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Abstract The purpose of this study is to investigate the expression of major potassium channel subtypes
in the brain of chronical mild stress (CMS) rats and reveal the effects of fluoxetine on the expression of
these channels. Rats were exposed to a variety of unpredictable stress for three weeks and induced
anhedonia, lower sucrose preference, locomotor activity and lower body weight. The protein expressions
were determined by Western blot. CMS significantly increased the expression of Kv2.1 channel in frontal
cortex but not in hippocampus, and the expression level was normalized after fluoxetine treatment. The
expression of TREK-1 channel was also obviously increased in frontal cortex in CMS rats. Fluoxetine
treatment might prevent this increase. However, the expression of Kv3.1 and Kv4.2 channels was
considerably decreased in hippocampus after CMS, and was not affected by fluoxetine. These results
suggest that different subtypes of potassium channels are associated with the pathophysiology of
depression and that the therapeutical effects of fluoxetine may relate to Kv2.1 and TREK-1 potassium
channels.
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Table 1 Schedule of applied stressors during 1 week.

Day Duration/start Stressor
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1. Introduction

Depression is a serious disease and becomes more and more
prevalent in aged people. Although it is well known that the level
of serotonin (5-HT) decreases in brain, other mechanisms affecting
neuronal excitability may also be involved. For example, the
activities of potassium channels were suggested to be changed
during depression. In general, when stimulated, open potassium
channels may inhibit excitability of cells and lower the effective-
ness of excitatory inputs by hyperpolarizing cell membrane
potential. Various potassium channels with different electrophy-
siological characteristics have been identified in neurons1, includ-
ing delayed rectifier potassium channels, A-type potassium
channels, background potassium channels (such as two-pore
domain potassium channels), and so on2,3. Blockade of these
potassium channels may potentially exert therapeutic effects in the
treatment of certain clinical central nervous system disorders, such
as epilepsy, multiple sclerosis, dementia, anxiety, depression and
stroke4.

Antidepressant drugs may modulate neuronal excitability via
potassium channel inhibition, which has been suggested by several
preclinical studies. In fact, different types of Kþ channel blockers
such as tetraethylammonium (TEA), apamin, charybdotoxin, gli-
quidone and glibenclamide were able to produce an antidepressant-
like effect in the mouse forced swimming test (FST)5–7. However,
Kþ channel openers such as minoxidil or cromakalim increased the
immobility time, indicating the induction of a depressant-like
behavior5. Recent studies suggested that fluoxetine, a selective
serotonin reuptake inhibitor, acted as a potent blocker of different
tapes of Kþ channels, including that TWIK (tandem P-domain weak
inward rectifying Kþ)-related Kþ channel 1 (TREK-1) currents
expressed in tsA 201 cells, delayed rectifier potassium currents and
A-type potassium currents in neurons8–10. Moreover, evidence
indicates that other kinds of antidepressant drugs also produce an
inhibition of Kþ currents, such as desipramine, amitriptyline,
imipramine and paroxetine11–14. In addition, it was demonstrated
that the TREK-1 knock out mice showed antidepressant behavior in
several tests15.

Although many in vitro and in vivo studies have shown that
several types of Kþ channels are involved in the pathology of
depression and even act as a pathway of pharmacological action of
some antidepressants, it is still in short of direct evidence about the
expression of these potassium channels in depression animal
models and in depression patients. To our knowledge, some
antidepressants such as fluoxetine could inhibit potassium channel
(Kv and TREK-1) currents8–10, but the effects of fluoxetine on
expression of these channels, especially during depression, were
not reported. Therefore, the purpose of the present study is to
observe the expressional changes of major Kþ channels, such as
Kv2.1, Kv3.1, Kv4.2 and TREK-1, in the brain of depression-like
symptoms rat model and to reveal the effects of fluoxetine on the
expression of the above channels. We further demonstrate certain
Kþ channels as potential anti-depression drug targets.
Monday 12 h (start at 9 am) Tilting the cage
Tuesday 24 h (start at 9 am) Water deprivation
Wednesday 12 h (start at 8 pm) Pairing
Thursday 5 min Swimming in 10 1C water

24 h (start at 5:30 pm) Food and water deprivation
Friday 12 h (start at 9 pm ) Wet bedding
Saturday 5 min Heat stress (45 1C)

24 h (start at 8 pm) Reversal of light/dark cycle
Sunday 30 min Lever shaking
2. Materials and methods

2.1. Animals

Male Sprague-Dawley (SD) rats weighing 250–280 g were
obtained from Vital Rital Laboratories (Beijing, China), and
housed in an air-conditioned room with a constant temperature
(22 1C71 1C), humidity (50%–70%), and a 12-h light/dark
cycle for one week for habituation. Food and water were
available ad libitum until the beginning of the chronic mild stress
(CMS) test. All procedures and tests were approved by the
Institutional Animal Care Committee of Peking Union Medical
College.

2.2. Drugs and experimental groups

Thirty rats were randomly assigned to 3 groups: control group,
CMSþSaline group and CMSþfluoxetine group. Fluoxetine
hydrochloride (Lilly, France) was dissolved in physiological saline
(0.9%) and administered p.o. daily at a dose of 2 mg/kg for 3
weeks of CMS. Animals in saline group were administered with
same volume of saline.

2.3. CMS procedure

All animals except control group were treated with a fixed weekly
schedule of unpredictable stress following the reported protocol
with some modification16. The protocol included nine different
kinds of stress such as food and water deprivation, grouped
housing, cold stress (10 1C) and heat stress (45 1C), and
performed in the following order shown in Table 1. The CMS
procedure lasted for 21 days and started from 1st day after the
sucrose test in the adaptation period. The CMS groups of rats were
housed separately in different cage in the duration of the CMS
procedures, and 5 animals per cage were housed for the control
group rats.

2.4. Sucrose preference test

Sucrose preference test was applied before and after 1st day of
CMS procedure. All rats were trained to adapt to 1% sucrose
solution during the 7-day adaptation period. Before test, rats were
deprived of water and food for 14 h, followed by 200 mL 1%
sucrose solution and 200 mL water for 1 h. The bottles of 1%
sucrose solution and water were weighted before and after the test.
The sucrose preference was calculated as sucrose intake (g) /
(sucrose intake (g) þ water intake (g)).

2.5. Open field test

The open field apparatus consisted of a square box with black wall
and black base, and was divided into 25 identical sectors
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(25 cm� 25 cm) by white stripes. Rats were placed into the center
sector of the open field under a dark light. The horizontal
locomotion (numbers of crossing the sectors) and vertical locomo-
tion (numbers of erection including rearing) during the following
5 min were assessed.
2.6. Western blot analysis

Total protein lysates from rats' frontal cortex and hippocampus
were extracted with buffer lysis (1 mol/L Tris–HCl, pH 7.5,
150 mmol/L NaCl, 1% Nonidet P-40, 1 mmol/L EGTA, 10%
Glycerin, 100 mmol/L Na3VO4 and 100 mmol/L NaF) supplemen-
ted with protease inhibitor cocktail (Roche). After incubation for
15 min at 4 1C, the lysates were clarified by centrifugation at
12,000� g at 4 1C for 20 min. Protein concentration was deter-
mined by the Bradford method (Jiancheng Bioengineering Insti-
tute, Nanjing, China). Equal amounts of proteins (80 μg protein
from each sample) were loaded on 8% (w/v ratio) SDS-
polyacrylamide gel with molecular weight standards. Samples
were then electrotransferred onto polyvinylidenefluoride mem-
branes (Millipore, USA). The membranes were then blocked with
5% skimmed milk in TBST (10 mmol/L Tris–HCl, pH 7.5, 0.9%
NaCl and 0.1% Tween 20) on an orbital shaker for 1 h at room
temperature and incubated overnight with the indicated antibodies
at 4 1C. The antibodies used were anti-Kv2.1 (1:200, APC-012,
Alomone labs), anti-Kv3.1 (1:500, NBP1-42819, Novus Biologi-
cals), anti-Kv4.2 (1:500, sc-11680, Santa Cruz Biotech), anti-
TREK-1 (1:100, T6448, Sigma), and anti-β-actin (1:10000,
A5441, Sigma). Following five TBST washes, the membranes
were incubated for 1 h with horseradish peroxidase-conjugated
anti-rabbit or anti-mouse antibody dissolved in TBST at room
temperature. The membranes were developed by enhanced che-
miluminescence, and the proteins detected by their specific
antibodies were identified by their molecular sizes (Kv2.1 was
located at 91 kDa, Kv3.1 was located at 110 kDa, Kv4.2 was
located at 51 kDa, TREK-1 was located at 71 kDa and β-actin was
located at 42 kDa). Immunoreactivities were quantified by optical
density (OD) normalized against the corresponding β-actin band,
and measured using Fujifilm imaging system (Fuji, Japan).
2.7. Statistical analysis

All data are expressed as mean7SEM. Statistical comparisons
among multiple groups were carried out by one-way ANOVA
followed by post-hoc LSD test. In all cases, probability (P) values
of less than 0.05 were considered significantly different.
Table 2 Effects of CMS induction and treatment with fluoxetine o
number) and sucrose preference.

Group Body weight (g) Crossing num

Control 400.576.3 106.2711.6
CMSþsaline 353.978.1## 40.678.9##

CMSþfluoxetine 380.075.6n 75.876.9n

Data are expressed as mean7SEM, n¼10.
##Po0.01 vs. control group.
nPo0.05, nnPo0.01 vs. CMS group.
3. Results

3.1. Establish the CMS rat model

CMS is one of the frequently used animal models for the study of
depression. Rodents are exposed to a variety of unpredictable stressors
and induced anhedonia, mimicking the symptoms that are seen in
human depression patients16. Sucrose preference and locomotor activity
are two important indicators of depression related behavior. In the
present study, the sucrose preference and locomotor activity had no
significant difference among the model and control groups (data not
shown) at the beginning of the CMS. After 3 weeks of CMS induction,
both indicators were not changed in the control group, but were
significantly reduced in CMS rats compared to control rats (Table 2).
Fluoxetine (2 mg/kg) increased the sucrose intake of rats significantly,
and also increased the numbers of crossing and erection as shown in
Table 2. A significant difference in body weight due to CMS process
was also observed between control and CMS group. Fluoxetine can
reverse this change (Table 2). All these data indicate that the depression
rat model was successfully created by CMS.

3.2. Kv2.1 expression increased in cortex of CMS rats and was
inhibited by fluoxetine

Kv2.1, a subtype of delayed rectifier potassium channels, is
expressed at a high level on almost all neurons and has been
suggested as the major subtype of delayed rectifier potassium ion
channels in cortex and hippocampus17. Therefore, in our study, the
expressions of Kv2.1 in rats with or without CMS were investi-
gated. In CMS group, a significant increase of Kv2.1 expression
was observed in frontal cortex when compared to the control
group, and the enhanced expression was normalized after 3-week
treatment of fluoxetine (Fig. 1A). However, same result was not
observed in hippocampus, which also plays an important role in
the depression disorder (Fig. 1B). There was no significant
difference among three groups as shown in Fig. 1B.

3.3. Expression of Kv3.1 in CMS rats

Kv3.1 is also a delayed rectifier-type potassium ion channel with fast
activation and deactivation kinetics. Based on a high activation
threshold of �20 mV, Kv3.1 is suggested to act a key role of fast
spiking in neurons18. In the present study, the expression of Kv3.1 was
decreased after CMS in hippocampus (Fig. 2B). A slightly increase
was seen in fluoxetine treatment group, although the level was still
lower than the control rats (Fig. 2B). Meanwhile, no significant
difference was seen in frontal cortex among three groups (Fig. 2A).
n body weight, locomotor activity (crossing number and erection

ber Erection number Sucrose preference

25.871.5 0.8070.04
9.471.7## 0.5670.04##

21.172.4nn 0.7170.04n



Figure 1 Effects of CMS and fluoxetine treatment on Kv2.1 protein expression in frontal cortex and hippocampus of rat brains. Expression of
Kv2.1 protein was obviously increased in frontal cortex (A) of CMS rats and could be reversed by fluoxetine treatment (2 mg/kg/day p.o. for 3
weeks). But no significant changes could be detected in hippocampus (B). #Po0.05 vs. control group, *Po0.05 vs. CMSþsaline group, n¼4.

Figure 2 Effects of CMS and fluoxetine treatment on Kv3.1 protein expression in frontal cortex and hippocampus of rat brains. Expression of
Kv3.1 protein was not affected by CMS and fluoxetine in frontal cortex (A) but was significantly reduced in hippocampus (B) of CMS rats.
#Po0.05 vs. control group, n¼4.
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3.4. Expression of Kv4.2 in CMS rats

We examined Kv4.2, a critical contributor to A-type voltage-gated
potassium channels, which is also largely expressed in central nervous
system19. In CMS group, the rats showed a considerably down-
regulation of Kv4.2 levels in both frontal cortex and hippocampus
compared with control group (Fig. 3). However, the changes were not
affected by fluoxetine treatment. It indicated that the pharmacological
effects of fluoxetine may not be mediated by Kv4.2.
3.5. TREK-1 expression changed in CMS rats and was reversed
by fluoxetine

Recent study showed that the two pore potassium ion channel
TREK-1 play a critical role in depression15. But there is no direct
evidence that the channel can be modulated by fluoxetine during
pathological condition till today. Therefore, it was investigated in
our study. As shown in Fig. 4A, the expression of TREK-1 in
frontal cortex was significantly increased after 3 weeks of CMS,
and it was reversed after fluoxetine treatment. However, the
expression level of TREK-1 in hippocampus was not significantly
changed after CMS and fluoxetine treatment (Fig. 4B).
4. Discussion

CMS is one of the most commonly used animal models of depres-
sion16. In the present study, CMS induced depression-like symptoms in
rats were shown, including decrease of sucrose consumption, reduction
of the locomotor activity and drop of the body weight. We also found
the expressions of Kv2.1 and TREK-1 in frontal cortex of CMS rats
were increased, and fluoxetine inhibited the up-regulation of these
ion channel proteins. Meanwhile, Kv3.1 and Kv4.2 were down-
regulated in hippocampus and frontal cortex, but fluoxetine could not
inhibit the changes of both the channels in CMS rats.



Figure 3 Effects of CMS and fluoxetine treatment on Kv4.2 protein expression in frontal cortex and hippocampus of rat brains. In both of frontal
cortex (A) and hippocampus (B), the expression of Kv4.2 protein was decreased in CMS rats. Fluoxetine was unable to restore the decrease.
#Po0.05, ##Po0.01 vs. control group, n¼4.

Potassium channel changes in chronically mild stressed rats 59
It has been known that potassium ion channels are related
to the pathogenesis and therapeutics of depression15. Generally,
inhibition of potassium channel may increase excitability of
neurons or brain. Fluoxetine, a commonly used antidepressant,
was reported to block the currents of several potassium
channels, which are mediated by Kv1.1, Kv1.3, Kv1.4, Kv1.5,
Kv3.1, Kv4.3, hERG and TREK-110,11,20–26. However, the
changes of potassium channels and the modulation of fluoxetine
on potassium channel expression during depression were rarely
reported.

Kv2.1, which shapes the action potential repolarization, is one
of the important regulators of excitability in neurons and the
process of synaptic integration in the central nervous systems27,28.
Deletion of Kv2.1 in rat neurons enhanced somatodendirtic
excitability, particularly during a high-frequency synaptic trans-
mission27. Our results indicated that the expression of Kv2.1 in
frontal cortex was significantly increased by CMS. In addition, up-
regulation of Kv2.1 level in neuron has been suggested to promote
cell apoptosis29. Moreover, previous studies demonstrated that
fluoxetine, a selective 5-HT reuptake inhibitor, was an effective
blocker of delayed rectifier potassium channel in cerebellar granule
neurons at the therapeutic concentration9. In this study, our results
demonstrated that the expression of Kv2.1 was significantly
down-regulated by fluoxetine compared to the CMS control
group. This result not only validates the relationship between
delayed rectifier potassium channel and antidepressant effect of
fluoxetine, it also supports the view that the effects of antidepres-
sant drugs on neuronal excitability via the inhibition of potassium
channels may represent the common pathway of their pharmaco-
logical action.

Different from Kv2.1 channel, the main role of Kv3.1 channel
is rapid repolarization of the action potential and shortening of the
action potential duration; therefore it significantly contributes to
the ability of neuronal cells to fire brief action potentials at high
frequencies18. GABAergic neurons play an important role in
hippocampal θ rhythm and basal ganglia motor control circuit,
due to its particular neurophysiological properties of firing
sustained high-frequency, short-duration spikes30. Recent evi-
dences confirmed that due to their fast activation and slow
inactivation kinetics, Kv3.1 channels, in particular, are essential
to high-frequency GABAergic neurons firing31. Deficits in
GABAergic inhibition and a decrease in Kv3.1 currents have
been suggested to be related with Alzheimer's disease32. Interest-
ingly, decreased GABAergic function was also observed in major
depression patients33, and we reported again that the expression of
Kv3.1 channel was significantly decreased in hippocampus of
depression rats and fluoxetine had no significant effect on it. Our
results further suggested that the decreased expression of Kv3.1
channel in depression rats may affect functions of hippocampus.
However, more studies are needed to further confirm this
inference.

Previous studies have shown that Kv4.2 relatively locates in
central nervous system and is important in regulating neuron
plasticity and synaptic function34,35. Recently, the relationship
between Kv4.2 channel and behavioral depression was also
reported36. Our results showed that the expression of Kv4.2
subunit was decreased significantly both in frontal cortex and
hippocampus in CMS model and was not affected by fluoxetine.
These observations were in accordance with that in Kv4.2 knock-
out mice36, suggesting that Kv4.2 plays an important role in
depression and the antidepressant effect of fluoxetine may not act
through Kv4.2.

Growing evidences indicate that TREK-1 channel may be a new
antidepressant drug target and may improve antidepressant treat-
ment. Heurteaux et al.15 showed that TREK-1 knockout mice were
resistant to depression-like behavior. Consistent with this finding,
fluoxetine have been shown to inhibit TREK1 currents, and
variation in TREK1 gene (KCNK2) was linked to the depression
as well as antidepressant response in humans10,37,38. We report
that the protein expression of TREK-1 channel in frontal cortex is
much higher in depression-like rat model than normal ones, and is
normalized after chronic treatment with fluoxetine. But we did not
see the change of this channel and the effect of flouxetine in
hippocampus. Our results are consistent with the study of Xi
et al.39 which showed that fluoxetine could attenuate the up-
regulation of TREK-1 expression in cultured neural stem cells.
These findings suggested that the enhancement effect of 5-HT on
neurons excitability and transmission caused by fluoxetine may



Figure 4 Effects of CMS and fluoxetine treatment on TREK-1 protein expression in frontal cortex and hippocampus of rat brains. Expression of
TREK-1 protein was obviously enhanced in frontal cortex (A) of CMS rats and could be reversed by fluoxetine. While no obvious changes could
be observed in hippocampus (B). ##Po0.01 vs. control group, **Po0.05 vs. CMSþsaline group, n¼4.
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be through both of direct inhibition of TREK-1 currents and
down-regulation of its protein. Moreover, the relationship between
TREK-1 and 5-HT system is still unclear. Gordon et al.40

suggested that TREK-1 might be involved in the 5-HT feedback
system, which need to be confirmed further.

Although our study provides some information about expres-
sions of major potassium channels in the brain of CMS rats and the
regulation of fluoxetine, we did not detect the mRNA expression
after CMS because the protein expression reflects the function of
ion channels more directly. In addition, we did not measure
the activities of the four channels due to the lack of available
selective blockers for Kv2.1, Kv3.1, Kv4.2 and TREK-1 till
now, and it is also difficult to isolate the four native potassium
channel currents from the ion channel currents in neurons.
Moreover, because TSAK-3 was also reported to be related to
depression41 and fluoxetine did not significantly inhibit TASK-342,
we did not observe this potassium channel subtype in the
present study.
5. Conclusions

In conclusion, our results suggest that different subtypes of
potassium channels are associated with the pathogenesis of
depression. Kv2.1 and TREK-1 channels are related to the
function of frontal cortex and they might be regulated by
fluoxetine, while Kv3.1 and Kv4.2 are relatively related to the
functions of hippocampus and can not be regulated by fluoxetine.
Therefore, Kv2.1 and TREK-1 channels might be new drug targets
for antidepressants.
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