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[ A B S T R A C T ]   

Objective: The objective is to construct a random forest model for predicting the occurrence of 
Myofascial pelvic pain syndrome (MPPS) and compare its performance with a logistic regression 
model to demonstrate the superiority of the random forest model. 
Methods: We retrospectively analyze the clinical data of female patients who underwent pelvic 
floor screening due to chronic pelvic pain at the Pelvic Floor Rehabilitation Center of the Third 
Affiliated Hospital of Zhengzhou University from January 2021 to December 2023. A total of 543 
female patients meeting the study’s inclusion and exclusion criteria are randomly selected from 
this dataset and allocated to the MPPS group. Furthermore, 702 healthy female patients who 
underwent pelvic floor screening during routine physical examinations within the same time-
frame are randomly selected and assigned to the non-MPPS group. Chi-square test and rank-sum 
test are used to select demographic variables, pelvic floor pressure assessment data variables, and 
modified Oxford muscle strength grading data for logistic univariate analysis. The selected var-
iables are further subjected to multivariate logistic regression analysis, and a random forest model 
is also established. The predictive performance of the two models is evaluated by comparing their 
accuracy, sensitivity, specificity, precision, receiver operating characteristic (ROC) curve, and 
area under the curve (AUC) area. 
Results: Based on a dataset of 1245 cases, we implement the random forest algorithm for the first 
time in the screening of MPPS. In this investigation, the Logistic regression model forecasts the 
accuracy, sensitivity, specificity, and precision of MPPS at 69.96 %, 57.46 %, 79.63 %, and 68.57 
% respectively, with an AUC of the ROC curve at 0.755. Conversely, the random forest prediction 
model exhibits accuracy, sensitivity, specificity, and precision rates of 87.11 %, 90.66 %, 90.91 
%, and 83.51 % respectively, with an AUC of the ROC curve at 0.942. The random forest model 
showcases exceptional predictive performance during the initial screening of MPPS. 
Conclusion: The random forest model has exhibited exceptional predictive performance in the 
initial screening evaluation of MPPS disease. The development of this predictive framework holds 
significant importance in refining the precision of MPPS prediction within clinical environments 
and elevating treatment outcomes. This research carries profound global implications, given the 
potentially elevated misdiagnosis rates and delayed diagnosis proportions of MPPS on a world-
wide scale, coupled with a potential scarcity of seasoned healthcare providers. Moving forward, 
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continual refinement and validation of the model will be imperative to further augment the 
precision of MPPS risk assessment, thereby furnishing clinicians with more dependable decision- 
making support in clinical practice.   

Myofascial pelvic pain syndrome (MPPS) is characterized by pain, muscle stiffness, and spasms in the fascia of the lower back, 
sacrum, buttocks, and legs, accompanied by highly sensitive myofascial trigger points (MTrPs) [1]. The prevalence of MPPS in females 
ranges from 5.7 % to 26.6 % [2], while in males, it ranges from 2.9 % to 9.7 % [3]. Owing to limited clinical awareness, MPPS is 
frequently underdiagnosed or misdiagnosed, resulting in ineffective treatment and impairments in women’s quality of life and psy-
chological well-being [4]. Presently, scholars both domestically and internationally lack consensus on the etiology and pathogenesis of 
MPPS [5]. Since there are no specific laboratory or imaging findings, MPPS lacks unified diagnostic criteria. Therefore, the diagnosis of 
MPPS is exclusive, requiring women to present with clinical complaints of pelvic pain, palpable MTrPs, and the exclusion of other 
factors causing chronic pelvic pain through medical history, physical examination, and relevant auxiliary examinations [6]. Therefore, 
an effective predictive model is essential to predict the occurrence of MPPS. We propose a random forest model that utilizes women’s 
clinical baseline parameters, pelvic floor pressure assessment, and modified Oxford muscle grading assessment data to predict the risk 
of developing MPPS, providing a theoretical basis for the clinical diagnosis of MPPS. 

1. Objectives and methods 

1.1. Objectives 

This study is a retrospective analysis. The clinical data of female patients who underwent pelvic floor screening due to chronic 
pelvic pain at the Pelvic Floor Rehabilitation Center of the Third Affiliated Hospital of Zhengzhou University from January 2021 to 
December 2023 is retrospectively analyzed. A total of 543 female patients meeting the study’s inclusion and exclusion criteria are 
randomly selected from this dataset and allocated to the MPPS group. Furthermore, 702 healthy female patients who underwent pelvic 
floor screening during routine physical examinations within the same timeframe are randomly selected and assigned to the non-MPPS 
group. Ethical approval for this study was granted by the Ethics Committee of the Third Affiliated Hospital of Zhengzhou University 
(Ethics Approval Number: 2023-206-01, Approval Date: August 23, 2023). 

2. Inclusion and exclusion criteria 

2.1. Inclusion criteria 

To be eligible for participation, individuals have to meet specific criteria: (1) Exhibit a history of chronic pelvic pain lasting a 
minimum of 3–6 months, diagnosed as Myofascial Pelvic Pain Syndrome (MPPS) [7]. (2) Not have undergone any other treatment 
pertaining to this condition in the preceding month. (3) Be aged 18 years or above. (4) Patients with a history of sexual activity who can 
undergo vaginal examinations. 

2.2. Exclusion criteria 

Patients meeting any of the following criteria are excluded from the study: (1) Patients with chronic pelvic pain (CPP) attributed to 
known factors like infection, adenomyosis, uterine fibroids, etc. (2) Patients who have undergone gynecological examination, gyne-
cological and urological ultrasound, examination of vaginal secretions and urine pathogens, and have been excluded due to acute 
infectious diseases or other organic diseases. (3) Pregnant patients or those within 3 months postpartum are excluded. (4) Patients with 
implanted cardiac pacemakers, metal intrauterine devices, or allergies to electrical stimulation are excluded. (5) Patients with active 
vaginal bleeding, local pelvic skin/mucosal damage, or infection are excluded. (6) Patients with other pelvic floor dysfunction diseases 
like urinary incontinence or pelvic organ prolapse are excluded. (7) Patients with neurological or psychiatric disorders or other severe 
illnesses that could impede cooperation are excluded. (8) Patients with a history of spinal disc disease, sciatica, or other neurological 
disorders are excluded. (9) Patients with incomplete clinical baseline data are excluded. 

3. Data collection 

In this study, we gather case data from the study participants, encompassing age, height, weight, body mass index (BMI), pregnancy 
history, and childbirth history [8]. 

Participants included in the study underwent pelvic floor pressure assessment administered by trained therapists specializing in 
pelvic floor care. The assessment utilized the Myotrac biofeedback device manufactured by Nanjing Vishee Medical Technology Co., 
Ltd. Various parameters are automatically recorded, including the average value and the coefficient of variation during the pre-resting 
phase, the maximum value and relaxation time during the fast contraction phase, the average value, coefficient of variation, and 
relaxation time during the tension contraction phase, and the average value and coefficient of variation are recorded during both the 
endurance contraction phase and the post-resting phase. 
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The modified Oxford grading scale is used for pelvic floor muscle assessment. The evaluation criteria for pelvic floor muscle 
strength assessment [9] are as follows: Grade I indicates a slight contraction of the vaginal muscles during testing. Grade II signifies 
that the vaginal muscles can sustain a contraction for 2 s and repeat it twice. Grade III denotes that the vaginal muscles can sustain a 
contraction for 3 s and repeat it three times. Grade IV indicates that the vaginal muscles can sustain a contraction for 4 s and repeat it 
four times. Grade V reflects significant contraction of the vaginal muscles, with the ability to sustain a contraction for 5 s or longer and 
repeat it five times or more. These assessments are conducted to gather comprehensive data on pelvic floor muscle pressure and 
strength in the study participants. 

4. Statistical analysis methods 

Statistical analysis is conducted using SPSS 26.0 and MATLAB (version 2020b) software. The process modeling and analysis method 
is illustrated in Fig. 1. Different methods are employed for various types of data: For continuous variables, data are presented as median 
(P25, P75), and between-group comparisons utilize the Mann-Whitney U test. For categorical variables, data are presented as counts and 
percentages (%), and between-group comparisons are conducted using the chi-square test. Logistic regression and random forest al-
gorithms are utilized to develop a prediction model for Myofascial Pelvic Pain Syndrome (MPPS). The predictive accuracy, ROC curve, 
and AUC (Area Under the Curve) are compared for these models. A significance level of P < 0.05 is deemed as statistically significant. 

Fig. 1. Process of modeling and analysis method.  
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5. Results 

5.1. Univariate and multivariate logistic analysis of factors influencing MPPS 

The results of the chi-square test and Mann-Whitney U test revealed statistically significant differences (P < 0.05) between the two 
groups in the following variables: parity, gravidity, number of vaginal deliveries, perineal laceration, average value and the coefficient 
of variation during the pre-resting phase, the maximum value and relaxation time during the fast contraction phase, the average value 
and coefficient of variation during the tension contraction phase, the average value and coefficient of variation during the endurance 
contraction phase, and the coefficient of variation during the post-resting phase. Please refer to Table 1 and Table 2 for detailed 
analysis results. 

5.1.1. Univariate logistic regression analysis results 
The results of the univariate logistic regression analysis indicates significant differences (P < 0.05) between the two groups in 

various variables, including parity, gravidity, number of vaginal deliveries, perineal laceration, maximum value and relaxation time in 
the fast contraction phase, the average value and coefficient of variation in the tension contraction phase, the average value and 
coefficient of variation in the endurance contraction phase, and the coefficient of variation in the post-resting phase. These results 
suggest a significant association between these factors and MPPS. For detailed analysis results, please refer to Table 3. 

5.1.2. Multivariate logistic regression analysis results 
In the multivariate logistic regression analysis, the factors that demonstrated a significant association (P < 0.05) with MPPS in the 

chi-square test, Mann-Whitney U test, and univariate logistic regression analysis are included. The results indicates that the following 
factors independently influence MPPS: parity (OR = 1.475, P < 0.05), average value in the pre-resting phase (OR = 1.347, P < 0.05), 
coefficient of variation in the tension contraction phase (OR = 7.043, P < 0.05), average value in the endurance contraction phase (OR 
= 0.83, P < 0.05), coefficient of variation in the endurance contraction phase (OR = 4.919, P < 0.05), and coefficient of variation in the 
post-resting phase (OR = 14.569, P < 0.05). These results indicate that these factors play an independent role in the development of 
MPPS. For detailed analysis results, please refer to Table 4. 

5.2. Random forest model 

In this study, the prediction model is developed using MATLAB (version 2020b). A total of 1245 cases are collected, comprising 543 
MPPS-positive and 702 MPPS-negative cases. To enhance result accuracy when employing the RF method for binary classification, 

Table 1 
General demographic characteristics of MPPS and non-MPPS groups (Example (%)).  

Feature Total number of people(n = 1245) The non-MPPS group(n = 702) The MPPS group (n = 543) χ2 P 

Age (years)    1.134 0.567 
<30 

30~40 
>40 

175(14.06 %) 
629(50.52 %) 
441(35.42 %) 

88(12.54 %) 
338(48.15 %) 
276(39.32 %) 

87(16.02 %) 
291(53.59 %) 
165(30.39 %)   

BMI(Kg/m2) 
<18.5    

1.015 0.602 
73(5.86 %) 38(5.41 %) 35(6.45 %)   

18.5~<24 770(61.85 %) 431(61.40 %) 339(62.43 %)   
≥24 402(32.29 %) 233(33.19 %) 169(31.12 %)   

Number of pregnancies (times)    78.994 <0.001 
0 33(2.65 %) 30(4.27 %) 3(0.55 %)   
1~2 448(35.98 %) 299(42.59 %) 149(27.44 %)   
>2 764(61.37 %) 373(53.13 %) 391(72.01 %)   

Number of production (times)    37.939 <0.001 
0 123(9.88 %) 51(7.26 %) 72(13.26 %)   
1~2 965(77.51 %) 562(80.06 %) 403(74.22 %)   
>2 157(12.61 %) 89(12.67 %) 68(12.52 %)   

Number of vaginal births (times)    18.846 <0.001 
0 395(31.73 %) 207(29.49 %) 188(34.62 %)   
1~2 733(58.88 %) 427(60.83 %) 306(56.46 %)   
>2 117(9.40 %) 68(9.69 %) 49(9.02 %)   

Number of cesarean sections (times)    1.017 0.601 
0 871(69.96 %) 495(70.51 %) 376(69.24 %)   
1~2 363(29.16 %) 200(28.49 %) 163(30.02 %)   
>2 11(0.88 %) 7(1.00 %) 4(0.74 %)   

History of perineal laceration    7.027 0.008 
Yes 54(4.34 %) 21(2.99 %) 33(6.08 %)   
No 1191(95.66 %) 681(97.01 %) 510(93.92 %)   

History of hysterectomy    0.203 0.653 
Yes 47(3.78 %) 25(3.56 %) 22(4.05 %)   
No 1198(96.22 %) 677(96.44 %) 521(95.95 %)    
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maintaining a 1:1 ratio between negative and positive samples is recommended. Consequently, 543 individuals from the negative cases 
were randomly chosen to create a balanced dataset of 1086 individuals, combined with the positive cases. Subsequently, the dataset 
was split into a 7:3 ratio, with 760 cases assigned to the training set and 326 cases to the cross-validation set. The modeling process of 
the random forest model is depicted in Fig. 1. To assess the classification model’s reliability, various metrics including the confusion 
matrix, accuracy, sensitivity, specificity, precision, receiver operating characteristic (ROC) curve, and area under the curve (AUC) 
value are analyzed. 

The out-of-bag (OOB) classification error of the classification model is illustrated in Fig. 2. It is observed that the OOB error sta-
bilizes at a value below 0.15 when the number of trees in the RF algorithm exceeds 100. This suggests that the classification model in 
this study exhibits strong performance. 

To examine the correlation between different clinical features and the incidence rate of MPPS, the significance of each clinical 
feature is assessed, as depicted in Fig. 3. The feature indices and their definitions are provided in Table 3. The top five significant 

Table 2 
Univariate analysis of height, weight, pelvic floor pressure assessment, and modified Oxford muscle strength assessment between MPPS and non- 
MPPS groups.  

Feature The non-MPPS group(n = 702) The MPPS group (n = 543) Z P 

Height(cm) 161(158, 165) 161(158,165) − 0.491 0.623 
Weight (Kg) 60(54, 65) 59(53, 64) − 1.900 0.057 
The pre-resting stage     
Average value (mmHg) 3.55(2.97, 4.53) 3.87(3.34,4.53) − 4.095 <0.001 
Variable coefficient 0.15(0.11, 0.21) 0.17(0.13,0.22) − 3.302 0.001 
Rapid contraction phase     
Maximum value (mmHg) 13.57(9.62, 19.11) 12.24(7.89, 18.21) − 3.713 0.001 
Relaxation time(s) 0.92(0.14, 1.61) 0.54(0.42, 1.90) − 3.011 0.003 
the tension contraction phase     
Average value (mmHg) 11.77(9.39,14.14) 9.84(7.44, 13.03) − 7.757 <0.001 
Coefficient of variation 0.17(0.11, 0.25) 0.18(0.12, 0.26) − 2.668 0.008 
Relaxation time(s) 0.82(0.09, 1.35) 0.22(0.07, 2.03) − 0.955 0.339 
the endurance contraction phase     
Average value (mmHg) 9.35(7.59, 11.67) 7.41(5.41, 9.93) − 9.670 <0.001 
Coefficient of variation 0.18(0.14, 0.23) 0.21(0.16, 0.26) − 5.987 <0.001 
the post-resting phase     
Average value (mmHg) 3.99(2.57, 5.50) 4.23(2.82, 5.73) − 1.731 0.083 
Coefficient of variation 0.19(0.17, 0.20) 0.21(0.14, 0.27) − 1.999 0.046 
Deep class I muscle strength 2(1, 3) 2(1, 3) − 1.079 0.28 
Superficial class I     
muscle strength 2(1, 3) 2(1, 3) − 1.359 0.174  

Table 3 
Univariate Logistic regression analysis of MPPS.  

Feature index Feature b SE Wald χ2 P OR 

1 Age − 0.008 0.006 2.055 0.152 0.992 
2 Height − 0.007 0.009 0.54 0.462 0.993 
3 Weight − 0.01 0.007 2.455 0.117 0.99 
4 BMI − 0.002 0.013 0.02 0.889 0.998 
5 Number of pregnancies 0.381 0.038 101.611 <0.001 1.463 
6 Number of production 0.332 0.062 28.899 <0.001 1.394 
7 Number of vaginal births 0.217 0.053 16.794 <0.001 1.242 
8 Number of cesarean sections 0.075 0.078 0.916 0.339 1.078 
9 History of perineal laceration 0.741 0.285 6.752 0.009 2.098 
10 History of hysterectomy 0.134 0.298 0.202 0.653 1.143 
11 Average value during the pre-resting phase 0.089 0.046 3.788 0.052 1.093 
12 Coefficient of variation during the pre-resting phase 0.493 0.329 2.245 0.134 1.638 
13 Maximum value during the fast contraction phase − 0.021 0.007 7.933 0.005 0.979 
14 Relaxation time during the fast contraction phase 0.09 0.035 6.719 0.01 1.094 
15 Average value during the tension contraction phase − 0.081 0.015 30.956 <0.001 0.922 
16 Coefficient of variation during the tension contraction phase 1.243 0.561 4.914 0.027 3.465 
17 Relaxation time during the tension contraction phase 0.034 0.041 0.685 0.408 1.035 
18 Average value during the endurance contraction phase − 0.137 0.018 57.535 <0.001 0.872 
19 Coefficient of variation during the endurance contraction phase 2.256 0.684 10.878 0.001 9.542 
20 Average value during the post-resting phase 0.043 0.027 2.575 0.109 1.044 
21 Coefficient of variation during the post-resting phase 3.495 0.806 18.784 <0.001 32.958 
22 Deep class I muscle strength − 0.089 0.059 2.231 0.135 0.915 
23 Deep class II muscle strength − 0.024 0.054 0.205 0.651 0.976 
24 Superficial class I muscle strength − 0.081 0.062 1.713 0.191 0.922 
25 Superficial class II muscle strength − 0.051 0.054 0.897 0.344 0.95  
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features, listed in descending order of importance, include the coefficient of variation during the resting phase, relaxation time during 
rapid contraction, average value during endurance contraction, average value during sustained contraction, and maximum value 
during rapid contraction. 

5.3. Comparative analysis of logistic regression and random forest model 

The accuracy, sensitivity, specificity and precision of the classification model are usually used as the evaluation metrics of the 
prediction model. The definitions of the above indicator are [10,11]. 

Accuracy=
TP + TN

TP + TN + FP + FN
(1)  

Sensitivity=
TP

TP + FN
(2)  

Specificity=
TN

TN + FP
(3)  

Table 4 
Multivariate Logistic regression analysis of MPPS.  

Feature b SE Wald χ2 P OR 

Number of pregnancies 0.389 0.05 61.66 <0.001 1.475 
Number of production − 0.008 0.112 0.005 0.943 0.992 
Number of vaginal births − 0.084 0.089 0.895 0.344 0.919 
History of perineal laceration 0.42 0.328 1.645 0.2 1.523 
average value during the pre-resting phase 0.298 0.062 23.219 <0.001 1.347 
Coefficient of variation during the pre-resting phase 0.711 0.414 2.955 0.086 2.037 
Maximum value during the fast contraction phase 0.007 0.017 0.156 0.693 1.007 
Relaxation time during the fast contraction phase 0.084 0.044 3.615 0.057 1.088 
Average value during the tension contraction phase 0.007 0.04 0.027 0.871 1.007 
Coefficient of variation during the tension contraction phase 1.952 0.812 5.778 0.016 7.043 
Average value during the endurance contraction phase − 0.186 0.035 27.709 <0.001 0.83 
Coefficient of variation during the endurance contraction phase 1.593 0.811 3.86 0.049 4.919 
Coefficient of variation during the post-resting phase 2.679 0.884 9.179 0.002 14.569 
constant − 2.614 0.417 39.345 <0.001 0.073  

Fig. 2. The OOB classification error of the classification model.  

Fig. 3. Importance of the analyzed clinical features.  
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Precision=
TP

TP + FP
(4)  

where, TP, TN, FP, and FN are the numbers of true positive, true negative, false positive, and false negative, respectively. 
The comparisons of accuracy, sensitivity, specificity, and precision between the random forest and logistic regression models are 

presented in Fig. 4. The accuracy, sensitivity, specificity, and precision of the random forest model are much higher than those of 
logistic regression model. The differences are 0.1715, 0.332, 0.1048, and 0.1494, respectively. These results indicate that the random 
forest model exhibits significantly superior predictive performance compared to the logistic regression model. 

The ROC curves for the logistic regression and random forest models are provided in Fig. 5 (a) and (b), respectively, with their 
corresponding evaluation metric comparisons presented in Table 5. The logistic regression analysis yielded a sensitivity of 57.46 %, 
specificity of 79.63 %, and an AUC of 0.7550 for the MPPS model. In contrast, the random forest model achieved a sensitivity of 90.66 
%, specificity of 90.91 %, and an AUC of 0.9426 for MPPS. Evidently, the random forest model demonstrates superior predictive 
performance in comparison to the logistic regression model. 

The box plot illustrating the random forest and logistic regression models is displayed in Fig. 6. The median, 25th percentile, 75th 
percentile, maximum value, and minimum value of the random forest model are 0.482, 0.423, 0.5468, 0.726, and 0.252, respectively. 
Corresponding values for the logistic regression model are 0.3982, 0.164, 0.6862, 1, and 0.00889, respectively. The random forest 
model demonstrates a distribution closer to normal, suggesting its superiority over the logistic regression model. 

6. Discussion 

This study is grounded in the clinical variables of the patients enrolled in the research, in conjunction with assessments of pelvic 
floor pressure and data from the modified Oxford muscle strength evaluation. The study analyzes the pertinent risk factors and 
constructs a random forest model. This model introduces a preliminary risk assessment approach for MPPS in patients. A comparison 
between the performance of the random forest model and the logistic regression prediction model illustrates the superior predictive 
performance of the random forest model. In descending order of importance, the top five factors are identified as the coefficient of 
variation in the late resting phase, relaxation time in the fast contraction phase, mean value of the endurance contraction phase, mean 
value of the tension contraction phase, and maximum value in the fast contraction phase. Consequently, these indicators merit sig-
nificant attention during the clinical screening process. 

MPPS is a non-inflammatory disease that occurs in the pelvic floor muscles and fascia. It presents with local adhesions and spasms 
resulting from pelvic floor muscles and fascia damage, leading to persistent chronic pain [12]. The current diagnosis of MPPS continues 
to depend on clinical assessment, guided by existing research and clinical guidelines [13,14]. Within the clinical diagnostic process, the 
diagnosis of MPPS lacks specificity, and a single clinical feature is insufficient for a definitive diagnosis. A comprehensive analysis of 
multiple clinical factors is necessary, posing a significant challenge to the clinical experience of healthcare providers. These factors can 
influence treatment outcomes, patient quality of life, and even mental health implications [15,16]. While depending on experienced 
healthcare providers can enhance diagnostic accuracy for MPPS, the complexity of the condition and the scarcity of experienced 
providers render this approach impractical. Therefore, the development and implementation of reliable predictive models are crucial 
for timely identification of these patients and providing effective interventions to improve their prognosis [17]. Currently, machine 
learning models are widely used in the diagnosis and treatment of various clinical conditions [18–22], and research by Wenhui Jiang 
and colleagues has shown that the random forest model demonstrates good predictive performance in clinical practice [18]. 

Based on a dataset of 1245 cases, we implement the random forest algorithm for the first time in the screening of MPPS. In this 
investigation, the Logistic regression model forecasts the accuracy, sensitivity, specificity, and precision of MPPS at 69.96 %, 57.46 %, 
79.63 %, and 68.57 % respectively, with an AUC of the ROC curve at 0.755. Conversely, the random forest prediction model exhibits 
accuracy, sensitivity, specificity, and precision rates of 87.11 %, 90.66 %, 90.91 %, and 83.51 % respectively, with an AUC of the ROC 
curve at 0.942. The random forest model showcases exceptional predictive performance during the initial screening of MPPS. The 
development of this predictive model holds significant importance in enhancing the predictive accuracy and treatment outcomes in 
clinical MPPS. Research findings highlight that the random forest model displays superior clinical predictive performance in identi-
fying risk factors among MPPS patients, offering vital support and guidance for bolstering early identification and personalized 
treatment for MPPS. In the early stages of MPPS, treatment costs are minimal, necessitating solely rehabilitation therapy without 
clinical intervention. Patients in this phase typically exhibit subtle symptoms, presenting a notable diagnostic challenge for healthcare 
professionals. Through the predictive model proposed in this study, timely diagnosis in the early stages of MPPS becomes achievable, 
arresting the progression of the condition and eliminating the need for clinical intervention. This model aids in reducing economic 
burdens, enhancing patients’ quality of life, and is pivotal in boosting the efficiency and quality of healthcare services. By enabling 
accurate prediction and timely intervention, it becomes feasible to significantly enhance patients’ treatment outcomes and quality of 
life. 

The factors contributing to the superior predictive performance of the random forest model over the logistic regression model are 
multifaceted. Firstly, the model utilize in this study encompasses a multitude of features, posing challenges for the logistic regression 
model in managing a problem of such complexity. In contrast, the Random Forest model remains unaffected by the abundance of 
features, rendering it well-suited for addressing multi-feature complexities. Secondly, the logistic regression model operates under the 
assumption of relatively independent features, adhering to a linear framework. However, in complex scenarios such as predicting 
MPPS, where features demonstrate intricate interdependencies and significant non-linearity, the predictive performance of the logistic 
regression model is compromised. The Random Forest model comprises numerous independent decision trees. During its construction 
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phase, the model randomly selects subsets of samples and features. This capability enables the model to identify interactions among 
features, thereby improving classification accuracy and generalization abilities [23]. Finally, it is imperative to acknowledge that 
errors may arise during the screening process conducted by healthcare professionals, potentially introducing biases into the dataset. 
Such biases can significantly impact the performance of the logistic regression model. Nonetheless, as previously noted, the Random 
Forest model comprises numerous independent decision trees, endowing it with a degree of resilience against external influences [24]. 
These factors contribute to the superior predictive performance exhibited by the Random Forest model in MPPS prediction. 

Although the model in this study demonstrated excellent performance, it is imperative to acknowledge its inherent limitations. The 
restricted sample size originating solely from a singular research center may introduce selection bias, thereby potentially compro-
mising the model’s generalizability and applicability. Future endeavors will necessitate a more extensive dataset for external vali-
dation to substantiate the model’s effectiveness. Our forthcoming objective is to augment data collection efforts and diversify the array 

Fig. 4. Four evaluation metrics of the random forest and logistic regression models.  

Fig. 5. ROC curve of (a) RF model (AUC = 0.9426) and (b) logistic model (AUC = 0.755).  

Table 5 
Evaluation metrics of the prediction models.   

Accuracy Sensitivity Specificity Precision 

RF model 0.8711 0.9066 0.9091 0.8351 
Logistic regression model 0.6996 0.5746 0.7963 0.6857  

Fig. 6. Box plot of the random forest and logistic regression models.  
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of predictive variables to enhance the model’s comprehensiveness and predictive prowess. The continuous integration of updates and 
additional sample data is poised to bolster the model’s stability and accuracy. Furthermore, external validation of this predictive 
framework will be systematically conducted to fortify the reliability of our research findings. Through the ongoing processes of 
refinement and validation, we aim to refine the precision of MPPS risk assessment, furnishing clinicians with dependable decision- 
making support in clinical settings. 

7. Conclusion 

The random forest model has exhibited exceptional predictive performance in the initial screening evaluation of MPPS disease. The 
development of this predictive framework holds significant importance in refining the precision of MPPS prediction within clinical 
environments and elevating treatment outcomes. This research carries profound global implications, given the potentially elevated 
misdiagnosis rates and delayed diagnosis proportions of MPPS on a worldwide scale, coupled with a potential scarcity of seasoned 
healthcare providers. Moving forward, continual refinement and validation of the model will be imperative to further augment the 
precision of MPPS risk assessment, thereby furnishing clinicians with more dependable decision-making support in clinical practice. 
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