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Introduction
Dental caries is the most prevalent chronic disease globally. 
Even with recent declines in the rates of large cavitated lesions, 
early lesions are present in most of the population (Kassebaum 
et al. 2015). Conventional caries detection methods that rely on 
visual inspection and the use of a dental probe are effective for 
large, clearly visible caries and for those partially obscured but 
accessible with a handheld mirror (Fejerskov and Kidd 2009). 
On the other hand, dental radiography is used for detecting hid-
den or inaccessible lesions. However, it is known that early 
detection of dental lesions, which is an important determinant 
of treatment outcomes, would benefit from the introduction of 
new tools (Schwendicke et al. 2015).

To this end, near-infrared transillumination (TI), a nonion-
izing imaging technology that leverages differences in scatter-
ing and absorption of near-infrared light depending on the 
degree of tooth mineralization, promises to fill the gap. In vitro 
and in vivo studies investigating near-infrared TI for the detec-
tion of early caries have yielded encouraging results (Fried  
et al. 2005; Simon, Darling et al. 2016; Simon, Lucas et al. 
2016; Litzenburger et al. 2018).

A commercially available system, DIAGNOcam (KaVo), 
uses this technology to provide grayscale images with useful 
information about early enamel caries and dentin caries (Söchtig 
et al. 2014; Abdelaziz and Krejci 2015; Kühnisch et al. 2016; 
Abdelaziz et al. 2018). The interpretation of these images, as for 
any diagnostic imaging technology, is limited by interrater dis-
agreement. For this reason, there has been increasing interest in 

computer-assisted image analysis to support dental procedures 
(Behere and Lele 2011; Tracy et al. 2011).

In recent years, deep learning models based on convolu-
tional neural networks (CNNs) have been successfully 
deployed for computer vision applications. These models have 
achieved high accuracy, to the extent that they now represent 
the state of the art for a wide range of applications, including 
image classification (Chollet 2017), object detection (Redmon 
and Farhadi 2017), and semantic segmentation (Chen et al. 
2018). Increased interest in deep learning models has also led 
to their adoption for medical imaging (Litjens et al. 2017).

In particular, a first deep learning model for semantic seg-
mentation was introduced in Long et al. (2015). A subsequent 
model, SegNet (Badrinarayanan et al. 2017), offers improve-
ments through the adoption of a symmetric autoencoder archi-
tecture. Another model, U-Net (Ronneberger et al. 2015a), 
takes inspiration from autoencoders but also introduces skip 
connections between corresponding layers in the encoding and 
decoding path, yielding further improvements in accuracy. An 
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even more recent model, DeepLab (Chen et al. 2018), uses a 
deep encoder with residual connections and dilated convolu-
tion, generating more accurate multiscale predictions.

Previous efforts have attempted to apply machine learning 
techniques to dental disease diagnostics. A distinction should 
be made between models for image classification (Ali et al. 
2016; Imangaliyev et al. 2016; Prajapati et al. 2017; Lee et al. 
2018) and models for semantic segmentation (Ronneberger  
et al. 2015b; Rana et al. 2017; Srivastava et al. 2017). 
Classification models predict a categorical label for an entire 
image. These labels are typically binary (e.g., healthy/diseased), 
although multiclass schemes are also used (Prajapati et al. 
2017). Classification-based models are simpler and represent 
the majority of the literature, but they are more limited in scope 
as they merely predict a single value for the image without 
delineating the spatial extent of the disease. On the other hand, 
segmentation-based models are able to provide a pixelwise 
classification of the input image. Such models usually employ 
pixelwise binary classification (Rana et al. 2017; Srivastava  
et al. 2017), although Ronneberger et al. (2015b) implemented 
a more sophisticated model capable of distinguishing between 
background, types of dental tissue, caries, and dental restora-
tions. However, the accuracy of this segmentation model was 
poor, especially for carious tissue (Wang et al. 2016).

Since X-ray radiography is the most common dental imag-
ing modality in clinical practice, most studies of automated 
caries detection pertain to X-ray images. However, machine 
learning techniques have also been applied to other oral dis-
eases and a variety of imaging techniques, including intraoral 
fluorescence imaging for detecting inflammation on gingival 
surfaces (Rana et al. 2017) and quantitative light-induced fluo-
rescence imaging for plaque classification (Imangaliyev et al. 
2016).

To summarize, we observed that all of the aforementioned 
studies suffered from 1 or more of the following shortcomings: 
solving a simplified problem (classification instead of segmen-
tation), requiring hundreds to thousands of samples for train-
ing, or having poor prediction accuracy. Finally, while machine 
learning methods have been applied to X-ray data sets, to date 
they have not been tested on near-infrared TI images.

In this work, we train a CNN-based model for the detection 
and classification of dental lesions images obtained with near-
infrared TI imaging. We investigate various techniques to 
overcome issues related to the scarcity of training data, and we 
test the performance of our model on 2 tasks: pixelwise seg-
mentation into tissue classes and binary labeling (healthy/ 
diseased) of regions of interest.

Materials and Methods

Inputs and Segmentation Labels

Our data set consists of 217 grayscale images of upper and 
lower molars and premolars, obtained with the DIAGNOcam 
system. Images were acquired at the Geneva university dental 
clinics, by graduate and postgraduate dental students. Images 
included in this study were acquired between 2013 and 2018. 

The project was reviewed by the Geneva Swissethics commit-
tee (CCER_Req-2017-00361). Each image is roughly centered 
on the occlusal surface of a tooth. To speed up the training of 
our model, we downsampled each image from 480 × 640 pix-
els to 256 × 320 pixels. We collected reference segmentation 
maps of our images from dental experts with clinical experi-
ence using the DIAGNOcam. Five possible segmentation 
classes were considered: background (B), enamel (E), dentin 
(D), proximal caries (PC), and occlusal caries (OC). Images 
containing dental restorations were discarded, as near-infrared 
TI imaging is mainly targeted at primary lesions, due to the 
impaired transmission of light through the bulk of the thick 
filling material. We included 2 distinct classes for enamel and 
dentin in our segmentation maps, as the identification of these 
tissues is essential for the evaluation of the extension and 
severity of the lesion.

It is important to emphasize that manual labeling by experts 
provides a reference that is necessary for training and evaluat-
ing the model but does not necessarily represent ground truth. 
Histological staining of dental sections is the gold standard for 
evaluating the degree and extent of decay, but for our data set, 
it would neither be practically feasible nor readily provide a 
pixelwise accurate segmentation map. While interrater agree-
ment for dental diagnostics is generally within an acceptable 
range for clinical practice (Litzenburger et al. 2018), some 
degree of discrepancy is inevitable, as we observed in the 
expert-drawn labels for our semantic segmentation task. For 
example, Figure 1 shows an image with segmentation labels 
drawn by 2 experts. Although they appear qualitatively similar, 
their mean intersection-over-union (mIOU) (see Materials  
and Methods) is 74.2%, and for the occlusal lesion, the  
intersection-over-union (IOU) score is as low as 42.5%. This 
observation demonstrates the importance of a second opinion 
for a reliable and accurate diagnosis. Indeed, our model could 
be integrated into a medical device to support dental diagnoses. 
On the other hand, this example argues that pixelwise metrics 
alone may not supply a complete description of the similarity 
between 2 labels, whether they are drawn by dentists or by 
algorithms. For this reason, we also introduced a high-level 
binary labeling scheme that was derived from the segmentation 
labels.

Binary Labels for Regions of Interest

In the auxiliary binary labeling scheme referred to above, we 
divided each tooth into 3 regions of interest (ROIs): mesial 
proximal surface, occlusal surface, and distal proximal surface. 
For each ROI, we set a binary label (healthy/diseased) equal to 
1 if at least 1 pixel in that ROI was labeled as carious (PC for 
the proximal surfaces, OC for the occlusal surface) in the seg-
mentation map and 0 otherwise.

This approach allows a high-level evaluation of segmenta-
tion labels. For example, the labels shown in Figure 1 have 
slight disparities that cause significant downstream differences 
in pixelwise metrics. However, binary ROI labeling predicts a 
healthy mesial proximal surface, carious occlusal surface, and 
carious distal proximal surface for both images.
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While this approach provides useful infor-
mation regarding the overall agreement of 2 
segmentation maps, the localization of lesions 
is lost. Thus, pixelwise analysis is still neces-
sary to provide a complete overview of dis-
ease progression. In Results, we present and 
evaluate the results of our model using both 
the original pixelwise segmentation labels and 
the derived ROI binary labels.

Neural Network Architecture

We compared the results obtained using the 
different approaches proposed in the machine 
learning literature for semantic segmentation 
to design an optimal architecture for our neu-
ral network. The architecture that we selected 
for this study is shown in Figure 2. It com-
prises a symmetric autoencoder with skip connections similar 
to U-Net (Ronneberger et al. 2015a) and an encoding path 
inspired by the structure of the VGG16 classifier (Simonyan 
and Zisserman 2015).

Improving Model Training

A typical tactic for deep learning applications with limited 
training data is to use pretrained weights for the encoding path. 
To this end, we tested the possibility of replacing the encoding 
path of our architecture with a VGG16 model pretrained on the 
ImageNet data set.

Another common performance-enhancing strategy is data 
augmentation, wherein the size and diversity of the data set are 
increased by applying various transformations to the original 
images. We implemented a data augmentation step in our train-
ing pipeline using the following transformations: flip, zoom, 
rotation, translation, contrast, and brightness.

We also considered several approaches to prevent overfit-
ting. U-Net (Ronneberger et al. 2015a) uses dropout regular-
ization, but we achieved better performance by instead 
applying batch normalization before each rectified linear unit 
(ReLU) activation, as shown in Figure 2.

Finally, CNNs for semantic segmentation are typically 
trained by minimizing categorical cross-entropy loss with an 
optimization method based on mini-batch stochastic gradient 
descent (Ronneberger et al. 2015a). This approach gives equal 
weight to all classes, which is not suitable for unbalanced data 
sets. This is indeed our case: 49.4% of pixels represent back-
ground, while only 0.7% of pixels are occlusal lesions. One 
approach for addressing the imbalance is to modify the loss 
function by introducing weights that are inversely propor-
tional to the pixel distribution of each class. In this study, we 
tested the effects of both inversely proportional weights and 
weights inversely proportional to the square root of the pixel 
distribution, the latter yielding better performance. To our 
knowledge, this is the first time that this weighting scheme has 
been used.

Statistical Analysis and Evaluation Metrics

Selecting a task-appropriate performance metric for a model is 
critical, as outcomes tend to be highly sensitive to this choice. 
We employ the IOU metric, also known as the Jaccard index. 
For each class k, this metric computes the ratio between the 
number of pixels that are correctly predicted as k, divided by 
the number of pixels that belong to class k in either the refer-
ence label or in the predicted label. This quantity is often sum-
marized by the mean of all IOU values in each class (mIOU). 
The output of our model is a vector of N

c
 = 5 elements for each 

pixel, representing a probabilistic prediction that the pixel 
belongs to each class. To compute the IOU, we transformed 
this output into a segmentation map by taking the class with the 
highest predicted probability for each pixel.

To evaluate our model on the higher-level task of binary 
classification of proximal and occlusal regions of interest, we 
used the receiver operating characteristic (ROC) curve, which 
plots the true-positive rate against the false-positive rate as a 
function of varying discrimination threshold. The curve can be 
summarized by the area under curve (AUC) statistic. For each 
ROI, we defined the true value to be 1 if at least 1 pixel is 
labeled as carious and the predicted value as the highest pre-
dicted probability over all pixels in that region for each respec-
tive lesion class.

To test the model’s predictive performance and assess its 
generalization capacity, we used a Monte Carlo cross-validation 
scheme with 20 stratified splits, ensuring that the training and 
validation data sets had the same ratio of upper and lower 
molars and premolars. At each iteration, we trained our model 
on 185 samples and validated it on the remaining 32 samples.

Results
Comparing the performance achieved by our architecture (Fig. 
2) with deeper neural networks (e.g., DeepLab), we observed 
that the latter tended to overfit our data set, generating worse 
predictions in the validation phase, even with the inclusion of 

Figure 1. Example of grayscale image of a molar obtained with DIAGNOcam and reference 
segmentation labels as drawn by 2 dentists. The mean intersection-over-union (mIOU) 
across all classes is 74.2%, while per-class scores are IOU = 97.0% (background),  
IOU = 78.4% (enamel), IOU = 85.7% (dentin), IOU = 67.2% (proximal caries), IOU = 42.5% 
(occlusal caries).
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residual connections. We also found that dilated convolution 
gave no improvements in performance. In all cases, using an 
encoding path that was pretrained on the ImageNet data set 
provided no benefit.

The Table summarizes the validation mIOU scores (aver-
aged across the 20 splits) obtained using different strategies. 
The results indicate that the baseline model gave a mIOU of 
63.1%. Introducing data augmentation and batch normaliza-
tion provided a significant improvement in accuracy, bringing 
the mIOU up to 72.0%. Finally, a weighted loss further 
improved the mIOU score. In particular, weights inversely pro-
portional to the square root of the per-class pixel counts gave 
better results than the linear weights commonly used for unbal-
anced data sets.

Figure 3 offers a more detailed analysis of the results 
obtained using the best version of our model, scoring an over-
all mIOU = 72.7%. The IOU histogram shows that our model 
achieved excellent performance on the background (IOU = 
96.6%), enamel (IOU = 80.0%), and dentin (IOU = 88.3%) 
classes. For proximal and occlusal carious regions, the IOU 
scores are 49.5% and 49.0%, respectively. More specifically, 
we observed that 33.0% and 35.5% of pixels labeled as proximal 

and occlusal lesions in the reference were instead predicted as 
enamel and dentin, respectively.

Figure 4 depicts selected results obtained on validation data 
for a qualitative overview of our model’s predictions. On the 
right-hand side, we see samples where the correspondence 
between the reference and the model’s predictions is both 
numerically high and visually salient. On the left-hand side, we 
see samples where references and predictions diverge.

As for the analysis of our results in terms of a high-level 
binary classification of regions of interest, in Figure 3, we see 
that the predicted and reference labels largely agree in both 
proximal and occlusal regions (AUC = 85.6% and AUC = 
83.6%, respectively).

Discussion
A pixelwise comparison of our model’s predictions with refer-
ence segmentations drawn by experts shows an excellent 
agreement for background, enamel, and dentin classes (which 
all have an IOU score above 80%). For carious lesions, our 
model gives a lower IOU, but this can be in part explained by 
the observation that the precise boundaries of lesions are dif-
ficult to trace, especially for narrow occlusal lesions. As we 
noted in Figure 1, the IOU metric is sensitive to small discrep-
ancies, and even similar-looking segmentation maps labeled 
by different experts can have low IOU scores for classes with 
few pixels.

A qualitative analysis of our predicted segmentation (Fig. 4) 
suggests that the model can effectively learn to provide predic-
tions that reproduce those of a trained dental expert, given suf-
ficient training data. In most of the model’s failure cases 
depicted in Figure 4, the deviation from the reference is 
eclipsed by possible disagreement among experts on the inter-
pretation of the presence or exact extension of a lesion. In a 

Figure 2. Neural network architecture used in this work. N
c
 is the number of segmentation classes. In our work, N

c
 = 5.

Table. Summary of Validation Scores Achieved on the Semantic 
Segmentation Task Using Different Approaches to Train the Network.

Data 
Augmentation

Batch 
Normalization Loss Weights mIOU, %

63.1
 70.7
  72.0
  —linear 72.3
  —square root 72.7

mIOU, mean intersection-over-union.
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few cases, however, we see physically unrealistic segmenta-
tion artifacts; most of these artifacts are produced in overex-
posed or underexposed areas, so a straightforward way to 
improve these results would be to collect more training data. 
Another possibility would be to use a conditional generative 
adversarial network (cGAN) (Isola et al. 2017), which allows 
the network to learn its own loss function and automatically 
penalize unrealistic artifacts.

The analysis of our predictions in terms of binary classifica-
tion of regions of interest (Fig. 3) highlights how, even if our 
model’s predicted segmentation maps differ from the reference 
maps in the exact location and extent of lesions, there can be 
substantial agreement on the presence or absence of lesions in 
the regions of interest of the dental scan.

Finally, we note that in the ROC curve for occlusal lesions, 
a high true-positive rate was measured at every discrimination 
threshold. This is due to an important class imbalance, as only 
about 10.1% of our images are free of lesions on the occlusal 
surface. This is representative of clinical reality, as most indi-
viduals are likely to develop occlusal lesions in the course of 
their life (Carvalho et al. 2016).

Overall, the performance of our model represents a dra-
matic improvement over the previous effort of Ronneberger  
et al. (2015b) that achieved IOU = 7.3% and IOU = 7.8% (on 2 
different validation data sets), using a similar approach on 
X-ray images (Wang et al. 2016). This improvement is chiefly 
accounted for by 2 observations. First, we trained and vali-
dated our model on near-infrared TI images, while Ronneberger 
et al. (2015b) worked with a different data set comprising 
X-ray images. Second, as shown in the Table, we employed 
various techniques to overcome the scarcity of training data, 
which significantly improved the generalization accuracy of 
our model.

As previously mentioned, accuracy did not improve with 
deeper architectures. In fact, very deep networks are either 
trained on large data sets or leverage pretrained weights. With 
only 185 training samples, our data set was insufficient to train 

a deep network from scratch. In addition, the poor results 
obtained with a pretrained encoder are expected, since transfer 
learning does not improve performance if the original data and 
pretraining data are sufficiently dissimilar (Yosinski et al. 
2014). This was true in our case, since the large databases (e.g., 
ImageNet) where the weights are pretrained consist of images 
unrelated to our application.

Our model still exhibits several shortcomings. We occa-
sionally observed physically unrealistic labeling artifacts, 
especially in overexposed or underexposed regions. Moreover, 
our data set was limited both in terms of size and in terms of 
the certainty of the ground truth labels. Data augmentation is 
known to play an important role in computer vision applica-
tions as it helps with the scarcity of training data by reducing 
overfitting and improving the model’s generalization perfor-
mance (Krizhevsky et al. 2012), although this approach is lim-
ited and collecting new diverse training samples would be 
required to further improve the performance.

For the future, we acknowledge different ways in which our 
work could be extended. First, the size of the data set could be 
increased and its quality enhanced through the inclusion of his-
tological exams and consensus-based labels provided by a 
panel of experts. Second, a cGAN-inspired approach could 
reduce labeling artifacts. Finally, our model could benefit from 
varied inputs such as images centered on the proximal surfaces 
or from using video inputs instead of static images to allow for 
real-time, augmented reality predictions.

In this way, we envision future iterations of the algorithmic 
foundation described here being integrated into tools with real 
clinical applicability, facilitating the chronic monitoring and 
diagnosis of dental disease.

Conclusion
Computer-assisted analysis tools could support dentists by pro-
viding high-throughput diagnostic assistance. In this work, we 
demonstrated the use of an automatic deep learning approach 

Figure 3. Quantitative analysis of the results achieved by our model for the semantic segmentation task (left) and for the binary region-of-interest 
classification task (right).
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for semantic segmentation of dental scans obtained using the 
DIAGNOcam system. Our results suggest that a similar 
approach could be used for the automated interpretation of 
DIAGNOcam scans to facilitate dental diagnoses.
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