowered. The zebrafish were first trained in

Figure 1. Zebrafish performance on 2-choice discrimination. A) Fish were trained in a glass tank (a), within a light-and-sound attenuating box.
The divider was raised at the start of each trial, allowing the fish access to the discriminanda. Food reinforcement (artemia suspended in aquarium
water) was delivered via a custom-made device (b; adapted, with permission, from 17). B) Percentage of correct responses as a function of set-size
(error bars represent standard error). C) Approach latency response times as a function of set-size (error bars represent standard error). Accuracy and
response time were unaffected by discrimination set-size, suggestive of parallel search. D) Speed accuracy trade-off function. There was no
correlation between accuracy (y axis) and response latency (x axis), suggesting that fish did not trade-off speed for accuracy here, further suggesting
parallel processing was occurring during discrimination performance in the zebrafish (r=20.06).
doi:10.1371/journal.pone.0111540.g001
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a baseline colour discrimination task, with blue as the target and

red as the distractor. We chose a non-optimal colour, blue, to

insure that any behaviours observed were not reflexive, but

required the target feature to be learned because red is associated

with feeding and preferred [21], and the target was less salient

than the distractors (the background was dark blue, making the red

more salient than blue).

Procedure
Baseline trials. On each baseline trial one red disk and one

light blue disk appeared on the dark background, one on each side

of a central barrier to provide a two alternative forced choice task.

The side and location of the blue target disk was pseudo-

randomized from trial to trial and appeared equally on both sides

(10 trials each). The fish were deemed ready to be tested on

increasing set sizes when it made six consecutive correct choices in

a 20-trial session (the probability of this occurring by chance is

0.015).

Increased set size trials. The probe testing sessions were

carried out in the same manner, except the number of stimuli

shown varied to test the efficiency of target selection, with a total

set size of 4 or 10 disks. One was always the target disk, and the

number of items and the location of the target were presented with

randomized partial counterbalancing with 10 trials at each set size

interspersed with the target appearing in each of the two locations

presented each day.

Each trial began when the stimuli appeared and the barrier

lifted. Response time, or the approach latency, was defined from

the time the time the stimuli appeared and the barrier was raised

for the fish to see and approach the stimuli, until the first entrance

to the feeding area (one screen or the other), at which point the

time was stopped as the barrier went down to keep the fish in the

feeding area near the chosen stimuli. Once the fish approached the

screens with the colour disks the barrier was lowered, and the fish

was restricted to the food delivery area for 10 s, with the food

reinforcer delivered if the fish had made the correct selection.

During this time, the stimuli remained on the screen to improve

learning performance [17]. Reinforcers (brine shrimp suspended

in aquarium treated water) were delivered via a syringe with

catheter tubing (d = 1 mm; Figure 1B) with a bolt and plunger that

facilitated the delivery of ,10 ml of food by turning the screw one

quarter-turn [17]. The fish was observed via a live video feed, and

the accuracy and latency of response was recorded.

The data were fitted to linear mixed effects models and no

response times were trimmed due to the lack of comparable data

to allow unambiguous identification of trials as outliers [22]. In all

models, ‘tank’ was added as a random effect to account for inter-

tank differences (fish were pair-housed). Distribution of studentized

residuals was checked for normality where appropriate (for any

Gaussian models) following model fitting to ensure the assump-

tions were met.

Results

All animals were included in the analysis. The fish underwent

prior training colour discrimination [17] and then acquired the

target identity for this task within six days, as the fish were required

to achieve six correct choices in a row for the learning criterion to

be passed (p,0.015). They were then tested for the baseline

performance for discriminating the target from one distractor (see

set size 2 in Figure 1B).

To test the hypothesis that zebrafish use parallel search

mechanisms, the fish underwent visual search testing with larger

set sizes of 4 or 10 items. The approach latency response times did

not increase as the number of distractors increased (F1,353 = 0.002,

p=0.95); the rate of 0.0257 s per item is statistically indistin-

guishable from zero (INT=0.642; Figure 1C). The accuracy of

response did not decrease as the number of distractors increased

(z=0.78, p=0.43), with a slope of 20.0038 relating accuracy to

set size (INT=6.613; Figure 1B). In addition the accuracy of

response was greater than chance performance (50%) for both the

2-item condition (t (4) = 4.07, p= .015; 95% CI [55.3%, 77.9%])

and the 6-item condition (t (4) = 3.05, p= .038; 95% CI [51.1%,

73.3%]). Furthermore there was no correlation between accuracy

and response time (Figure 1D; there were neither main nor

interaction effects of latency and accuracy as a function of set size;

z=21.35, p=0.176), suggesting that there was not a speed-

accuracy trade-off contaminating the results. In fact, there was a

non-significant trend in the data suggesting that slower response

times were less accurate, further buttressing the lack of a

correlation between accuracy and response time.

Discussion

Models of visual search [4] make explicit the mechanisms that

guide attention for finding a target amongst multiple distractors by

evaluating the efficiency or rate of visual search as the number of

distractors is increased. Given that serial search mechanisms are

revealed by a positive slope (generally greater than 10 ms per item

in the human literature [4]), a slope of zero suggests that parallel

mechanisms of target detection are implicated here. The parallel

processing exhibited by the zebrafish here is likely of a limited

capacity. Pop-out would suggest extremely rapid responses, as seen

in humans for a task such as this. As these responses by the fish are

slower, they are not pop-out yet still parallel as the response times

do not increase with the increase in the number of items in the

display. This perspective is extended by theoretical work

suggesting that limited capacity parallel search is the norm for

humans in most tasks [23]. It is interesting to note a study

examining the development of visual search abilities found that, in

a similar task to that shown to the fish here, the response time

functions relating search time to the number of items for children

and adults were flat (a slope of zero). However it was also found

that the intercept, and thus average response time, was much

slower – six times as slow – in children than adults [24].

When considered in tandem with recent work on attentional

sets in zebrafish [17], these findings imply that the fish were using

an attentional set for the specific target colour, blue, rather than

just detecting a unique item independent of its colour value [25].

Future work examining whether the fish were relying on bottom-

up mechanisms to detect a unique item or top-down mechanisms

set for a particular colour would be of particular interest [25]. The

fish no evidence for a speed-accuracy trade-off, unlike what has

been found in visual search by bees [26,27]. What might happen if

the number of targets were further doubled? These findings may

inform models zebrafish shoaling [28,29], to the extent that

collective behaviour requires the perception and represention of

the number of conspecifics within a spatial region [30].

These results imply that the optic tectum in zebrafish might be

sufficient to process the multiple items in parallel as implied by the

maintenance of accuracy and response time in the face of

increasing distractors during visual search. Such a result is

consistent with the primacy of the superior colliculus for visual

search in mammals [11], or perhaps challenges theories of

vertebrate neural architecture and the evolution of executive

function by suggesting zebrafish have a homologue of lateral

prefrontal cortex [31], such as the pallium in adult [32], or sub-

pallium in juvenile zebrafish [33]. Alternatively, it is not the

Zebrafish Parallel Search
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existence of frontal or other cortices that is important, but the

existence of common neurotransmitter pathways and circuitry.

Further work that requires explicitly either top-down or bottom-up

processing [25] will provide an opportunity to explore the use of

these attentional mechanisms in the zebrafish model, such as

whether the exact same neurotransmitter pathways are involved

[8]. Given the transparent nature of the larval forms and adult

Casper mutants [34], and the ease of forward genetic screens in

zebrafish, the results reported here represent the first step towards

pursuing the physiology, anatomy, genetics and development of a

tractable neural circuit for the processing of visual priority.
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