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Protein phosphatase 2A (PP2A) is one of the most ubiquitous cellular proteins and is
responsible for the vast majority of Ser/Thr phosphatase activity in eukaryotes. PP2A is a
heterotrimer, and its assembly, intracellular localization, enzymatic activity, and substrate
specificity are subject to dynamic regulation. Each of its subunits can be targeted by viral
proteins to hijack and modulate its activity and downstream signaling to the advantage of
the virus. Binding to PP2A is known to be essential to the life cycle of many viruses and
seems to play a particularly crucial role for oncogenic viruses, which utilize PP2A to
transform infected cells through controlling the cell cycle and apoptosis. Here we
summarise the latest developments in the field of PP2A viral targeting; in particular
recent discoveries of PP2A hijacking through molecular mimicry of a B56-specific motif by
several different viruses. We also discuss the potential as well as shortcomings for
therapeutic intervention in the face of our current understanding of viral PP2A targeting.
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INTRODUCTION

Reversible protein phosphorylation is a crucial and ubiquitous post-translational modification
(PTM). One third of all proteins are thought to experience phosphorylation on the hydroxylated
sidechains of serine, threonine or tyrosine residues in an equilibrium maintained by the antagonistic
actions of protein kinases and phosphatases. These enzymes are classified based on their substrates
as modifying either Ser/Thr or Tyr residues. Although the substrate pool is identical, the number of
Ser/Thr phosphatases encoded in the human genome is vastly outnumbered by the kinases (Chen
et al., 2017) and is divided into metal-dependent phosphatases (PPM), or phosphoprotein
phosphatases (PPP) by virtue of sequence and fold (Chen et al., 2017). There are seven PPP
families, the largest of which is the protein phosphatase 2A (PP2A), accounting for up to 1% of the
total cellular protein content (Ruediger et al., 1991). PP2A has been coined the “master regulator of
the cell cycle” as it regulates every stage of the cell cycle (Wlodarchak and Xing, 2016). It is known to
dephosphorylate over 300 cellular substrates (Wlodarchak and Xing, 2016), and is involved in
diverse cellular processes including development, cell proliferation and death, cell mobility and
cytoskeletal dynamics, the cell cycle and signaling. In addition to its role in neurodevelopmental
disorders (Houge et al., 2015; Loveday et al., 2015; Shang et al., 2016; Reynhout et al., 2019; Biswas
et al., 2020; Lenaerts et al., 2021), PP2A is mostly known as a tumour suppressor and its inhibition
caused by mutation, biochemical downregulation or drug binding is implicated in many cancers
(Eichhorn et al., 2009; Ruediger et al., 2011; Ruvolo, 2016; O’Connor et al., 2020).
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It is no surprise that viruses have evolved to target PP2A via
several different mechanisms. The aim of this Mini Review is to
summarise the different strategies viruses use to hijack PP2A to
modulate its phosphatase activity and downstream signaling
functions to subsequently enhance viral replication. This is the
first review synthesizing our current understanding and the
emerging role of LxxIxE motif mimicry-mediated PP2A
targeting by viruses.
STRUCTURE, FUNCTION AND
REGULATION OF PP2A

Despite their crucial role in cellular signaling, phosphatases have
been, until recently, largely understudied compared to kinases.
This is likely due to their complex structure and a multitude of
oligomeric forms present in the cell (Shi, 2009). The PP2A
phosphatase is a heterotrimer, composed of a horseshoe-like,
alpha-helical HEAT repeat scaffold (A) subunit bound to the
regulatory (B) and the catalytic (C) subunits. Both A and C
subunits have two (a and b) variants, while the B subunit
comprises four families (B55/PR55, B56/PR61, PR48/PR72/
PR130 and PR93/striatin). Additionally, each family contains
2-5 isoforms and each one can have alternative splice and
translational variants. PP2A exists mainly in two forms, either
as the core dimer comprised of the A and C subunits, or as the
heterotrimer where the core is bound to any one of the B-type
regulatory subunits. It is the large number of possible unique
structural PP2A permutations which exhibit diversity in both
substrate specificity and subcellular localization (Janssens and
Goris, 2001). Although the various B subunits recognize a similar
region of A (Lenaerts et al., 2021), they lack structural or
functional redundancy and are critical regulators for cell
survival (Strack et al., 2004; Seshacharyulu et al., 2013).

PP2A regulates the cell cycle by affecting several critical
pathways (Wlodarchak and Xing, 2016) including Wnt,
mammalian target of rapamycin (mTOR), mitogen activated
protein kinase (MAPK) and the phosphoinositide 3-kinase
(PI3K). PP2A-B56 is also involved in the regulation of spindle
assembly (Espert et al., 2014; Hayward et al., 2019), the cell cycle
(Janssens and Goris, 2001), apoptosis (Janssens and Rebollo,
2012), DNA damage response (Peng and Maller, 2010) and
chromosome segregation during meiosis (Bel Borja et al., 2020).

The vast range of cellular processes regulated by the different
PP2A holoenzymes combined with the modular nature of
holoenzyme assembly and lack of redundancy in function
presents a perfect node for the deregulation of key cellular
processes by tumors and viruses. Indeed, the PP2A genes
and their regulators are tumor suppressors that are perturbed
at a low (but significant) frequency in human cancers
(Sangodkar et al., 2016). PP2A mutations are implicated
in lung, breast, colorectal, among other cancers (Wang
et al., 1998; Takagi et al., 2000; Ruediger et al., 2001b; Tamaki
et al., 2004), where downregulation of PP2A results in
transformation - yet minimal activity is essential for cell
survival (Ruvolo, 2016). Concurrent with its role as a tumour
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suppressor, pharmacological inhibitors of PP2A catalytic
function such as okadaic acid and microcystin act as potent
tumor promoters (MacKintosh and MacKintosh, 1994). Such
small molecule inhibitors were initially discovered from screens
of natural products and are usually toxins produced by microbes
and animals (McCluskey et al., 2002). For example, microcystin
and nodularins were purified from blue-green algae, and okadaic
acid was firstly identified in the marine sponge Halicondria
okadai (Holmes et al., 1990; Dounay and Forsyth, 2002), while
tautomycin is produced by Streptomyces verticillatus
(MacKintosh and Klumpp, 1990). As such, these could be
considered the first exogenous factors identified to affect
PP2A activity.

Recent advancements in the structural and biochemical
research on PP2A have allowed a much greater understanding
of the mechanisms of its exogenous and endogenous regulation
as well as effects of carcinogenic mutations (Xu et al., 2006; Cho
and Xu, 2007; Xu et al., 2008; Wlodarchak et al., 2013; Jeong
et al., 2021). Most PP2A mutations identified in cancer patients
are located within PP2A Aa and Ab subunits and affect the
binding of other PP2A subunits to the scaffold (Ruediger et al.,
2001a; Sablina et al., 2007). Post-translational modifications of
the catalytic and scaffold subunits such as phosphorylation and
methylation modulate the activity of PP2A in a similar way, also
affecting the association with regulatory subunits (Janssens and
Goris, 2001; Janssens and Rebollo, 2012; Seshacharyulu et al.,
2013). Similarly, phosphorylation of B subunits regulates the
sub-cellular localization of the holoenzyme affecting its substrate
repertoire (Strack et al., 1998).
PP2A IS UBIQUITOUSLY TARGETED AND
MODULATED BY VIRUSES

Numerous proteins from a wide range of viral families have
already been identified to interact with and modulate the activity
of PP2A (Figure 1, and extensively reviewed by (Guergnon et al.,
2011)). The first known case was the small T antigen (sT) of the
oncogenic simian virus 40 (SV40). sT and large T antigen (LT) of
SV40, merkell cell polyomavirus (MCV), or Murine polyoma
virus (Py) are alternatively-spliced oncoproteins which play a
role in the transformation of infected cells (Rundell and Parakati,
2001; Yu et al., 2001; Kwun et al., 2009). This property of sT,
however, is fully reliant on its binding to the scaffold subunit of
PP2A (Yang et al., 1991; Ruediger et al., 1992), which displaces
the regulatory subunit (Pallas et al., 1990; Chen et al., 2004) and
therefore inhibits PP2A-mediated dephosphorylation of many
substrates (with the known exception of histone H1) and
promotes viral (DNA) replication (Scheidtmann et al., 1991;
Sablina et al., 2007; Kwun et al., 2009; Bollag et al., 2010; Bhat
et al., 2020). A close dissection of this interaction has been made
possible through the crystal structure of the SV40 sT in complex
with the Aa subunit of PP2A (Cho et al., 2007). Conversely, the
West Nile virus capsid (WNVC) protein upregulates PP2A-
mediated activity hereby inhibiting AP-1 dependent
transcription (Hunt et al., 2007).
August 2021 | Volume 11 | Article 725615
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Several other oncogenic viruses target PP2A in order to
inhibit its downstream pro-apoptotic signaling, therefore
leading to transformation and immortalization. Examples
include the E7 protein of human papillomaviruses (HPV) (Pim
et al., 2005) or the leader protein (EBNA-LP) encoded by the
Epstein-Barr virus (EBV) (Garibal et al., 2007). At the same time,
other viruses target PP2A to drive apoptosis, such as the E4orf4
protein of adenovirus (Kleinberger and Shenk, 1993) and the Py
sT-antigen (Bhat et al., 2020).

The innate immune response is the first line of defense
upon pathogen invasion. PP2A inhibits this process by
dephosphorylating interferon regulatory transcription factor 3
thus blocking expression of interferon stimulated genes (Wang
et al., 2020a). Many viruses depend on (Xu et al., 2019), or exploit
this process, either by stimulating (Zan et al., 2020), or
upregulating PP2A (Duong et al., 2004; Christen et al., 2007)
thereby blocking type I IFN response in favor of increasing
viral replication.

The two retroviruses of clinical importance: human
immunodeficiency virus type 1 (HIV-1) and human T-
lymphotropic virus type 1 (HTLV-1) have also evolved several
independent mechanisms of PP2A hijacking. The Vpr protein of
HIV-1 associates with the scaffold subunit of PP2A (Godet et al.,
2010) while HIV-1 Vif targets the PP2A regulatory B56 subunit
for degradation (Greenwood et al., 2016; Naamati et al., 2019;
Marelli et al., 2020; Nagata et al., 2020). Both processes act
independently to lead to G2/M cell cycle arrest. The
transactivator protein (Tax) of HTLV-1 is one of the most
potent oncogenes known (Mohanty and Harhaj, 2020) and
associates with an unidentified region of PP2A as part of a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
ternary complex with IKKg (Fu et al., 2003; Merling et al., 2007).
Inhibition of PP2A activity prevents dephosphorylation of IKKg
which leads to activation of IKKg-regulated genes and ultimately
cell cycle arrest. HTLV-1 integrase (IN) associates with the B56
subunit to enhance infection and might play a role in integration
site targeting (Maertens, 2016; Barski et al., 2020; Bhatt et al.,
2020). The relevance of cell senescence induced by both HIV-1
and HTLV-1 in the context of infection remains unknown.

It remains to be understood how viral hijacking of PP2A can
lead to such vastly different biochemical and phenotypic events.
Unfortunately, the structure-driven mechanistic understanding
of these processes is still scarce, with the aforementioned sT:Aa
and the IN:B56g (described below) – the only viral protein
complexes resolved with PP2A thus far.
EMERGING ROLE OF VIRAL PP2A
TARGETING VIA LXXIXE MOTIF MIMICRY

An emerging mechanism of PP2A binding employed by viruses
relies on mimicking a short linear motif (SLiM) used by
endogenous substrates and partners of PP2A to bind to all
isoforms of the B56 regulatory subunit (Hertz et al., 2016;
Wang et al., 2016). The SLiM of the consensus sequence
LxxIxE (where ‘x’ can be any amino acid) is located on
intrinsically disordered regions of many PP2A endogenous
partners and becomes fixed upon binding to a highly-
conserved groove between the third and fourth HEAT repeat
in the centre of the concave face of the B56 subunit of PP2A.
Structural studies focusing on BubR1 and RepoMan have
FIGURE 1 | A summary of the most important examples of PP2A targeting by viruses. PP2A is a heterotrimer composed of the scaffold (A; cyan), regulatory (B56;
purple) and catalytic (C; light blue) subunits. The figure shows a B56-containing PP2A holoenzyme (PDB ID: 2IAE). Viral proteins interact with PP2A via different
subunits, as indicated where it is known. The vast majority of viral proteins known to interact with the regulatory subunit of PP2A target exclusively B56, although the
adenovirus E4orf4 (asterisked above) can also target B55 subunits (Kleinberger, 2020) and some other viral proteins are known to associate exclusively with other
regulatory subunits (for example the polymerase of rinderpest virus (Sleeman and Baron, 2005).
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identified the interaction interface largely defined by the Leu
pocket (B56 residues K183, T184, H187, R188, E226, I227) and
Ile pocket (B56 residues H187, Y190, I227, I231) (Wang et al.,
2016). Interactions, both hydrophobic and electrostatic in
nature, involve every residue of the LxxIxE SLiM and SLiM
point mutations weaken the interaction. At the same time, Wang
et al. showed that the presence of a phosphorylated serine
following the SLiM leucine significantly enhances binding
through a salt bridge interaction with R188. The limitation of
the aforementioned studies is the use of short peptides
mimicking the SLiM region rather than entire domains/subunits.

We recently discovered through proteomic mass
spectrometry approaches that PP2A-B56 is a functional
binding partner of the deltaretroviral integrase enzyme
(Maertens, 2016). IN catalyses the insertion of reverse-
transcribed viral DNA (vDNA) into host chromatin which is a
key step in the deltaretroviral replication cycle. In vitro strand-
transfer activity of deltaretroviral IN was largely stimulated in the
presence of B56. Mutational scanning identified the B56 region
encompassing HEAT repeats 3 and 4 critical to IN binding and
strand-transfer stimulation. The long linker between the IN
catalytic domain (CCD) and the C-terminal domain (CTD)
encompasses the LxxIxE sequence – a bona fide B56-targeting
motif. Indeed, every single point mutation within the simian T-
cell lymphotropic virus type 1 (STLV-1) IN SLiM (L213A,
P214A, P215A/P217A, I216A, E218A) reduced IN binding to
B56 and in vitro strand-transfer activity stimulation in presence
of B56 (Barski et al., 2020). Conversely, B56 mutations L194A,
R197A located in the LxxIxE-binding groove also prevented this
functional interaction (Maertens, 2016).

The X-ray crystallographic structure of deltaretroviral human
lymphotropic virus type-1 (HTLV-1) IN residues 200-297,
encompassing the LxxIxE SLiM, and B56 revealed a binding
interface akin to that of BubR1 and RepoMan (Figures 2A, B),
yet devoid of the phosphoserine-R188 interaction (Barski et al.,
2020). Our understanding of the IN-PP2A binding was then
largely expanded by two independent studies by Barski et al.
(2020) and Bhatt et al. (2020) who have respectively reported
structures of STLV-1 and HTLV-1 intasomes (IN:vDNA
supramolecular intermediates) in complexes with B56. Both
structures corroborated observations from the co-crystal
complex but also identified a previously-unknown ligand
binding site on B56. The LxxIxE SLiM seems to have evolved
strategically to exploit the oligomeric structure of the intasome in
order to further stabilize the IN:B56 complex by repurposing the
LxxIxE SLiM on a neighboring IN subunit (Figure 2C).
Effectively, the two SLiMs – contributed by a dimer of IN –
bind two separate sites on B56. The secondary site runs
perpendicular to the primary SLiM binding groove and
involves residues E78, T81, H82, N83 and R143 located on the
solvent-exposed surface of HEAT repeats five and six.

Although the exact role of PP2A in deltaretroviral integration
has not been discerned yet, it is an essential host factor for viral
replication - shRNA knockdown of B56g significantly reduced
HTLV-1 infectivity (Bhatt et al., 2020). Even though PP2A does
not directly associate with chromatin, it dephosphorylates many
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
transcription factors and chromatin modifiers (Eichhorn et al.,
2009; Shanker et al., 2013) including those whose binding sites
were found in the vicinity of HTLV-1 integration sites (Melamed
et al., 2013). Binding of IN to PP2A does not occlude the active
site (Barski et al., 2020; Bhatt et al., 2020) suggesting IN could
modulate PP2A catalytic activity to dephosphorylate itself or
other targets, although clearly the presence of phosphorylated IN
is not essential for binding. PP2A might also play a role in
targeting the pre-integration complex to the site of integration, as
has been known for IN-associated host factors in other retroviral
families (Kvaratskhelia et al., 2014).

Interestingly, Wang et al. recently also identified a binding
site on B56 for yet another motif. This “acidic patch” on B56 is
located in close proximity to the primary LxxIxE SLiM binding
sites utilized by deltaretroviral INs (Wang et al., 2020b). In the
structures of STLV/HTLV intasome:B56 complexes the “acidic
patch” identified by Wang et al. is not occupied. It is argued that
a subset of LxxIxE-containing endogenous partners and
substrates of PP2A need an additional site as the SLiM binding
to the primary site on B56 only confers micromolar-range
affinities. It is tempting to speculate that the divergence in
mechani sms of b inding be tween endogenous and
deltaretroviral PP2A binders (that have been demonstrated so
far) could be exploited for antiviral drug design to avoid side
effects caused by inhibition of PP2A dephosphorylation activity
in key cellular pathways. Such an approach may also mean that
the same inhibitor could be used against more than one virus.
Additionally, targeting a site on a host protein, rather than a viral
protein minimizes the problem of drug resistance.

Although mostly known for its ability to target APOBEC3
restriction factors for proteasomal degradation (Desimmie et al.,
2014; Harris and Dudley, 2015), intense studies on the HIV-1 Vif
accessory protein revealed that the cell cycle arrest induced by
Vif occurs through its targeted degradation of B56 (Greenwood
et al., 2016; Marelli et al., 2020; Nagata et al., 2020; Salamango
and Harris, 2020). Interestingly, although Vif does not encode an
LxxIxE SLiM motif, co-expression of an LxxIxE-like peptide
inhibitor known to outcompete B56 binders reduced degradation
of B56 in a dose-dependent manner (Salamango et al., 2020)
suggesting that Vif recognition by B56 involves residues
surrounding the LxxIxE SLiM binding pocket.

The panel of LxxIxE SLiM-utilising viruses includes
filoviruses (Hertz et al., 2016) and it has been shown that the
most clinically-important filovirus, the Ebola virus (EBOV),
associates with B56 via the SLiM located on its nucleoprotein
(NP). Although structural details of this interaction are still
missing, Kruse et al. determined that NP associates with
PP2A-B56 to dephosphorylate VP30, an EBOV-encoded
protein and binding partner of NP (Kruse et al., 2018). VP30
is an EBOV-specific transcription factor, regulated by
phosphorylation (Takamatsu et al., 2020), and essential for
initiation of viral transcription (Tigabu et al., 2018). The NP
LxxIxE, and hence its interaction with B56, was found to be
required for EBOV transcription, but not replication.
Interestingly, phosphorylation of VP30 increases its affinity for
NP (Biedenkopf et al., 2013) which in turn increases its chances
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of PP2A-mediated dephosphorylation – likely forming a negative
feedback loop to balance EBOV transcription and replication.

Another example of viral B56 recruitment via the LxxIxE
SLiM was recently discovered in the hepatitis B virus (HBV)
capsid or core protein (HBc) (Xi et al., 2021). HBc is a
multifunctional protein taking part in every step of HBV
replication: from its role as the nucleocapsid to reverse
transcription, to vDNA nuclear import and packaging (Nassal,
1992; Wynne et al., 1999; Liu et al., 2015). HBc is regulated
through phosphorylation of its CTD – supporting different steps
of the HBV viral life cycle depending on the level of CTD
phosphorylation (Ludgate et al., 2016; Luo et al., 2020). The
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
SLiM is located on the NTD-CTD linker whose truncation was
previously reported to affect multiple aspects of HBV replication
as well as NTD assembly and the phosphorylation of the CTD
(Liu et al., 2018). Point mutations within the HBc LxxIxE caused
multiple pleiotropic effects in the HBV life cycle resulting in
reduced HBV infectivity. Surprisingly, the HBc SLiM slightly
diverges from the canonical LxxIxE consensus sequence,
encoding a leucine instead of the isoleucine (LSTLPE).
Although no direct interaction between HBc and B56 was
identified, it remains possible that the interaction is very
transient in nature and/or relies on varying degrees of
HBc phosphorylation.
A B

C

FIGURE 2 | Hijacking of PP2A via the B56-binding LxxIxE SLiM. (A) Details of LPPIPE IN SLiM (equivalent to SLiM1 in panel C; green) binding to the canonical
LxxIxE-binding groove on B56 (purple). Interacting residues are shown as sticks (PDB ID: 6Z2Y). (B) BUBR1 LDPIIE SLiM (also equivalent to SLiM1 in panel C; blue)
binding to the same site on B56 (purple) (PDB ID: 5JJA). In this case, the aspartate was used as a phosphomimetic. The conformational overlap between residues of
the SLiMs and the binding groove in both structures is evident. (C) Deltaretroviral integrase (IN) dimer contributes two identical SLiM regions to bind one molecule of
B56 (purple) at two different sites. Each IN chain (IN1 and IN2) is coloured with a different shade of green (PDB ID: 6Z2Y, EMDB: 11052). PyMOL software was used
for analysis.
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CONCLUSIONS

PP2A is a promising anti-cancer drug target (O’Connor et al.,
2018; Leonard et al., 2020) and PP2A targeted agents are
currently used in combination therapy in cancer (Mazhar
et al., 2019). Here, we have synthesized efforts of the last few
years in broadening our understanding of viral PP2A targeting;
particularly via the LxxIxE-mediated B56 binding. Utilizing
PP2A’s vast repertoire of functions and partners seems to be
crucial for many clinically-relevant viruses such as Ebola, West
Nile virus, HIV-1, HTLV-1 and many oncogenic viruses. It is
imperative to further our understanding of PP2A hijacking and
once more structural and mechanistic details of this
phenomenon are obtained, PP2A might present an
opportunity for antiviral pharmacological interventions.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
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