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ABSTRACT: Intermittent fasting (IF) increases lifespan and decreases metabolic
disease phenotypes and cancer risk in model organisms, but the health benefits of IF
in humans are less clear. Human plasma derived from clinical trials is one of the most
difficult sample sets to analyze using mass spectrometry-based proteomics due to the
extensive sample preparation required and the need to process many samples to
achieve statistical significance. Here, we describe an optimized and accessible device
(Spin96) to accommodate up to 96 StageTips, a widely used sample preparation
medium enabling efficient and consistent processing of samples prior to LC−MS/
MS. We have applied this device to the analysis of human plasma from a clinical trial
of IF. In this longitudinal study employing 8-weeks IF, we identified significant abundance differences induced by the IF
intervention, including increased apolipoprotein A4 (APOA4) and decreased apolipoprotein C2 (APOC2) and C3 (APOC3).
These changes correlated with a significant decrease in plasma triglycerides after the IF intervention. Given that these proteins
have a role in regulating apolipoprotein particle metabolism, we propose that IF had a positive effect on lipid metabolism
through modulation of HDL particle size and function. In addition, we applied a novel human protein variant database to detect
common protein variants across the participants. We show that consistent detection of clinically relevant peptides derived from
both alleles of many proteins is possible, including some that are associated with human metabolic phenotypes. Together, these
findings illustrate the power of accessible workflows for proteomics analysis of clinical samples to yield significant biological
insight.

KEYWORDS: human, plasma, intermittent fasting, 96-well, sample cleanup, solid-phase extraction (SPE), liquid chromatography,
mass spectrometry (MS), 3D-printing

■ INTRODUCTION

Intermittent fasting (IF) is a dietary modification that generally
consists of alternating periods where food is freely available (ad
libitum), followed by fasting periods of up to 24 h, for 1−4
days/week. The fasting period that is most often tested in
animal models is 24 h. IF initiated in young adult and middle-
aged chow-fed mice increases maximal lifespan.1−3 Anson and
colleagues4 re-stimulated interest in this model when they
observed that alternating periods of 24 h fasting and ad libitum
feeding reduced fasting glucose and insulin levels as effectively
as 60% daily calorie restriction, even though there was a
minimal reduction in either caloric intake, or body weight,
versus pair fed controls. This work suggests that intermittent
energy deprivation is sufficient to improve metabolic health.5

Intermittent fasting in model animals generally produces little
or no weight loss, but clearly reduces fasting glucose and
insulin,6,7 reduces blood pressure,7,8 improves cardiac remod-
eling, increases left ventricle ejection fraction response to
myocardial infarction,8 reduces cell proliferation,9 increases
cancer survival,10 increases adiponectin and lipid oxidation in
muscle and liver and reduces visceral fat.11 However, far fewer
studies are reported for IF interventions in humans.

Mass spectrometry (MS)-based proteomics has become a
mainstay technology for elucidating the biological functions of
proteins on a large scale.12 In preparing samples for peptide-
level proteomic analysis (bottom-up proteomics), it is often
necessary to concentrate peptides and remove contaminants.13

One of the most commonly used methods in MS-based
proteomics sample preparation is offline reversed-phase solid
phase extraction (SPE),14−16 in which peptides are bound to a
stationary phase, typically either C18, or a mixed-mode resin,
enabling simultaneous desalting, contaminant removal, and
concentration. Single-use StageTips are a widely used
implementation of SPE, as their small void volumes enable
processing of microgram amounts of proteins.14,17 StageTips
can also accommodate a variety of stationary phases, expanding
their application to peptide fractionation, or to increase
flexibility in washing steps. For example, a mixed mode strong
cation exchange (SCX) and reversed-phase material may be
used, which enables either the removal of contaminants such as
lipids from plasma-derived samples, or the fractionation of
peptides.16−19 Additionally, the StageTip format is often
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incorporated into other proteomics workflows, such as in the
“in-StageTip” protocol in which samples are lysed and digested
directly within StageTips,17 or in the case of phosphoproteo-
mics workflows to capture and retain beads used for peptide
enrichment.20−23

Here we describe a device (Spin96) that can be rapidly
produced using widely available 3D-printers designed to
accommodate up to 96 StageTips simultaneously. We have
applied our Spin96 device to the analysis of human plasma
from a longitudinal clinical trial of IF. Our intervention
employed 8-weeks of IF with plasma samples and physiological
data collected before and after this period. Using established
StageTip methods and our device, we have identified
significant differences in plasma protein abundance induced
by the IF intervention, particularly in apolipoproteins. In
addition, we have applied a protein variant database to detect
clinically relevant protein variants across the participants.
These data are the first unbiased analysis of plasma proteome
changes induced during IF. The complete design files for the
Spin96 are made freely available to the scientific community,
enabling local production of the device.

■ EXPERIMENTAL PROCEDURES

Chemicals and Reagents

Acetonitrile (Optima grade), acetone, water (Optima grade),
ammonia, formic acid, and isopropanol (Optima grade) were
from Thermo Fisher Scientific (Massachusetts, USA). Ethyl
acetate LC−MS grade was from Millipore (Massachusetts,
USA). CBQCA reagent was from Applied Bioprobes (Mary-
land, USA). Proteomics-grade trypsin (Catalogue number
T6567) and all other reagents were from Sigma-Aldrich
(Missouri, USA).
Intermittent Fasting without Weight Loss Clinical Trial

Between 1 March 2013 and 4 September 2015, 119 women
were screened following advertisement in local newspapers and
media to participate in this single-center, randomized
controlled trial in Adelaide, South Australia. The Royal
Adelaide Hospital Research Ethics Committee approved the
study protocol, and all participants provided written, informed
consent prior to their inclusion. The PREFER study24 was
registered with Clinicaltrials.gov (NCT01769976). A total of
88 women were enrolled in the study, of which 25 were
assigned to the intermittent fasting with weight maintenance
group (IF100) analyzed in this manuscript; 3 participants
withdrew during the diet period (2 due to time, 1 no longer
wished to participate). The resulting 44 paired plasma samples
from 22 subjects in the IF100 group were the subject of this
proteomic analysis. Inclusion criteria were: aged 35−70 years;
BMI 25−42 kg/m2; weight-stable (within 5% of their screening
weight) for >6 months prior to study entry; no diagnosis of
type 1 or type 2 diabetes; nonsmoker; sedentary or lightly
active (i.e., <2 moderate to high-intensity exercise sessions per
week); consumed <140 g alcohol/week; no personal history of
cardiovascular disease, no diagnosis of eating disorders or
major psychiatric disorders (including those taking antide-
pressants); not pregnant or breastfeeding; and not taking
medication that may affect study outcomes (e.g., phentermine,
orlistat, metformin, excluding antihypertensive/lipid lowering
medication). The primary outcome of this study was insulin
sensitivity, assessed by hyperinsulinemic-euglycemic clamp.
Secondary outcomes were plasma markers of blood glucose
control, body fat and anthropometric measures, adherence,

hunger and appetite, weight, plasma markers of cardiovascular
risk, and hepatic biomarkers.
The active trial period was 10 weeks, comprised of a 2-week

lead-in period, and 8 weeks of dietary intervention. During the
lead-in period, participants consumed their normal diet and
maintained their weight. Following this, participants were
placed on an intermittent fasting diet at 100% of calculated
baseline energy requirements per week (i.e., weight main-
tenance). Energy requirements were calculated using an
average of published equations, both of which use age, gender,
height, and weight variables.25,26 Due to the nature of the
intervention, blinding was not possible.

Diet. On fed days, participants were provided with food
equal to ∼145% of energy requirements. On fasting days,
participants consumed breakfast before 8 am (∼37% of energy
requirements were given at breakfast on fasting days) and were
then instructed to “fast” for 24 h, until 8 am the following day.
Participants were advised to fast on 3 nonconsecutive
weekdays per week. During the fasting period participants
were allowed to consume water and limited amounts of
energy-free foods (e.g., “diet” drinks, chewing gum, mints),
black coffee and/or tea, and were provided with 250 mL of a
very low energy broth (86 kJ/250 mL, 2.0 g protein, 0.1 g fat,
3.0 g carbohydrate) for either lunch, or dinner. Participants
were free-living, and foods were provided by fortnightly
delivery to their home, except for fresh fruits and vegetables.
Portions of fruits and vegetables were standardized and
participants allowed to self-select according to the number of
servings specified in their individual menus (∼10% overall
energy intake).

Adherence. All participants completed daily diet checklists
to monitor dietary adherence. Energy intake in weeks 1, 4, and
7 was calculated from 7-day food diaries using FoodWorks
(version 8, Xyris Software). Participants also attended weekly
check-ins at the clinic, where they returned the 7-day diet
checklists from the previous week, were weighed and received
individual counselling to maintain compliance.

Procedures for Metabolic Testing. To minimize the
influence of the menstrual cycle on outcomes, premenopausal
women were studied in the follicular phase. Participants were
provided with a standardized diet (100% of calculated energy
requirements, 35% fat, 15% protein, 50% carbohydrate) for 3
days prior to the first metabolic testing visit (“baseline”).
Participants were instructed to avoid exercise, alcohol, and
caffeine for 24 h and fast for 12 h overnight, prior to arrival at
both the baseline “Before IF” visit and the “After IF” visit (i.e.,
after the 8 week IF intervention). Testing days began at 0730
h, participants were weighed in a hospital gown after voiding,
waist and hip measurements taken, and blood pressure
measured with the participant in a seated position after 10
min rest. Intravenous cannulae were placed, baseline samples
collected and a primed 120 min hyperinsulinemic-euglycemic
(60 mU/m2/min) clamp commenced according to previously
described methods.27 Peripheral insulin sensitivity was
calculated as the mean exogenous glucose infusion rate during
steady-state (last 30 min). We adjusted for the estimated size
of the metabolizing fat free mass (FFM; FFM + 17.7) as
described by others (μmol/min/mU insulin/kg FFM +
17.7).28 Due to scheduling conflicts or a technical issue arising
on the day of the clamp, 3 clamps were not conducted.
Homeostatic model assessment of insulin resistance (HOMA-
IR) was calculated as: (fasting serum insulin (mU/L) × fasting
plasma glucose (mmol/L) × 22.5). Total body composition
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was assessed by DXA (Lunar Prodigy; GE Healthcare, NSW,
Australia).
Blood Collection and Analysis. Blood samples were

collected directly into purple K2-EDTA vacutainers (Becton
Dickinson) and placed on ice immediately after collection.
Samples were centrifuged within 10 min of collection at 4 °C
and the plasma frozen at −80 °C in cryotubes. Blood lipids and
fasting blood glucose were examined by photometric assays in
the laboratory of SA Pathology (Adelaide, South Australia,
Australia). Serum insulin was measured by radioimmunoassay
(HI-14K, Millipore, MA, USA). Serum nonesterified fatty acids
(NEFA) were measured by enzymatic colorimetric assay
(NEFA-HR (2), Wako Diagnostics, CA, USA). Plasma β-
hydroxybutyrate (RANBUT D-3 Hydroxybutyrate kit; Randox,
Antrim, UK) and high-sensitivity c-reactive protein (HS-CRP)
were measured using commercially available enzymatic kits
(Beckman Coulter Inc., CA, USA) on a Beckman AU480
clinical analyzer (Beckman Coulter Inc.). Samples from each
participant were analyzed within the same run to reduce
instrument variation, and these measures were used as some of
the variables for the unbiased correlation analysis.

Spin96 Design and 3D-Printing

The Spin96 components (Figure S1) were designed in
SolidWorks (version 2017) and exported as STL files for
slicing in either Z-suite, or Simplify3D v4.0.1 with a layer
height of 0.14 mm. Sliced models were printed using Z-HIPS
Natural White filament on either a Zortrax M200, or an
Intamsys FUNMAT HT printer. Printing on the Zortrax M200
was performed according to the high-quality HIPS profile with
either maximum infill (used for the holders, wash-bottom and
bottom components), or low infill (used for the top
component). Printing of the Intamsys FUNMAT HT used
the following settings (extruder temperature 255 °C, build-
plate temperature 80 °C, chamber temperature 40 °C, fan
speed 20%, layer height 0.14 mm, print speed 3600 mm/min,
retraction distance 0.5 mm, retraction speed 1800 mm/min,
infill percentage 95%, use support with maximum overhang
angle of 45° and use raft with 5 mm offset). Exported STL
models and the original SolidWorks SLDPRT files are available
as Supporting Information (File S1). Two different designs of
the bottom component were generated to accommodate either
trimmed unskirted 96-well PCR plates (File S1), or PCR tubes
(File S1).

Plasma Sample Preparation and Cleanup Using SDB-RPS
StageTips

Plasma sample preparation was performed according the
protocol in the Supporting Methods, which was adapted from
3 previous studies.17−19 All steps in this protocol were
completed without the aid of any robotics. Briefly, 1 μL of
plasma (60−70 μg protein) was added to 24 μL of SDC buffer
(1% sodium deoxycholate, 10 mM TCEP, 40 mM
chloroacetamide, and 100 mM Tris-HCl pH 8.5) in either a
500 μL 96-well Protein Lo-bind plate, or Protein Lo-bind 1.5
mL tubes (Eppendorf). After sealing the tube or plate (with a
silicone mat, Eppendorf), samples were heated to 95 °C for 10
min at 1,000 rpm in an Eppendorf Thermomixer-C with a
ThermoTop (heated lid) to denature, reduce, and alkylate
proteins. Once cooled to RT and diluted 10-fold with water,
LysC and Trypsin were added (from 1 mg/mL stock solutions
in either water, or 50 mM acetic acid, respectively) to digest
proteins at 1:100 ratio (each protease:protein, μg/μg) and
digested at 37 °C for 16 h at 1000 rpm in an Eppendorf

Thermomixer-C with a ThermoTop (heated lid). An equal
volume (250 μL) of 99% ethyl acetate/1% TFA was added to
the digested peptides for a final concentration of 49.5% ethyl
acetate and 0.5% TFA.
SDB-RPS StageTips were generated by punching double-

stacked SDB-RPS discs (Sigma, Cat # 66886-U) with an 18-
gauge needle and mounted in 200 μL tips (Eppendorf), as
shown in Supporting Methods. For StageTip SPE processing
using the Spin96, StageTips were inserted into a holder and
placed in the top, which was then stacked onto the wash-
bottom containing a polypropylene 96-well microtiter plate to
collect the sample flow-through and washes (Figure S1a). Each
tip was wetted with 100 μL of 100% acetonitrile and
centrifuged at 1000g for 1 min. Following wetting, each
StageTip was equilibrated with 100 μL of 0.1% TFA in H2O
and 30% methanol/1% TFA with centrifugation for each at
1000g for 3 min. Each StageTip was then loaded with the
equivalent of ∼10 μg peptide in 49.5% ethyl acetate and 0.5%
TFA (equal volumes of each phase used). The peptides were
washed twice with 100 μL of 99% ethyl acetate/1% TFA,
which was followed by one wash with 100 μL of 0.2% TFA in
water. For elution of peptides, the wash-bottom was exchanged
with a bottom containing a holder supporting an unskirted
PCR plate that has been trimmed to fit (Figure S1b). To elute,
100 μL of 5% ammonium hydroxide/80% acetonitrile was
added to each tip and centrifuged as above for 5 min. Samples
in the PCR plate were dried using a GeneVac EZ-2 using the
ammonia setting at 40 °C for 1 h. Dried peptides were
resuspended in 30 μL of 5% formic acid and a CBQCA assay
(see below) was performed to ensure even sample loading.
Samples were then stored at 4 °C until analyzed by LC−MS.

CBQCA Peptide Assay

The concentration of peptide in each sample after
resuspension in 5% formic acid was determined by CBQCA
assay (Life Technologies, Cat # C6667). The assay was
performed as per manufacturer’s instructions with the
following modifications. Standards consisting of trypsin
digested BSA peptides were prepared in borate buffer (0.1 M
H3BO3−NaOH pH 9.3) from 655,360 ng/mL to 40 ng/mL in
a 4-fold dilution series. Samples in 5% formic acid were diluted
25-fold in borate buffer, borate buffer blanks and standards
were added to separate wells of a black flat-bottom 96-well
microtiter plate with a final volume of 25 μL per well. To each
well, 95 μL of 1 mM KCN in borate buffer was added,
followed by 30 μL of 0.66 mM CBQCA reagent in borate
buffer. The plate was incubated in the dark at RT for 1 h and
the fluorescence detected by excitation at 465 nm and emission
at 550 nm.

High pH Reversed Phase Chromatography

Pooled trypsin digested plasma peptides (100 μg total) in 5%
formic acid were subjected to high pH reversed phase
chromatography on a Thermo Scientific Dionex Ultimate
3000 BioRS system with a fractionation autosampler, using a
Waters XBridge Peptide BEH C18 column (130 Å, 3.5 μm, 4.6
mm × 250 mm, Cat No. 186003570). The column was
incubated at 30 °C with a constant flow rate of 1 mL/min, with
buffer A containing 2% acetonitrile (ACN) and 10 mM
ammonium formate (pH 9.0) and buffer B containing 80%
ACN and 10 mM ammonium formate (pH 9.0). Fractions
were collected every 8.75 s from a retention time of 2 to 16
min (96 pseudo fractions, concatenated into 16 fractions
total). Peptides were separated by a linear gradient from 10%
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to 40% buffer B for the first 11 min and 100% buffer B for the
remaining time. The fractions were collected in a 2 mL protein
Lo-bind 96-well deepwell plate (Eppendorf) across 16 wells in
a concatenated pattern using tube wrapping.

LC−MS/MS and Analysis of Spectra

Using a Thermo Easy-nLC 1200 nanoUHPLC, peptides in 5%
(v/v) formic acid (injection volume 3 μL) were directly
injected onto a 45 cm × 75 μm C18AQ (Dr. Maisch,
Ammerbuch, Germany, 1.9 μm) fused silica analytical column
with a ∼10 μm pulled tip, coupled online to a nanospray ESI
source. Peptides were resolved over gradient from 5%
acetonitrile to 40% acetonitrile over 45 min with a flow rate
of 300 nL min−1 at 60 °C. Peptides were ionized by
electrospray ionization at 2.3 kV. Tandem mass spectrometry
analysis was carried out on a Q-Exactive HF mass spectrometer
(ThermoFisher) using HCD fragmentation in positive mode.
The data-dependent acquisition method used acquired MS/
MS spectra of the top 10 most abundant ions at any one point
during the gradient. MS1 scans were acquired from 350−1400
m/z (60 000 resolution, 3 × 106 AGC target, 50 ms maximum
injection time) and MS2 scans having a fixed first m/z of 140
(15 000 resolution, 1 × 105 AGC target, 25 ms maximum
injection time, 27 NCE, 1.4 m/z isolation width). RAW MS
data have been deposited to the ProteomeXchange Con-
sortium (http://proteomecentral.proteomexchange.org) via
the PRIDE partner repository with the data set identifier
PXD009324. RAW data were analyzed using the quantitative
proteomics software MaxQuant29 (http://www.maxquant.org,
version 1.5.7.0), and the MaxQuant output has also been
uploaded to the ProteomeXchange Consortium under the
same identifier. This version of MaxQuant includes an
integrated search engine, Andromeda.30 Peptide and protein
level identification were both set to a false discovery rate of 1%
using a target-decoy based strategy, and proteins were filtered
such that they must have >2 razor and unique peptides. The
database supplied to the search engine for peptide identi-
fications contained both the human UniProt database
downloaded on the 30th September 2017, containing 42 170
protein sequence entries and the MaxQuant contaminants
database. For the variant protein analysis, a customized human
plasma protein variant database was generated from each
Uniprot entry using Perl (File S2) and combined with the
entire human Uniprot database used above. Mass tolerance
was set to 4.5 ppm for precursor ions and MS/MS mass
tolerance was 20 ppm. Enzyme specificity was set to trypsin
(cleavage C-terminal to Lys and Arg) with a maximum of 2
missed cleavages permitted. Deamidation of Asn and Gln,
oxidation of Met, pyro-Glu (with peptide N-term Gln) and
protein N-terminal acetylation were set as variable modifica-
tions. Either N-ethylmaleimide (Spin96 Optimization),
carbamidomethyl (All plasma analysis) on Cys was searched
as a fixed modification. We used the MaxLFQ algorithm for
label-free quantitation, integrated into the MaxQuant environ-
ment.29,31 MaxQuant output was processed and statistical tests
performed using the R software package (version 3.4.3).
Processed data was plotted using Tableau (version 10.0.2).

Experimental Design and Statistical Rationale

PREFER Trial. The number of participants was established
from past studies,32−34 which suggested n = 22 per group
would allow detection of a mean difference in glucose infusion
rate (GIR) of 15 μmol/kg FFM + 17.7 between groups, with β
= 0.8 and α = 0.05. We allowed for a 10% drop out rate, and

thus recruited a total of n = 25 per group. In this manuscript
we analyzed the intermittent fasting with weight maintenance
group (IF100), with plasma samples collected before and after
intermittent fasting. To these data we applied a Wilcox robust
test to allow for proteins whose distribution for the difference
between treatment groups across participants was not normally
distributed. Specifically, we used Yuen’s test on trimmed
means for dependent (paired) samples without correcting for
multiple testing, which was restricted to those proteins with at
least 2 razor and unique peptides identified in each sample.
Fold changes comparing plasma protein abundance before and
after intermittent fasting were calculated using the median. For
plotting the variation in individual subject protein intensity
measurements and clinical measures in response to IF, we
calculated adjusted values that force all participants to have the
same mean value for each measure, thus allowing us to focus
on the effect of the IF treatment by eliminating the variation in
protein abundance between individuals.35 The Pearson
correlation was calculated between all clinical measures and
all measured proteins, and the associated p-values were
adjusted using the Benjamini−Hochberg correction to control
for multiple testing. For comparison of allele frequencies
between the detected variant peptides and the genotypes
derived from the European background population a Fisher’s
exact test was used as it is robust to small frequencies. For all
data sets statistical analyses were performed using R (version
3.4.3), and processed data was plotted using Tableau (version
10.0.2). Data are shown as median ± 95% confidence interval,
unless otherwise stated. Significance was set at p < 0.05.

■ RESULTS

Spin96 Design and Optimization for StageTip Processing

We aimed to design a 96-well device for use in deep-well
centrifuges to increase throughput and consistency when
processing StageTips, while also minimizing the likelihood of
cross-contamination. Our device (Spin96) addresses these
issues and was designed with two bottom configurations and
several components (Figure S1a,b) to allow for a quick
changeover between washing and elution steps. The character-
ization of the Spin96 device is detailed in the Supporting
Methods. Several different plastics for the 3D-printing of
Spin96 were tested for durability and usability, with high
impact polystyrene (HIPS) chosen for its durability and ease of
printing (Figure S1c). To optimize the Spin96 protocol, an
ideal force of 1000g was determined as the minimum force
required to efficiently pass liquid through StageTips with the
Spin96 (Figure S1d). The protocol for processing SDB-RPS
StageTips was also optimized to minimize centrifugation time
without compromising the method (Figure S1e). This protocol
was then tested against more conventional methods of
StageTip processing (Tube-based centrifugation) and found
to perform at an equal level in terms of peptides identified
while being much faster (Figure S2). The final optimized
protocol for the use of the Spin96 is included in the Supporting
Methods.
Analysis of Human Plasma Samples from an Intermittent
Fasting Clinical Trial

To demonstrate the capabilities of the Spin96 we utilized the
optimized protocol to analyze plasma samples from a clinical
trial in which 22 overweight participants underwent 8-weeks of
IF.24 The primary aim of the PREFER trial was to examine the
effects of IF on insulin sensitivity (hyperinsulinemic-

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00090
J. Proteome Res. 2019, 18, 2228−2240

2231

http://proteomecentral.proteomexchange.org
http://www.maxquant.org
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_003.zip
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00090/suppl_file/pr9b00090_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.9b00090


euglycemic clamp) in these patients (see Experimental
Procedures). The study was longitudinal with plasma collected
both before and after the IF intervention. In parallel, many
other clinical phenotypes were measured including body
composition by DXA, and plasma lipids (see Figure S3 and
Table S3). Analysis of these clinical parameters demonstrated
that there was a significant decrease in plasma triglycerides
(23%) due to the IF intervention. There was no change in the
glucose infusion rate (insulin and fat-mass normalized), but
there was a significant increase in the insulin-resistance as
measured by HOMA-IR scoring. These data are consistent
with previous studies in lean humans and in mice36,37 where
periods of fasting have been shown to increase insulin
resistance.
To investigate the IF-mediated perturbation on the plasma

proteome, we used the Spin96 device to process all 44 plasma
samples using trypsin digestion and mixed mode SDB-RPS
StageTip SPE prior to LC−MS/MS analysis (see Supporting
Methods). The plasma samples were randomized before
sample preparation and StageTip processing to control
technical variation and each sample was analyzed using a 45
min gradient separation during LC−MS/MS. In addition, a
small portion of peptides from each participant were mixed to
generate a pooled peptide sample for offline high pH reversed
phase fractionation into 16 concatenated fractions. Each of
these fractions was analyzed by LC−MS/MS with the same
method as the individual plasma samples. The data derived
from each plasma sample and the peptide fractions were
processed together in MaxQuant using match-between-runs to
increase peptide/protein identifications. This yielded the

identification of 172 protein groups (Table S4) that were
quantified from more than 2 razor and unique peptides across
all 22 participants (no missing values were allowed) before and
after the IF intervention, from a total of >7500 peptides (Table
S5).
Initially, we performed some QC analysis on the samples

from our proteomic data set to determine if either coagulation,
or red blood cell lysis, occurred in any of the plasma samples
(Figure 1a). This showed that no participant displayed a >10-
fold loss in fibrinogen proteins (FGA, FGB, FGG), indicating
that the anticoagulant (K+-EDTA) had functioned effectively.
A plasma sample from one participant before the IF
intervention showed 4-fold higher than the PREFER
population average for von Willebrand factor (VWF) and
fibronectin (FN1), which may potentially indicate either
arterial disease or recent injury. One participant sample
showed significant increases in hemoglobins (HBA, HBB,
HBD) and carbonic anhydrase (CA1), indicating that this
blood sample underwent some red blood cell lysis during
processing. We also examined the variance in protein
abundance (LFQ intensity) both between and within
participants before and after the IF intervention using six
marker plasma proteins covering 5 orders of magnitude in
protein abundance (Figure 1b). Among these proteins,
albumin (ALB) the most abundant protein in plasma showed
little variation both between and within individuals with a CV
across all samples of 10.6%. In contrast, other marker proteins
showed large variability in relative abundance between
individuals, with lower variability within an individual’s
samples. The protease inhibitor alpha2-macroglobin (A2M)

Figure 1. PREFER clinical trial plasma quality control. Plasma from participants before and after IF were analyzed using our Spin96 proteomics
workflow. Label-free quantitation (LFQ) intensity was plotted for (a) proteins indicative of blood clotting and hemolysis for each participant,
before and after fasting, and (b) LFQ intensity plot for example proteins of very similar abundance before and after the IF intervention, which
showed participant-specific abundance patterns. Each color represents a different protein. (c) Plot for each plasma protein of the adjusted LFQ
(Adj. LFQ) intensity versus the Adj. LFQ percentage coefficient of variation (% CV). Green circles indicate <20% CV, orange circles indicate 20−
40% CV and red circles indicate >40% CV.
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had an overall CV of 24.9% and had marked abundance
differences in several participants. However, both immunoglo-
bulin class mu heavy chain (IGHM) and pregnancy zone
protein (PZP) showed 10-fold or larger abundance differences
between individuals with CVs of 40.3% and 144.9%,
respectively. The large variability in PZP between subjects is
not surprising given its low abundance in nonpregnant women
and abundance variance by 3−4 fold between individuals.38

The lower abundance plasma proteins Cysteine-rich secretory
protein 3 (CRISP3) and Coagulation factor XIIIa (F13A1)
also showed strong participant-specific protein abundance with
CVs of 42.1% and 47%, respectively. These data agree with
previous studies demonstrating participant-specific protein
abundance profiles and demonstrate the value of longitudinal
analysis rather than cross-sectional studies for plasma

proteome characterization.19 To examine variation in the
proteome in response to IF and minimize variance due to the
differences in protein abundances between participants, we
calculated an adjusted LFQ intensity, which forces all
participants to have the same mean intensity for each protein.
From these values we calculated the % CV for each protein
during the IF response across all participants except 2
participants who were removed due to the sample quality
issues above (Figure 1c). These proteins have been classified
into 3 groups, those with % CV < 20 (green ∼65% of
proteins), % CV of 20−40 (orange ∼30% of proteins), and %
CV > 40 (red ∼5% of proteins). These data show that higher
abundance proteins generally have lower % CV values, which is
to be expected given the high signal-to-noise ratio for
quantitation of the abundant proteins. These data also showed

Figure 2. Intermittent fasting induces changes in protein abundance in human plasma. (a) Heat map showing each protein ranked by its total log10
adjusted Label-Free Quantitation (Adj. LFQ) intensity (y-axis) versus the data for each participant from both before and after the IF intervention.
Blue colors represent low abundance and red colors high abundance. Only complete cases were used; any protein with a missing value in any
sample was excluded. (b) Volcano plot of plasma protein abundance changes after IF were plotted with the y-axis showing the −log10 (p-value,
paired) and the x-axis showing the log2 fold-change of protein abundance (after IF/before IF) calculated from the LFQ intensity values. The gray
area denotes significant (p < 0.05) changes with IF and the pink area denotes nonsignificant (p > 0.05) changes. The size of each circle represents
the minimum number of razor and unique peptides across all participants, larger size indicates more razor and unique peptides. (c) Line graphs for
the two most significant up and down regulated proteins after the IF intervention were plotted with the y-axis showing the Adj. LFQ intensity and
each line representing one participant’s response.
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that many IgG-related proteins displayed % CV values >40, as
did cadherin-5 (CDH5), beta actin (ACTB), VWF, and FN1.

Intermittent Fasting Regulated Plasma Proteins

To provide an overview of the changes induced by the IF
intervention across all participants we plotted a heat map of the
adjusted LFQ intensity for all 172 proteins ranked by protein
abundance (Figure 2a). This confirmed that very few proteins
drastically changed abundance due to the IF intervention and
only a few changes were immediately obvious by eye. These
include the increased hemoglobin isoforms from the
participant whose plasma sample taken after the IF
intervention displayed hemolysis, which therefore makes
these proteins appear highly differential between the two
time points. In addition, fibronectin (FN1) appears to be
significantly perturbed across several participants. To identify
statistically significant differences due to the IF intervention,
we generated a volcano plot showing fold-changes versus a
paired test statistic (Figure 2b). Only 11 of the 172 proteins
had a p-value less than 0.05, with modest median fold-changes
between 5 and 30% in either direction. Of these proteins
apolipoprotein A4 (APOA4) and clusterin (CLU) were the
most significantly up-regulated, while apolipoprotein C2
(APOC2) and apolipoprotein A2 (APOA2) were the most
significantly down-regulated proteins. All five of these proteins
are functionally related in the regulation of HDL particle
metabolism. To examine more closely the response of each
participant to the IF intervention we plotted the adjusted LFQ
intensity for the proteins showing significant changes due to
the IF intervention and for a negative control albumin (ALB),
with each participant as a separate line on the plot (Figure 2c
and Figure S4). For each of these proteins, many participants
displayed much larger fold changes of up to 2-fold after the IF
intervention, compared to the fold change calculated from the
median values used in the volcano plot (Figure 2b). For each
of these proteins there were also participants who displayed the
opposite trend in abundance change; however, these
participants were not the same for each of these significant
proteins.

Global Correlation Analysis

Given the number of proteins for which we have collected
quantitative data and the large number of clinical parameters
measured, we wanted to examine if our data set could yield
novel correlations between any of these factors. To this end we
have calculated the Pearson correlation between all measure-
ments including clinical (e.g., weight, plasma HDL, plasma
triglycerides) and protein (LFQ Intensities). These analysis
used data derived from all participants including the before and
after IF measurements (Figure 3). Initially, we wanted to
confirm that we had observed well-known correlations. This
include the positive correlations between LDL (Clin. LDL)
with apolipoprotein B (APOB: the main LDL protein
constituent), PZP with sex hormone binding globulin
(SHBG), and HOMAIR (Clin. HOMAIR) with either
complement C3 (C3), proteoglycan 4 (PRG4), Alpha-1-acid
glycoprotein 1 (ORM1), or Serum amyloid A-4 protein
(SAA4).19,39,40 All these positive controls were seen in our data
set with particularly significant correlation between APOB and
LDL levels (Figure 3 and Figure S5). We also observed a
strong positive association between von Willebrand factor
(VWF) and either fibronectin (FN1) (Figure 3 and Figure S5),
extracellular matrix protein 1 (ECM1), fibrinogen proteins
(FGA, FGB, FGG), or coagulation factor XIII (F13A1 and

F13B). In addition, we observed significant negative
correlations between alpha1-antitrypsin (SERPINA1) and
either the Framingham Risk Score (Clin. FRS), or plasma
LDL, which is a parameter used in the calculation of the FRS.
As would be expected, the glucose infusion rate (Clin. GIR,
normalized to insulin levels and fat mass) was positively
correlated with HDL levels (Clin. HDL), and negative
correlated with the inflammatory protein alpha-1-acid glyco-
protein 2 (ORM2). To identify any associations between the
proteins significantly changing due to the IF intervention and
the remaining clinical or protein parameters, these proteins
were specifically examined. Interestingly, APOA4 showed a
significant positive correlation with plasma gelsolin (GSN) a

Figure 3. Correlation analysis of plasma protein abundance versus
clinical parameters monitored in the PREFER trial. Data derived from
all detected proteins and all clinical parameters were correlated
against each other across all 44 participant samples, disregarding any
grouping information. Correlations were calculated using the
Pearson’s correlation coefficient and the resulting p-values were
subjected to Benjamini−Hochberg correction. The y-axis of each plot
shows the −log10 (corrected p-value) versus the Pearson correlation.
Values in blue are insignificant (FDR > 5%) and values in orange are
significant (FDR < 5%). Each measure starting with Clin. (Clinical)
represents an individual clinical measurement. Proteins are indicated
by their corresponding gene name.
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protein whose function in plasma is not well understood, and a
negative correlation with plasma total triglycerides (Clin. TG)
(Figure S5). Conversely, APOC2 was positively correlated
with total plasma triglycerides, LDL levels, the Framingham
Risk Score, PRG4, and fasting insulin levels.

Unbiased Identification of Human Plasma Protein Variants

Given the depth of proteome coverage we have achieved, we
wanted to identify peptides characteristic of known human
protein coding variants (derived from SNPs), some of which
are known to be associated with metabolic phenotypes. To
achieve this, we generated a database of the 172 plasma
proteins consistently identified in our samples and for each

protein used the Uniprot Natural Variant annotations to
generate additional database entries (full protein sequence)
containing the associated amino acid change (File S2). We
then used this variant database in a combined search with a full
human database from SwissProt in MaxQuant to identify and
quantify the peptides present in our plasma samples (Table
S6). To our surprise we were able to identify >20 protein
coding variants, where peptides specific to natural alleles could
be observed across the participants. To narrow our list of high-
quality variants, we ignored those that had either any missing
values, where peptides from both alleles could not be observed,
or have been shown previously to cause benign changes to the
protein’s function. This yielded 7 variants in APOA4,

Figure 4. Detection of clinically relevant natural protein variants in the PREFER plasma proteomes. Mass spectrometry-based proteomics data was
reanalyzed using a modified plasma-specific protein database containing all known forms of naturally occurring clinically-relevant variants. (a) Bar
plot for each protein variant where the y-axis shows the summed intensity of peptides derived from each allele as a percentage of total, and the x-
axis shows the 44 participant samples with one bar per sample. The gene name for each variant and its position in the protein are indicated in bold
to the right of each plot. Also shown are the associated human phenotypes. Peptides from each allele are shown in different colors on the same plot
and correspond to each legend shown on the right. (b) Bar plot showing either the frequency of the genotype in the European population sampled
by the 1000Genomes study, or the frequency of the corresponding peptide variants in the PREFER plasma proteome samples. The y-axis shows the
frequency in percentage of total, and the x-axis shows the corresponding genomic allele and peptide variant combinations. A comparison of the
frequencies for each allele was made using Fisher’s Exact Test, which is shown at the top of the plot.
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paraoxonase (PON1), alpha1-antitrypsin (SERPINA1), histi-
dine-rich glycoprotein (HRG), apolipoprotein E (APOE) and
transferrin (TF) (see Figure S6 for annotated spectra). Using
the intensity values for the peptides specific to each allele we
generated a bar plot for each of the 44 participant samples
where the summed intensity of both peptides was set to 100%
(Figure 4). Most of these peptides had conservative amino acid
changes and only moderate intensity differences between the
allele-specific peptides was seen, likely due to similar peptide
ionization efficiencies. Thus, participants that had peptides
detected from both alleles have colored bars with each showing
∼50% of the summed intensity, while participants that only
had one type of allele detected have bars of a single color
(Figure 4). In six of these protein variants, clinically relevant
phenotypes have been associated including drug response
(APOA4 N147S),41 metabolic dysfunction (PON1 L55M and
SERPINA1 E400D),42,43 blood cell type changes (HRG
N493I)44 and Alzheimer’s disease (APOE C130R and TF
P589S).45,46 Using a Fisher’s exact test, we compared the
frequency of our observed peptide alleles to the known
genomic allele frequency in the Caucasian European
population,47 which is representative of the PREFER
participant ethnicity. This would allow us to determine if the
PREFER population was either enriched, or depleted, for
particular genotypes compared to their ethnic background.
This analysis showed APOA4 N147S, PON1 L55M and
SERPINA1 V237A displayed peptide observation frequencies
significantly different (p < 0.05) from the known genotype
frequencies. The most significant difference was observed for
the PON1 L55M variant with the homozygous LL (associated
with CVD and lower oral glucose tolerance) and MM
genotype frequencies in Europeans having higher and lower
observed frequency, respectively, at the peptide level in the
PREFER population.

■ DISCUSSION
Here we present an unbiased analysis of human plasma
following a clinical trial of intermittent fasting (IF). These
samples were analyzed using a 3D-printed device, the Spin96,
to increase efficiency and consistency of the sample
preparation with a low-cost and readily accessible device.
From this analysis, we identified ∼200 plasma proteins that we
correlated with a swath of clinical phenotypes to examine the
molecular adaptations that occur with IF. In addition, we were
able to detect a number of clinically relevant protein variants at
the peptide level using a unique protein variant database.
Together, this study provides a novel device and protocol for
processing of large numbers of plasma samples and novel
insights into the potential mechanisms behind IF beneficial
effects in humans.
Plasma is an easily accessible sample from human clinical

trials, which when analyzed with current proteomics work-
flows, can provide insight into possible mechanisms in the
development of clinical phenotypes.19,48−51 Particularly useful
are intervention-based longitudinal trials where the same
participant is monitored over an extended period to identify
treatment-related protein changes.19,52−54 These studies
provide useful statistical power in reasonably small number
of samples (≤96), compatible with the current nanoLC−MS/
MS based proteomics throughput of ∼1 sample per hour. To
date, proteomics studies of plasma have focused on the analysis
of the top 200−1000 most abundant proteins, using either no
depletion strategy, or with employment of abundant protein

depletion with affinity columns. As suggested previously,
depletion columns likely have their own caveats regarding
lot-to-lot reproducibility55 and excessive cost. Our device offers
a faster approach to StageTip sample preparation, and a similar
number of proteins identified compared to previous non-
depleted plasma analysis studies.17 We observed far fewer
proteins when compared to studies using either more in-depth
fractionation,55 or recently improved MS acquisition strat-
egies.56 However, these strategies still do not provide easy
access to very low abundance plasma proteins such as insulin,
GLP-1, or chemokines. The field would be greatly accelerated
by the implementation of improved plasma analysis workflows
to access these clinically relevant low abundance proteins/
peptides.
Our analysis detected the up-regulation of the apolipopro-

tein A IV (APOA4) protein in human plasma after 8-weeks of
intermittent fasting. This is interesting given that higher levels
of APOA4 have been associated with many beneficial
phenotypes such as promotion of reverse cholesterol transport,
increased satiety, and decreased LDL particle oxidation.57

APOA4 has been quantified as strongly expressed in the small
intestine by the luminal epithelial cells and to a much lower
extent by cells in the liver and other tissues of both humans
and mice.58,59 APOA4 is present in plasma in either a lipid-free
form, associated with chylomicrons, or associated with HDL
particles, which makes sense given its known functional
associations. In previous studies, plasma abundance of the
APOA4 protein has been shown to increase after either a high
fat diet60 or bariatric surgery, where it was positively correlated
with increased HDL cholesterol.61−63 In contrast, APOA4
protein abundance after weight loss has been reported to either
decrease19 or slightly increase,64 indicating that weight loss
alone does not strongly influence the abundance of this
potentially beneficial protein. Several human protein-coding
SNPs of APOA4 have been associated with clinical
phenotypes, which includes the N147S variant detected in
this study that is associated with the response to fenofibrate
treatment.41 Another phenotype associated with several
APOA4 variants is altered plasma total triacylglycerol
abundance,65,66 which is in agreement with our correlation
analysis.
In addition to APOA4, we also observed significant changes

in CLU, APOC2, APOC3, and APOA2, which are all related to
either lipid, chylomicron, or HDL-particle metabolism (Figure
5). Of particular interest is the decrease in protein abundance
of APOC3 in plasma with IF (Figure 2b), as it has been
previously demonstrated to decrease triglyceride lipolysis
through direction inhibition of lipoprotein lipase (LPL)67

and to also decrease the uptake of triglycerides into tissues
such as the liver.68 Together, this suggests a combined
regulatory effect of intermittent fasting to increase triglyceride
lipolysis in chylomicrons and increase the production of
mature spherical HDL-particles. This hypothesis fits with our
clinical observations that plasma total triglycerides were
significantly decreased after intermittent fasting (Table S3);
however, total HDL abundance was not significantly changed
after IF. Future analysis of participant plasma samples using
size-exclusion chromatography (SEC) to detect HDL particle
size distributions before and after the intervention would help
address these aspects of APOA4 function. Validation of these
findings in different cohorts with larger numbers of participants
will be important to confirm their functional significance.
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Global correlation analysis was performed on all the protein-
level plasma data and the clinical measures for each subject.
From this analysis, the highly abundant plasma protein,
SERPINA1, was negatively correlated with the Framingham
Risk Score (FRS). To calculate FRS for an individual, several
lifestyle factors including smoker status, age, and gender are
considered alongside biological measures including LDL,
blood pressure, and heart rate.69 Given the short time scale
of our IF intervention, and that most patients maintained a
constant BMI, it is most likely that a change in LDL is the
reason for the positive FRS change. This agrees with the
observed negative correlation between plasma SERPINA1
abundance and LDL levels (Figure 3). Indeed, previous studies
have demonstrated a clear interaction between SERPINA1 and
the LDL-associated protein, lipoprotein A (LPA).70 LPA is a
key component of LDL particles where it is directly bound to
the major LDL component, apolipoprotein B-100
(APOB100).71 Our data support the hypothesis that increasing
plasma SERPINA1 levels will lead to a decrease in blood LDL
levels, through its association with the LDL-associated protein
LPA.
The analysis of protein coding SNPs offers a direct link

between genetic mutation and clinical outcomes as it relates to
human disease. We have adapted a human protein variant
database for the detection and quantitation of protein variant-
derived peptides. Most of these amino acid variations were
conservative changes and only moderate intensity differences
between the allele-specific peptides were observed. However,
SNPs that introduce more divergent amino acids could pose a
detection/quantification problem. For example, we observed

some peptide variants such as HRG (N493I), where intensity
differed by 3-fold between alleles in heterozygous individuals,
which may reflect different ionization efficiencies. Given that
these data are protein based, we cannot discriminate between
the true genotype of these individuals and any allele-specific
expression that may occur for each gene analyzed. However,
the fact that we observed the expected allele frequencies in 4 of
the 7 clinically relevant protein variants suggests that we are
observing peptide abundance in concordance with the genomic
alleles. For the 3 protein variants that showed a significant
deviation from the European population allele distribution
there are two main reasons for the observed deviation. First,
those participants selected for the PREFER trial (including
BMI > 25) may be enriched/depleted for those specific
genotypes, which may provide a genetic predisposition to
becoming overweight, or how the subject would respond to IF.
Second, the proteins we have examined may display allele-
specific expression. Unfortunately, matching tissue samples for
genotyping were not available in the PREFER trial. To
confidently associate specific SNPs to observed phenotypes
future studies need to apply this method across larger cohorts
of participants to provide greater statistical power. Preferably,
these measurements can then be matched to tissue samples to
correlate these data with the DNA-derived genotype of each
participant.
The Spin96 device offers fast and reproducible proteomics

analysis, further facilitating the use of proteomics over
conventional protein analysis methods such as either ELISA
assays, or Western blotting. Proteomics-based approaches offer
an unbiased quantitative analysis at a reduced cost per detected
analyte at an increased speed and with higher specificity. While
more conventional approaches are still useful for their great
precision, they are not easily compatible with the analysis of
large numbers of samples and the simultaneous detection of
many proteins.

■ CONCLUSIONS

In summary, we developed a 3D printed 96 well device for
StageTip-based SPE of peptide samples derived from human
plasma. The application of this device and optimized protocol
enabled the detection of significant changes in the plasma
proteome after IF, which may mediate some of the observed
beneficial phenotypes derived from IF. Furthermore, we have
demonstrated the ability to identify several novel correlations
between clinical measures and the identified proteins from this
clinical trial. Lastly, we have detected many peptides derived
from nonsynonymous protein-coding variants of plasma
proteins including several that are clinically significant.
Together, these findings illustrate novel changes in the
human plasma proteome in response to intermittent fasting
using a new sample preparation device.
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Figure 5. Model of intermittent fasting modulation of apolipoprotein
plasma abundance and metabolism. Proteins in green are up-regulated
and proteins in red down-regulated by IF in human plasma. Proteins
shown in black do not change significantly.
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