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Abstract

Deep learning has huge potential for accurate disease prediction with neuroimaging data, but the 

prediction performance is often limited by training-dataset size and computing memory 

requirements. To address this, we propose a deep convolutional neural network model, Simple 

Fully Convolutional Network (SFCN), for accurate prediction of brain age using T1-weighted 

structural MRI data. Compared with other popular deep network architectures, SFCN has fewer 

parameters, so is more compatible with small dataset size and 3D volume data. The network 

architecture was combined with several techniques for boosting performance, including data 

augmentation, pre-training, model regularization, model ensemble and prediction bias correction. 

We compared our overall SFCN approach with several widely-used machine learning models. It 

achieved state-of-the-art performance in UK Biobank data (N = 14,503), with mean absolute error 

(MAE) = 2.14y in brain age prediction and 99.5% in sex classification. SFCN also won (both parts 

of) the 2019 Predictive Analysis Challenge for brain age prediction, involving 79 competing teams 

(N = 2,638, MAE = 2.90y). We describe here the details of our approach, and its optimisation and 

validation. Our approach can easily be generalised to other tasks using different image modalities, 

and is released on GitHub.
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1 Introduction

The emergence of machine learning techniques has made automatic disease prediction from 

medical imaging data possible. The recent development of deep learning pushes prediction 

accuracy beyond human performance in some scenarios, and is able to assist clinical 

diagnosis/treatment decisions (De Fauw et al., 2018; Kohl et al., 2018; LeCun et al., 2015). 

In neuroimaging, deep learning has had successes in several applications in predictive and 

diagnostic analysis, such as brain age prediction and modelling (Cole et al., 2017; Kawahara 

et al., 2017), sex classification (Arslan et al., 2018), disease prediction (Baumgartner et al., 

2018; Korolev et al., 2017; Liu et al., 2018) and brain lesion segmentation (Kamnitsas et al., 

2017), yet still faces several challenges. For example, 3D neuroimaging data requires much 

more GPU memory than most 2D images, meaning that models successful in 2D data (e.g., 

ImageNet classification (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014)) are 

infeasible in the 3D scenario. There are several researches mitigating this issue (e.g.) by 

downsampling the input (Korolev et al., 2017), taking patches (Kamnitsas et al., 2017; Liu et 

al., 2018) or 2D slices (Bashyam et al., 2020; Lin et al., 2018) as input instead of the 3D full 

brain, or using a reversible architecture (Brügger et al., 2019), yet involving trade-offs 

between the GPU memory restriction and the information/performance loss. Further, deep 

networks usually require a large sample size for model fitting, but neuroimaging datasets 

often have relatively few samples compared to existing million-sample natural image 

datasets (Raghu et al., 2019; Russakovsky et al., 2015), which could limit the ability to learn 

image features effectively, and result in overfitting problems. New model architecture design 

is needed to address these challenges for neuroimaging applications.

Predicting chronological age based on structural brain magnetic resonance imaging (MRI) 

data shares common challenges with many other neuroimaging applications, and can be used 

to develop and test deep learning algorithms. It also receives attention for its potential 

clinical and biological relevance (Ashburner, 2007; Brown et al., 2012; Cole et al., 2018; 

Cole and Franke, 2017; Davatzikos et al., 2009; Franke et al., 2014, 2010; Franke and Gaser, 

2019; Habes et al., 2016; Kaufmann et al., 2019; Neeb et al., 2006). The predicted age can 

be considered to be the "brain age”, because it is derived purely from the brain imaging data. 

After estimating brain age, a further quantity of interest is the difference between the 

predicted age (brain age) and the actual age, sometimes referred to as the brain-age delta. 

Positive delta implies that a subject’s brain looks older than their actual age, i.e., they are 

experiencing accelerated ageing. For example, existing studies have observed that the brain-

age delta is an effective biomarker that shows differences between different clinical groups 

(Kaufmann et al., 2019) and is predictive for mortality (Cole et al., 2018). Achieving 

accurate brain age prediction is an essential pre-requisite for optimising brain-age delta as a 

biomarker. To reach this goal, many studies have used different models, such as regularized 

linear regression, support vector machines and Gaussian process regression, for brain age 

prediction (Franke and Gaser, 2019). Some studies have used deep learning methods (Cole 
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et al., 2017; Feng et al., 2019; Kolbeinsson et al., 2019). However, challenges exist for 

further improvement of prediction accuracy, especially on small datasets, and some studies 

have shown that deep learning performs no better than simpler machine learning models in 

typical neuroimaging datasets (He et al., 2020; Schulz et al., 2019). It has not yet, for 

example, been clearly established whether more complex deep learning models perform 

better than simpler models (for the task of brain age prediction using structural MRI data). 

In addition, predicted brain age is often systematically biased towards the group mean value, 

resulting in a correlation between the delta and the chronological age, which weakens the 

validity of the delta as a biomarker (Smith et al., 2019). Therefore, it is both 

methodologically interesting and scientifically important to develop unbiased high-

performance deep learning strategies for brain age prediction.

In this paper, a lightweight deep learning architecture, Simple Fully Convolutional Network 

(SFCN), is presented for brain age prediction. Its architecture is based on the fully 

convolutional network (FCN) (Long et al., 2015) and the VGG net (Simonyan and Zisser-

man, 2014) and takes 3D minimally-preprocessed T1 brain images (and/or preprocessed 

segmentation outputs) as input. The successful CNN architecture VGG net and its variant 

with BatchNorm layers (Ioffe and Szegedy, 2015) provide a deep architecture consisting of a 

sequence of basic blocks: (Conv-BatchNorm-Activation)xN-Pooling. To reduce memory 

requirements, SFCN keeps only one conv-layer before each MaxPool layer. In addition, we 

remove all the fully-connected layers, which not only greatly reduces the number of 

parameters, but also provides a fully convolutional architecture that is versatile for 

accommodating different input sizes (Long et al., 2015). Using proper data augmentation 

and regularization techniques, the model achieved state-of-the-art mean absolute error 

(MAE) of 2.14 years in the UK Biobank dataset (14,503 subjects, of which 12,949 are used 

for training). This model performs better than several widely-used machine learning models 

in the literature. In addition, we propose a model ensemble strategy that averages the outputs 

of deep learning models based on different kinds of preprocessing applied to the T1 data, 

namely, white matter segmentation, grey matter segmentation, linearly-registered raw T1 

and nonlinearly registered raw T1; this further boosts the accuracy of brain age prediction. 

Finally, we extended the bias correction techniques proposed by (Smith et al., 2019) to 

greatly reduce the correlation between the brain-age delta and the chronological age, with 

very little compromise of performance, even when the true ages of test (validation) subjects 

are unknown. The ensemble SFCN came first in the Predictive Analysis Challenge 2019 in 

brain age prediction (MAE = 2.90 years) among the 79 participating teams1 With bias 

correction, our model achieved an MAE of 2.95 years, thereby ranking first also in the other 

part of the competition (most accurate age prediction while minimising bias). The trained 

model is available in the GitHub repository: https://github.com/ha-ha-ha-han/

UKBiobank_deep_pretrain/

Our main contributions in this paper are:

1. We propose a novel lightweight 3D CNN architecture, Simple Fully 

Convolutional Network, which performances better than deeper CNNs and is 

even more data efficient than simpler linear models in brain age and sex 

prediction.
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2. We demonstrate that combining complementary information from different 

preprocessing pipelines improve age prediction accuracy (even by simply 

averaging the outputs using different modalities).

3. We propose a novel bias correction method for brain age prediction which can be 

applied to new unknown-label test datasets.

2 Methods

2.1 Model: Simple Fully Convolutional Network (SFCN)

We use a convolutional neural network (CNN) architecture to estimate brain age using 3D 

T1 images. The architecture is based on VGGNet (Simonyan and Zisserman, 2014) and uses 

a fully convolutional structure (Long et al., 2015), but we keep the number of layers as small 

as possible to reduce the number of parameters to about 3 million, and therefore to reduce 

computational complexity and memory cost. We name this model structure “Simple Fully 

Convolutional Neural Network” (SFCN) to reflect its simplicity.

The model consists of seven blocks, as shown in Figure 1. Each of the first five blocks 

contains a 3-by-3-by-3 3D convolutional layer, a batch normalisation layer (Ioffe and 

Szegedy, 2015), a max pooling layer and a ReLU activation layer (LeCun et al., 2015). The 

1mm-input-resolution 160 × 192 × 160 3D input image (with little or no brain tissue loss) 

goes through each block sequentially, with its feature map generated and spatial dimension 

reduced to 5 × 6 × 5 after the fifth block. The sixth block contains a 1 × 1 × 1 3D 

convolutional layer, a batch normalisation layer and a ReLU activation layer. The seventh 

block contains an average pooling layer, a dropout layer (only used for training, with 50% 

random dropout rate) (Srivastava et al., 2014), a fully connected layer and a soft-max output 

layer. The channel numbers used in each convolution layer are [32, 64, 128, 256, 256, 64, 

40]. The output layer contains 40 digits that represent the predicted probability that the 

subject’s age falls into a one-year age interval between 42 to 82 (for UK Biobank) or a two-

year age interval between 14 to 94 (for PAC 2019). A weighted average of each age bin is 

calculated to make the final prediction:

pred = ∑
c

40
xc ⋅ agec

xc stands for the probability predicted for the c thage bin and agec stands for the bin centre 

for the age interval.

The internal process of the model can be interpreted as three stages: 1) The first five blocks 

extract feature maps from each input image. 2) The sixth block further increases the 

nonlinearity of the model by adding one extra nonlinear layer but without changing the 

output size of feature maps. 3) The seventh block maps the generated features to the 

predicted age probability distribution.

The first two stages encode the input image to a feature vector, and the third stage can be 

viewed as a classifier based on the deep feature. At the first stage, the spatial information is 
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maintained and takes most of the memory. To reduce the overall GPU memory consumption, 

we limited the channel numbers of the first layer to 32 and put only one convolutional layer 

in every block. To compare, a VGGnet usually has two convolutional layers inside a block 

and has 64 channels in the first layer (Simonyan and Zisserman, 2014). At the later stages 

(higher-level layers) of deep learning models, fully connected (FC) layers usually have the 

largest number of learnable parameters. For example, the penultimate layer of VGGnet 

(FC-4096) consists of about 16 million parameters. By removing most of the FC layers and 

keeping the number of channels small in the last two stages in SFCN, the number of 

learnable parameters is greatly reduced. Although reducing the number of FC layers can 

potentially reduce the nonlinearities learnt by the model, in most neuroimaging classification 

tasks, the number of classes is smaller than that for natural images. For example, there are 

only 40 “classes” (age bins) for brain age prediction, which is a very small number 

compared to 1000 classes in the ImageNet classification task. In this case, the small 

parameter number and the lack of FC layers do not harm the testing (validation) 

performance.

To compare SFCN with a popular CNN architecture, we implemented a 3D version of 

ResNet (He et al., 2016). The architecture of 3D-ResNet follows the literature but the 

convolution filters are changed to 3D. For the experiments, the SFCN and the ResNet share 

the same training parameters and both achieve successful performance in the training set. 

(Comparison against a broader set of alternative approaches is provided via the results from 

the PAC 2019 competition.)

SFCN contains only 3.0 million parameters, which is less than one tenth of the 33.2 million 

for 3D ResNet-18, 46.2 million for 3D ResNet50 and 133 million for 2D VGGnet 

(Simonyan and Zisserman, 2014).

2.2 Regression models: Elastic Net

We compared our deep learning model with simpler machine learning models using T1 MRI 

derived features as inputs (Schulz et al., 2019). We choose Elastic Net for our comparison, 

because it has been shown to be a high-performance and stable machine learning model for 

neuroimaging data (Jollans et al., 2019). Three forms of the T1 data from UKB were 

(separately) used for age prediction: (1) Voxel-level linearly registered “raw” T1 images; (2) 

Voxel-level grey matter partial-volume estimated by FSLVBM voxel-based morphometry; 

(3) T1-image derived regionlevel phenotypes (Miller et al., 2016). In the training set, we 

used principal component analysis (PCA) to reduce the data into an L-dimensional space 

(L=5000 for (1) and (2), no PCA for (3)), and then used Pearson correlation to select the top 

k features (from k=10 to all features) that correlate with age, and finally used elastic net 

regression (implemented in the glmnet package) to predict age (Friedman et al., 2010). All 

model parameters were optimised via internal cross-validation within the validation set. The 

selected best model was applied to the test set and performance reported. Besides age 

prediction, the logistic version of elastic net is also implemented with the scikit-learn 

package (Pedregosa et al., 2011) for sex classification on the T1-image derived region-level 

phenotype features. We also implemented a widely-used support vector machine for brain 

age prediction, but did not find better performance compared with the above model.
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2.3 Bias correction

We used the linear bias correction method described in (Smith et al., 2019) for bias 

correction for the delta. Such a bias correction is valuable for most brain-age prediction 

studies, as there is normally an underfitting of the prediction, due to problems such as 

regression dilution and non-Gaussian age distribution. Defining y to be chronological age 

and x the predicted age, we fitted a linear regression x = ay + b to the left-out validation set 

(with labels). The corrected predicted age is estimated by

x = (x − b)/a

This method requires (at the point of estimating a and b from x and y) that the chronological 

ages are known. For the label-missing (final evaluation) test set, we assumed that a and b are 

generalisable, and used the coefficients previously fitted in the left-out validation set to 

estimate the corrected brain-age delta.

3 Experiments

3.1 Datasets and preprocessing

3.1.1 UK Biobank—UK Biobank is collecting a large-cohort of brain imaging data from 

predominantly healthy participants (Miller et al., 2016). In this study, we used the T1 data 

from 14,503 subjects (mean age 52.7 years, standard deviation 7.5 years, range 44-80 years), 

of which 12,949 were used for training, 518 for validation and 1,036 for testing. The image 

preprocessing pipeline is described in (Alfaro-Almagro et al., 2018). We used data as 

preprocessed already (by our laboratory on behalf of UK Biobank), and as available to all 

researchers who have been granted access to UKB data. The input data to the deep neural 

network model was brain extracted, bias corrected and linearly registered to MNI152 

standard space (unless otherwise specified). The head size of subjects is normalized as a 

result of the linear registration.

3.1.2 PAC 2019—As part of testing the performance of our method objectively, we 

participated in the Predictive Analytic Challenge (PAC) 2019. This competition was broken 

down into two parts: a) to achieve the lowest mean absolute error 

MAE = 1
N ∑

i = 1

N
∣ predi − agei ∣  for brain age prediction; and b) to achieve the lowest MAE 

while keeping the Spearman correlation between the brain-age delta and the chronological 

age under 0.1 (because in general, ideally delta would have no bias or age dependence). The 

dataset contains T1 structural MRI brain images from 2,638 subjects (mean age 35.9 years, 

standard deviation 16.2 years, range 17-90 years).2 We used 2,199 subjects for training, and 

439 subjects as a left-out validation set. In addition, there were 660 subjects whose labels 

were unknown to the challenge participants, forming a test set for benchmarking (i.e., the 

results on this test set determined the final challenge scores).

2This information is publicly available in the challenge website: https://web.archive.org/web/20200214101600/https://www.photon-
ai.com/pac2019 

Peng et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2021 May 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://web.archive.org/web/20200214101600/https://www.photon-ai.com/pac2019
https://web.archive.org/web/20200214101600/https://www.photon-ai.com/pac2019


3.2 Training and testing

During the training process, we use a Stochastic Gradient Descent (SGD) optimiser 

(Sutskever et al., 2013) for the UKB dataset to minimise a Kullback-Leibler divergence loss 

function between the predicted probability and a Gaussian distribution (the mean is the true 

age, and the distribution sigma is 1 year for UKB) for each training subject. This soft-

classification loss encourages the model to predict age as accurately as possible. To reduce 

over-fitting, two data augmentation methods are applied during the training phase. In every 

epoch, the training input is 1) randomly shifted by 0, 1 or 2 voxels along every axis; 2) has a 

probability of 50% to be mirrored about the sagittal plane.

The performance of the model can be evaluated by Mean Absolute Error (MAE) and 

Pearson correlation coefficient (r-value) in the validation and test sets.

All the models were trained with two NVIDIA P100 GPUs. The training time was 

approximately 0.5 hour to go through each of the 12,949 training subjects once (i.e., one 

training epoch). The L2 weight decay coefficient was 0.001. The batch size was 8. The 

learning rate for the SGD optimiser was initialized as 0.01, then multiplied by 0.3 every 30 

epochs unless otherwise specified. The total epoch number is 130 for the 12,949 training 

subjects. The epoch number is adjusted accordingly for the experiments with smaller 

training sets so that the training steps are roughly the same. The epoch with the best 

validation MAE is used for testing. The deep learning models are trained with the same 

hyperparameters, as we found that model performance is stable against small changes of 

hyperparameters.

For the ensemble strategy, we randomly initialised and trained 20 models; 5 (identical 

network structure but randomly-initialised parameters) models were trained on each of the 

four input data types: linearly registered GM and WM, non-linearly registered T1 and 

linearly registered T1. The ensemble experiments use 2,590 subjects for training to reduce 

the overall computation time. The prediction is made by averaging the results of all 20 

models.

3.3 Sex classification

To show the generalisability of SFCN to other tasks, we also tested the performance for sex 

classification. The input brain is linearly registered to standard space (same as the age 

prediction experiments) so that the overall brain size is the same for all subjects of both 

sexes. The architecture of the model and the training setting remains mostly the same as for 

age prediction, with differences now described. With all other model parameters unchanged, 

the number of classes is set to two and the loss function is changed to cross entropy. The 

learning rate for the SGD optimiser was initialized as 0.01, then multiplied by 0.3 every 30 

epochs. The total epoch number is 220 for the experiments with 100 training subjects, and 

150 for all other experiments (1036, 4662, 9841 training subjects, respectively).
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4 Results

4.1 The performance of SFCN in UK Biobank data

Table 1 shows the performance of the SFCN in the UKB dataset with 12,949 training 

subjects. SFCN with data augmentation and dropout achieved an MAE of 2.14 years, which 

is 0.46 years better than that without these regularizations.

With the same regularization techniques, we then compared SFCN with other popular CNN 

architectures, namely the 3D version of ResNet18, ResNet50, ResNet101 and ResNet152 

(He et al., 2016). Unlike in the ImageNet classification task (He et al., 2016), deeper models 

do not perform better than the shallow ones in brain age prediction: ResNet50 presents the 

best MAE among the four models (MAE = 2.32 years), rather than the deeper ones with the 

same basic units (ResNet101, MAE = 2.41 years; ResNet152, MAE = 2.38 years). Yet, 

SFCN is 0.18 years better than the best ResNet model.

During the hyperparameter tuning phase, we noted that the choice of optimizer may affect 

the model performance. To demonstrate this, we train an SFCN model with 12,949 subjects 

using ADAM optimizer (Kingma and Ba, 2014). The model converges to a less optimal 

point with test MAE = 2.39 years, which is 0.15 years worse than its SGD counterpart, and 

has a larger validation-train MAE gap.

Among all the tested architectures, the most lightweight model, SFCN, achieves the best 

performance. As shown in Table 1, the SFCN with regularizations achieved the best test 

performance but by far the worst in the training set, suggesting a significant difference 

(between models) in levels of over-fitting. The gap (a measure of over-fitting) between the 

validation MAE and the train MAE is 0.83 years for the SFCN, which is the smallest among 

all the models.

The SFCN model trained with a dropout layer and data augmentation achieves the best 

MAE. To study the effect of the regularisation techniques, we trained models each with one 

of the three techniques, namely, dropout, voxel shifting and mirroring, and show the test 

results in Table 2, with 2,072 training subjects (hence the worse overall results compared 

with the above). When applied to each of these 3 techniques individually during training, 

each of the regularisation methods reduces over-fitting and improves the test MAE by about 

0.1-0.5 years. Combining all the three methods together, the model achieves the best test 

performance given this number of training subjects (MAE = 2.82 years), showing a large 

improvement of 0.85 years compared with the unregularized model. We also experimented 

replacing BatchNorm layers (Ioffe and Szegedy, 2015) with InstanceNorm layers (Ulyanov 

et al., 2016), which achieves comparable MAE. Finally, we added one fully connected layer 

with 64 channels (together with batch normalisation) before the final layer. While giving 

similar training MAE, the added layer reduces the generalisability to the test set (test 

MAE=3.59y). Our results clearly show that the regularisation techniques improve the model 

performance and the lightweight model structure outperforms the tested deep models. These 

observations can be used for future reference to design deep learning strategy in neuroimage 

datasets.
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Our presented strategy achieves state-of-the-art results in brain age prediction. Table 3 shows 

a summary of previously reported brain age prediction MAE results (Kolbeinsson et al., 

2019; Ning et al., 2018; Smith et al., 2020). To eliminate the effect of sample size 

differences (i.e., to make these comparisons as meaningful as possible), we trained SFCN 

with comparable training set sizes as the previous studies, and compared performance with 

those. With about 2600 training subjects, SFCN achieves an MAE of 2.76 years, while linear 

regression achieves MAE 3.5 years (Ning et al., 2018). With about 5000 training subjects, 

SFCN achieves 2.28 years MAE while 3D-ResNet with tensor regression achieves 2.58 

years (Kolbeinsson et al., 2019). For the larger training set with more than 10,000 subjects, 

linear regression with multi-modality IDPs (including fMRI and DTI features) achieves an 

MAE of 2.9 years (Smith et al., 2020, 2019), whereas SFCN obtains the best MAE in UK 

Biobank with an MAE of 2.14 years.

Besides the state-of-the-art brain age MAE performance among all the reported studies in 

UK Biobank, our model and strategy also achieved 99.5% accuracy in the hold-out test set 

for sex classification (0.5% error rate) based on T1 images, as summarized in Table 4. This 

result is a considerate improvement compared to the previously reported results 

(classification accuracies varying from 69% to 93%, with or without head size regressed out) 

(Chekroud et al., 2016; Giudice et al., 2016; Joel et al., 2016, 2015; Rosenblatta, 2016). This 

result suggests that SFCN is generalisable to other tasks for neuroimaging research.

4.2 Comparing the learning curves of SFCN with simpler regression models

There are controversies regarding whether a deep learning model can perform better than 

linear models to predict phenotypic and behavioural variables using neuroimaging data (He 

et al., 2020; Schulz et al., 2019). For the task brain age prediction using T1 structural MRI 

data, two questions remain to be answered: 1. Do DL models surpass the performance of 

simpler regression models? 2. How many training samples do DL or simpler regression 

models need for good performance?

We compared our deep learning model and a well-tuned regression model, elastic net, for 

brain age prediction. We also explored the effect of the training dataset size (from 50 to 

12,949 subjects) on the performance of the two models. As summarised in Fig. 2, we find 

that the SFCN outperforms elastic net regardless of the training set size. Even with as few as 

50 training subjects, the DL model achieves better performance.

The same data-efficiency is also seen in the sex classification task. As summarized in Table 

4, in all the four training settings (small dataset: 100 training subjects, medium dataset: 1036 

training subjects, large dataset: 4662/9841 training subjects), deep learning methods achieve 

higher sex classification accuracy than the elastic net.

MAE decreases with the increase of training set size, and approximately follows a linear-log 

relationship for all methods. If the training set size doubles, the MAE decreases by about 0.3 

to 0.4 years. In our experiment setup, there is no conclusive signature of performance 

saturation for the large dataset size, although the last few data points do deviate from the 

simple linear-log relationship. With the increasing size of UK Biobank and other datasets, 

we can expect even better performance in future studies.
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4.3 Semi-multimodal model ensemble improves the performance with limited number of 
training subjects

In previous sections, we trained our SFCN model using only one modality, namely raw T1 

data linearly registered to the MNI space (Lin). To test whether adding other modalities 

(here “modalities” refers to different kinds of preprocessing of the T1 data) can further boost 

performance, we trained SFCN using three other modalities derived from T1 image data: 

raw T1 data nonlinearly registered to the MNI space (NonLin), segmented grey matter (GM) 

and white matter (WM) volumes.

For each of the above 4 modalities, we trained 5 models using different random parameter 

initializations. To prove the effectiveness of the ensemble strategy without greatly increasing 

the computing time, we choose a training dataset size of 2,590 subjects for all the models 

used in this section.

Models trained with different modalities achieve comparable performance with small 

differences in MAE. NonLin achieved the best MAE (2.73 years), while the Lin and GM 

achieved comparable MAE of 2.80 years. These modalities are all better than the MAE for 

WM (2.86 years), as shown in Table 5.

Even though different modalities may result in similar MAEs, the trained models (and 

deltas) may contain distinct information. This is shown in the correlation matrix of deltas 

predicted by each of the 20 models in the test sets in Fig. 3A (these correlations are between 

any two estimates of the Nsubjects x 1 vector of deltas). Models with the same modalities 

show higher correlation for the brain-age delta prediction.

To better utilise the information contained within different modalities, we used all four 

modalities to form an ensemble. For every subject, the 20 models predicted 20 brain ages. 

The final prediction for the subject was made using the mean of all the predicted ages. This 

strategy achieved an MAE of 2.58 years, which is 0.22 years better than single model 

prediction, with 2,590 training subjects.

The success of the ensemble strategy is not only owing to the large number of models, but 

also due to the independent information gathered from different modalities. To illustrate this, 

we combined every pair of models and plotted the MAE improvement after ensemble 

averaging against the delta correlation coefficient in Fig. 3B. The result clearly shows that 

the less correlated two models are, the better performance the ensemble will produce. It has 

been shown that models trained from different modalities tend to be less correlated. 

Therefore, combining models from different modalities with complementary information 

gives the greatest performance enhancement.

4.4 Bias correction

The next challenge is bias correction. We illustrate the age prediction results of SFCN 

trained with 12,949 subjects in Fig. 4. The predictions tend to bias towards the mean age of 

the cohort, which means that younger subjects will be predicted to be older and vice versa. 

This is due to regression dilution (MacMahon et al., 1990) and other factors such as model 

regularization and nonGaussian distribution of the labels (true ages) (Smith et al., 2019), and 
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results in a high correlation between brain-age delta (prediction - age) and chronological age 

(Spearman’s r=-0.39). We followed (Smith et al., 2019) to regress age out of the delta. In the 

PAC 2019 competition framework, we do not know the label of the test set. In this case, we 

regressed out age in the 518-subject validation set and then used the estimated bias 

correction regression coefficients for bias removal in the test set. This process assumes that 

the bias distribution is the same for both the validation and the test set, and does not require 

any knowledge of the age labels in the test set. As summarized in Table 6, this technique 

reduced the bias Spearman’s r-value from -0.37 to 0.03, with an increase of just 0.15 years 

in the MAE for the validation set. The generalised strategy (for unlabelled data) reduced the 

r-value from -0.39 to 0.01, with a small increase (0.11 years) in the MAE for the test set.

Finally, we tested our methods of SFCN, data augmentation, ensemble and bias correction in 

the PAC 2019 brain age prediction challenge and achieved first places in both goals of the 

challenge: 1. to achieve the smallest MAE and 2. To achieve the smallest MAE with bias 

Spearman’s r-value under 0.1. For the first objective, we achieved MAE=2.90 years, which 

was 0.18/0.42 years better than the second/third places. For the second objective, we 

achieved MAE=2.95 years, and this result was 0.85/0.97 years better than the second/third 

places, i.e., a significant improvement (over the other best approaches) of almost one year. 

These results are available in the challenge website.3

5 Discussion

We have demonstrated that with a well-trained model, deep learning method can achieve 

better performance than the simpler regression models tested even in a training set size as 

small as 50 subjects. While a few studies have shown the opposite conclusion (that linear 

regression outperforms deep learning in neuroimaging data (Schulz et al., 2019), we argue 

that DL method is a large family of algorithms and techniques, some more suitable than 

others for neuroimaging. Different choices of model architectures and training strategies can 

result in very different results.

Compared to the simpler regularized regression methods, one of the potential limitations of 

our method is the training resource consumption. Although the inference time is about a few 

milliseconds per subject once the model is trained, the training time takes more than 50 

hours using 2*P100 GPUs with 14K subjects for one single model and one single modality. 

As the UK Biobank dataset is still expanding and even larger datasets may appear in the 

future, the resource requirement will increase as well, and this may limit the ability of fast 

explorational research. Thus, it is important to develop fast training strategies and/or to test 

the feasibility of transfer learning to reuse pretrained weights for deep learning models in 

neuroscience research.

In our study, we have successfully demonstrated the effectiveness of the lightweight model 

SFCN as an example of a DL method. We have shown that the lightweight architecture 

without a fully connected layer achieves less overfitting and better results than deeper 

3Link to the results: https://web.archive.Org/web/20200214101600/https:/www.photon-ai.eom/pac2019#results Team: 
BrainAgeDifference
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models in brain age and sex prediction tasks. This observation is in line with the recent study 

by Raghu et al. (Raghu et al., 2019) which shows that, while deep ImageNet architectures 

achieve state-of-the-art performance in natural images, small models can achieve 

comparable (if not better) performance than deeper nets in 2D retina images and chest X-ray 

images. It is intriguing why the lightweight model performs better than the deeper ones. One 

insight is that in medical imaging (and neuroimaging) applications, the classification tasks 

involve only a few classes and thus there is no need for a wide FC layer or large 

overparameterization (Raghu et al., 2019). However, it remains an open question how the 

representations learnt by the lightweight models differ from the deep ones, and what is the 

general principle to optimally design a minimum architecture for medical imaging 

applications.

We have also demonstrated the performance gain by including different ‘modalities’ in the 

model ensemble, rather than using a single modality only. Due to the limitation of the 

computing power, we use the simplest method (averaging the predictions) and recognise 

there are more effective ways to combine the information from multi-modality inputs. For 

example, both Cole et al. (Cole et al., 2017) and Jonsson et al. (Jonsson et al., 2019) trained 

models with different modalities. Cole et al. concatenated the encodings of different 

modalities in the FC layer, and Jonsson et al. used a majority voting strategy to form the 

final prediction, and both received performance gain through multimodal inputs.

We have extended the bias correction method by Smith et al. (Smith et al., 2019) to be able 

to correct bias in new data where the age is not known, and successfully removed 

Spearman’s rank correlation between the brain age delta and the true age. However, simple 

linear regression does not remove nonlinear bias effects. Polynomial regression could be 

used where supported by (and required by) the data in question, as proposed in (Smith et al., 

2019), and using the same extension to new data described in our work.

To conclude, we proposed SFCN, a lightweight deep neural network architecture, which 

achieved state-of-the-art brain age prediction and sex classification using T1-weighted 

structural MRI images. We investigated different approaches for boosting the performance 

of the deep learning model, and tested three factors that are valuable for improving the 

performance of a single deep learning model in a neuroimaging dataset through a series of 

controlled experiments: (1) the lightweight model structure (summarised in Table 1), (2) 

data augmentation and regularisation techniques (e.g., dropout, voxel shifting and mirroring, 

as summarised in Table 2), (3) large dataset size (summarised in Fig. 2). For semi-

multimodal data (i.e., data from a single modality but which has been through several 

distinct processing steps), we presented an ensemble strategy that improved single modality 

results by utilising the (somewhat) independent information from different modalities. 

Finally, we showed that regressing the true age out of brain-age delta (predicted age minus 

actual age) can effectively correct bias, and the fitted slope and intercept can be directly 

transferred to the unknown test set in UK Biobank, one of the largest neuroimaging datasets. 

We also showed that, SFCN can outperform simpler regression models even with small 

training set sizes. These results are successful explorations of the application of DL in the 

neuroimaging data.
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Fig. 1. Illustration of the core network for the Simple Fully Convolutional Neural Network 
(SFCN) model.
A) SFCN. The model takes 3D brain image data and contains 7 blocks. Each of the first 5 

consecutive blocks consists of a 3 × 3 × 3 3D convolution layer, a Batch Norm layer, a Max 

Pooling layer and a ReLU activation. The 6 th block contains one 1 × 1 × 1 3D convolution 

layer, a Batch Norm layer and a ReLU activation. The 7th block contains an average pooling 

layer, a dropout layer, an 1 × 1 × 1 3D convolution layer and a softmax layer. B) An example 

of soft labels and output probabilities. The soft label is a probability distribution centered 

around the ground-truth age, and is used to compute the KL-divergence loss, enabling a 

smooth decrease in the loss function when the prediction improves during the training phase.
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Fig. 2. Learning curve for SFCN in UK Biobank data.
The methods include SFCN, Elastic nets (glmnet) with different input features, and existing 

studies. The error bars show the standard deviation by 1000 bootstrap samples. The dashed 

lines show the log-linear relationship between the training set size and the testing MAE. 

This shows that as the dataset size doubles, the MAE decrease by around 0.3 to 0.4 years for 

the linear and the deep learning models. The horizontal dark solid line indicates the MAE 

when using the population mean age as the predicted age for every testing subject.
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Fig. 3. Model ensemble.
A) Correlations of brain-age delta predictions between models trained and tested with 

different modalities. The color coding shows the correlation r-value. For each modality, the 

training subjects are split into 5 folds, and each model is trained with one-fold being left-out. 

The delta estimation is made in the common validation set. Any two models trained with the 

same modality show stronger correlation (between their respective delta estimates) than the 

models trained with different modalities. The bottom row shows the correlation between 

individual models and the ensemble prediction. B) Scatter plot: ensemble performance 

improvement versus delta correlation of any two models. Purple dots represent for 

ensembles with different modalities. Red dots are for ensembles with the same modality. 

Normalized histograms of performance improvement and delta correlation of the two-model 

combinations are plotted alongside. The combination of two models with smaller correlation 

shows better improvement for the ensemble performance.
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Fig. 4. Bias correction.
(Left panel) Results of brain age prediction for the UK Biobank test set, SFCN trained with 

the full training set. (Middle) Results of delta without correction. (Right) Results of delta 

with correction.

Peng et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2021 May 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Peng et al. Page 21

Table 1
Performance of different deep learning models in UK Biobank data.

The training set size is 12,949. The input data are T1 MRI images which are linearly registered to a standard 

space. After the training is done, the epoch with the best validation MAE is selected to be evaluated on the test 

set. The test results are bootstrapped 1000 times to compute the mean test MAE and the standard deviation. 

Epochs 95 to 110 are selected to compute the train MAE, standard deviation of the train MAE and the mean 

validation-train MAE gap (the difference between the validation MAE and the train MAE). All models used 

the same regularization techniques (dropout, voxel shifting, and mirroring) except for the first row (SFCN 

without regularization). All models are trained with SGD (except for the second row with ADAM).

Model Test MAE (years) Validation MAE (yrs) Train MAE (yrs) Val-Train MAE gap (yrs)

SFCN without regularization 2.60±0.06 2.62±0.03 0.337±0.012 2.30±0.03

SFCN (ADAM) 2.39±0.06 2.604±0.009 1.610±0.011 0.993±0.015

SFCN (SGD) 2.14±0.05 2.18±0.04 1.36±0.03 0.83±0.06

3D ResNet18 2.50±0.06 2.38±0.03 0.40±0.04 1.98±0.05

3D ResNet50 2.32±0.05 2.33±0.03 0.88±0.05 1.45±0.05

3D ResNet101 2.41±0.06 2.43±0.02 0.85±0.04 1.59±0.04

3D ResNet152 2.38±0.06 2.38±0.03 1.06±0.05 1.32±0.06
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Table 2
Performance of SFCN with different regularisation and data augmentation methods.

DP=Dropout, VS=Voxel Shifting, MR=Mirroring, 1FC = SFCN with one extra fully connected layer. The 

training set size is 2,072. The input data are T1 MRI images which are linearly registered to a standard space. 

After the training is done, the epoch with the best validation MAE is selected to be evaluated on the test set. 

The test results are bootstrapped 1000 times to compute the mean test MAE and the standard deviation. 

Epochs 185 to 200 are selected to compute the train MAE, standard deviation of the train MAE and the mean 

validation-train MAE gap (the difference between the validation MAE and the train MAE).

Data Augmentation
and Regularisation Test MAE (yrs) Validation MAE (yrs) Train MAE (yrs) Val-Train MAE gap (yrs)

None 3.67±0.09 3.59±0.02 0.305±0.007 3.29±0.03

DP 3.59±0.08 3.67±0.04 0.92±0.02 2.76±0.05

VS 3.05±0.07 3.14±0.03 0.59±0.01 2.56±0.03

MR 3.13±0.08 3.25±0.02 0.47±0.01 2.78±0.03

DP + VS + MR 2.82±0.07 2.73±0.03 1.51±0.03 1.22±0.04

DP + VS + MR + 1FC 3.59±0.08 3.6±0.3 1.49±0.05 2.1±0.3

DP + VS + MR + InstanceNorm 2.86±0.07 2.83±0.02 1.70±0.02 1.13±0.03
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Table 3
A summary of the reported UK Biobank study in brain age prediction.

Training set size Model
Performance
MAE (yrs)

2590 SFCN 2.76±0.06

2679 Linear regression Ning et al. 2019 bioRxiv 3.5

5180 SFCN 2.28±0.05

5700 3D-ResNet + Tensor Regression Kolbeinsson et al. 2019 arxiv 2.58

12949 SFCN 2.14±0.05

18707 IDP + I CA + Linear regression Smith et al. 2020 eLife 2.9
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Table 4
Sex prediction accuracy of different deep learning models in UK Biobank data with 
different numbers of training subjects.

The input data are T1 MRI images which are linearly registered to a standard space. After the training is 

completed, the final epoch is used to be evaluated on the test set. For SFCN and ResNet-50, last 20 epochs are 

used to compute the validation/train accuracy and the standard deviations, and every 5 out of the last 20 

epochs are used to compute test accuracy. For elastic net, 1000-fold bootstrapping is used to compute the mean 

and the standard deviation of the test/validation/train accuracy.

Number of training subjects Model Test accuracy Validation accuracy Train accuracy

100 Elastic net + T1 IDP 0.830±0.011 0.824±0.017 0.990±0.010

ResNet-50 0.862±0.005 0.869±0.008 0.951±0.024

SFCN 0.907±0.005 0.918±0.006 0.926±0.017

1036 Elastic net + T1 IDP 0.862±0.011 0.878±0.014 0.922±0.008

ResNet-50 0.951±0.000 0.951±0.002 1.000±0.000

SFCN 0.977±0.000 0.985±0.002 0.997±0.002

4662 Elastic net + T1 IDP 0.878±0.010 0.875±0.014 0.896±0.004

ResNet-50 0.977±0.001 0.982±0.001 1.000±0.000

SFCN 0.989±0.000 0.993±0.001 1.000±0.000

9841 Elastic net + T1 IDP 0.884±0.010 0.872±0.015 0.893±0.003

ResNet-50 0.984±0.001 0.996±0.001 1.000±0.000

SFCN 0.995±0.000 0.997±0.001 1.000±0.000
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Table 5
Performance of models trained/tested with different modalities in the test set of the UK 
Biobank dataset.

5 models were trained for each modality and used to predict brain age individually. The mean and the standard 

deviation of the single model performances were computed within each modality. For the ensemble 

performance, 5 models are randomly selected (with duplications allowed) and the predictions were averaged to 

give the ensemble prediction. This process is repeated for 1000 times to compute the mean test MAE and the 

standard deviation. For the final ensemble with all modalities, 5 models are randomly selected (with 

duplications allowed) within each modality and the 20 selected models were used to make the final prediction. 

This process is repeated for 1000 times to compute the mean test MAE and the standard deviation.

Modality

Performance

Single Model Ensemble

MAE (yrs) r value MAE (yrs) r value

Raw, linearly registered 2.80±0.03 0.883±0.003 2.71±0.03 0.892±0.002

Raw, non-linearly registered 2.73±0.02 0.890±0.002 2.62±0.03 0.900±0.002

Grey matter 2.80±0.04 0.881±0.003 2.72±0.02 0.888±0.002

White matter 2.86±0.04 0.878±0.003 2.78±0.02 0.887±0.002

All models 2.80±0.06 0.883±0.005 2.58±0.01 0.904±0.001
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Table 6
Performance of the ensemble model with and without bias correction.

The UK Biobank validation set is used to estimate the slope and intercept from a linear fitting, which is then 

used to generalized in the unseen UK Biobank test set. This strategy, together with SFCN and the ensemble, 

was used to take first place in the PAC 2019 Brain Age Prediction Challenge.

Dataset

Performance Performance with Bias Correction

MAE (years) Spearman Correlationdelta vs age MAE (years) Spearman Correlationdelta vs age

UK Biobank validation set 2.10 -0.37 2.25 0.03

UK Biobank test set 2.14 -0.39 2.25 0.01

PAC 2019 Brain

Age Prediction Challenge 2.90 -0.39 2.95 -0.03
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