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Purpose: Myopia (shortsightedness) is one of the most common ocular conditions worldwide and results in blurred
distance vision. It is a complex trait influenced by both genetic and environmental factors. We have previously reported
linkage of myopia to a 13.01 cM region of chromosome 2q37 in three large multigenerational Australian families that
initially overlapped with the known myopia locus, MYP12. The purpose of this study was to perform fine mapping of
this region and identify single nucleotide polymorphisms (SNPs) associated with myopia.
Methods: Fine mapping linkage analysis was performed on three multigenerational families with common myopia to
refine the previously mapped critical interval. SNPs in the region were also genotyped to assess for association with
myopia using an independent case-control cohort.
Results: The disease interval was refined to a 1.83 cM region that is adjacent to rather than overlapping with the MYP12
locus. Subsequent sequencing of all known and hypothetical genes as well as an association study using an independent
myopia case-control cohort showed suggestive but not statistically significant association to two intronic SNPs.
Conclusions: We have identified a novel locus for common myopia on chromosome 2q37.

Shortsightedness is one of the most common eye
conditions clinically manifesting as blurred distance vision. It
results when light rays entering the eye are focused in front of
rather than on the retina. Prevalence rates for myopia range
from 20%–25% in Western countries to over 80% in the
urbanized populations of Singapore, China, Japan, and
Taiwan [1-6]. Myopia can be clinically defined using
spherical equivalent (SphE) measurements that are
quantitated using diopter (D) measurements. Individuals
having readings of −0.5 D or less in both eyes are considered
to be myopic [7]. Clinically, myopia can be classified as
common (SphE ≤−0.5 to <−6 D) or high grade (SphE ≤−6 D).
The more severe grades of myopia are associated with an
increased risk of sight threatening complications such as
glaucoma, retinal changes, and cataract [7,8]. Due to the high
prevalence of myopia worldwide together with the increased
risk of visual morbidity from associated complications,
myopia is a significant public health problem. As a
consequence, the search for risk factors involved in myopia is
paramount if we are to gain insights into its pathogenesis and
reduce its burden on health.
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Myopia is a complex trait influenced by both genetic and
environmental factors [9]. Environmental factors such as
reading (near work) are known to influence the development
of myopia but appear to account for only 12% of the observed
phenotypic variance [10]. The remaining influences on
myopia have been suggested to relate to genes as heritability
studies indicate that between 50%–94% of population
variance is accounted for by genetic factors [11-15]. In
support of these heritability studies, familial correlation
studies have shown that children with myopic parents have a
four times greater risk of developing myopia than children
with non-myopic parents [16]. In addition, genetic mapping
studies have identified at least 18 chromosomal regions
suspected of harboring a myopia gene (MYP1–MYP18). Of
these regions, 11 have been implicated in high myopia
(MYP1– MYP5, MYP11, MYP12, MYP13, MYP15,
MYP16, MYP18) [17-28] and seven in common myopia
(MYP6–MYP10, MYP14, MYP17) [29-31]. Five of these loci
(MYP2, MYP3, MYP6, MYP10, MYP13) have been
confirmed through replication studies in independent family
studies [32-38]. Recently, we reported replication of the
MYP12 locus using three multigenerational Australian
families [39]. The MYP12 locus was initially reported as
harboring a gene for high grade myopia whereas our
replication study indicated that this locus may also harbor a
gene for milder forms of myopia.
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We now present fine mapping data for these three
Australian myopia families that has refined the mapped
myopia interval to a region on chromosome 2q37 that is
adjacent to but not overlapping the MYP12 locus. Our
findings suggest this is a novel locus for myopia that is distinct
from MYP12. Furthermore, we have undertaken an
independent association study to identify potential genetic
variants that may be associated with myopia.

METHODS
Subjects: The three families used in this study were recruited
as part of the Genes In Myopia (GEM) Study (Melbourne,
Australia), and details regarding their ocular examination
have been previously reported [40]. These families had
previously undergone a 10 cM genome-wide scan that
identified a myopia susceptibility locus to chromosome 2q37
[39]. DNA from all consenting family members was collected
from venous blood samples as previously described [41]. For
the current study, we defined myopic individuals as family
members with spherical equivalent refraction equal to or less
than −0.5 diopter sphere (DS) in both eyes and controls as
family members with measurements greater than −0.5 DS in
both eyes [42-47].

For the case-control association study, we used unrelated
individuals also recruited through the GEM Study [40], the
Blue Mountains Eye Study (BMES) [48], and the Melbourne
Visual Impairment Project (VIP) [49]. Individuals with a
history of eye diseases such as keratoconus, age related
macular degeneration (AMD), or a history of genetic disorders
known to predispose to myopia such as Stickler syndrome or
Marfan syndrome were excluded. Using the same definition
of what constituted myopia as used in the linkage study, we
analyzed 300 myopic and 291 control individuals in a case-
control cohort.

This study adhered to the tenets of the Declaration of
Helsinki and was approved by the Royal Victoria Eye and Ear
Hospital (Melbourne, Australia) and Westmead Hospital at
the University of Sydney (Sydney, Australia). All individuals
were of Caucasian descent and provided informed written
consent before commencement of the study.
Fine mapping linkage analysis: For fine mapping linkage
analysis, the starting interval was defined by critical
recombination events observed in the three families during the
genome-wide linkage analysis [39]. This interval spanned
markers D2S396 and D2S338 on chromosome 2q37. For fine
mapping, polymorphic microsatellite markers spanning this
mapped interval were chosen from the deCODE genetic maps
[50]. Genotyping was undertaken by the Australian Genome
Research Facility (AGRF; Melbourne, Australia) using a
model 377 automated DNA sequencer (Applied Biosystems,
Melbourne, Australia). All available family members were
included in the genotyping. Genotype error checking was
performed using PedManager version 0.9. Multipoint

parametric and non-parametric linkage analyses were
performed using MERLIN (version 1.1.2) [51]. In the case of
parametric linkage analysis, two autosomal dominant models
were used with phenocopy rates of 0.1 (model 1) or 0.2 (model
2), a penetrance of 0.9, and disease allele frequency of 0.0133.
The choice of these models was based on those described by
Chen et al. [15] in the initial linkage paper for these families.
Haplotypes were generated using MERLIN (version 1.1.2)
[51] and visualized using HaploPainter (version 027beta)
[52].
Candidate gene sequencing in the fine mapped region:
Identification of all known and hypothetical genes in the
refined interval was achieved by mining Ensembl [53],
National Centre for Biotechnology Information (NCBI), and
University of California Santa Cruz (UCSC) Genome
Browser [54]. Bidirectional DNA sequencing was undertaken
for all predicted and known exonic regions of these genes and
at least 20 bp into each adjacent intron. DNA sequencing was
performed in six myopic individuals (two randomly chosen
from each of the three families) as well as six unrelated
controls (married-in individuals). Primer design, template
amplification, and DNA sequencing was performed by the
Australian Genome Research Facility (Brisbane, Australia).
Sequencing data was visualized using Chromas Lite (version
2.01) and ClustalX (version 2.0) [55] to identify any variations
from the reference sequence deposited in the Ensembl
database (reference sequence) [53]. The reference sequence
for the known single nucleotide polymorphisms (SNPs) was
defined by the common allele for the CEU (Utah residents
with ancestry from northern and western Europe) population.

Following candidate gene screening, a subset of SNPs of
interest were identified and chosen for further analysis in an
independent case-control association study. SNPs that were
present in only one of the six samples were not present in each
of the three families or were present in an equal number of
myopic individuals and controls were excluded from
subsequent genotype analysis.
Case-control association study: The subset of SNPs that
fulfilled the above criteria was genotyped in an independent
cohort of unrelated individuals of Caucasian descent. A total
of 300 individuals with myopia and 291 controls were
genotyped at the Australian Genome Research Facility
(Brisbane, Australia) using the MassArray platform
(Sequenom Inc., San Diego, CA) and matrix assisted laser
desorption/ionization-time of flight (MALDI-TOF) analysis
(Sequenom, San Diego, CA). To provide more extensive
coverage of intronic and intergenic regions, additional SNPs
that were evenly spaced across the entire refined linkage
interval were identified using HapMap (Build #36) [56] and
also genotyped in the case-control cohort.

Genotyping data was assessed for deviations from the
Hardy–Weinberg equilibrium using PLINK [57]. Any SNPs
not passing this test (p<0.05 in the controls) were noted and
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excluded from further analysis. Association tests were also
performed using PLINK, and adjustments for multiple testing
were made using the Bonferroni correction. Prospective
power calculations were performed using Episheet.

RESULTS
Fine mapping linkage analysis: Previous linkage mapping in
three myopia families (GEMF0046, GEMF0206, and
GEMF0251) identified a 13.01 cM region at 2q37.1 that
overlapped with the high myopia locus, MYP12 [39]. A total
of 37 myopic and 14 control individuals (including three
additional myopic individuals that were not previously
available) from these three families were used for fine
mapping. Fine mapping of this region resulted in a peak
parametric and non-parametric LOD score of 3.97 and 3.48,
respectively, at marker D2S338 (Figure 1). This was in
agreement with the location of the peak LOD scores reported
from our initial genome-wide scan. Haplotype analysis of this
region and adjacent regions (6.02 cM proximal and 11.06 cM
distal) using 30 polymorphic microsatellite markers at an
average spacing of 1.2 cM in the families allowed significant
narrowing of the myopia disease gene region (Figure 2). A
critical recombination event in individuals 20573, 20580, and
20581 in GEMF0206 (Figure 2A) defined the distal end of the
interval to marker D2S2968. A critical recombination event
in individuals 20094 and 21490 from GEMF0046 (Figure 2B)
and in individuals 21445 and 20472 from GEMF0251 (Figure
2C) defined the proximal end of the refined critical interval to
marker D2S1397. The refined interval was identified as a 1.83
cM region on chromosome 2q37.2-2q37.3 that was distal to
but did not overlap with the adjacent MYP12 locus (Figure
3).
Candidate gene sequencing: To identify a potential causative
myopia gene or variant within the refined linkage interval, we
identified all known and hypothetical genes in this 1.83 cM

interval. A total of eight hypothetical (BX647589, AK00798,
AK056246, AK023507, LOC728074, LOC728087,
LOC728067, Q9UFF6) and six known (ankyrin repeat and
SOCS box-containing [ASB18], centaurin gamma 2
[CENTG2], COP9 constitutive photomorphogenic homolog
subunit 8 [Arabidopsis; COPS8], chemokine (C-X-C) motif
receptor 7 [CXCR7], IQ motif containing with AAA domain
[IQCA], and gastrulation brain homeobox 2 [GBX2]) genes
were identified.

DNA sequencing was undertaken on all 67 exons and
exon-intron boundaries in the known and hypothetical genes
that were localized to the refined linkage interval. The intron-
exon structure for the hypothetical genes was defined by
aligning predicted mRNA sequences with genomic DNA
using the BLAST algorithm. The exons were divided into 109
amplicons and sequenced bidirectionally in six myopic
individuals from the three GEM families and six controls (no
myopia). Overall sequencing success was 94% with seven
amplicons located in genes CXCR7 (exon 1 and 2), IQCA
(exon 17), and GBX2 (exon 1) proving difficult to sequence.
From the successfully sequenced amplicons, a total of 77
SNPs were identified where at least one individual had a
genotype that varied from the Ensembl reference sequence.
Through the use of our exclusion criteria listed under
Methods, this list of SNPs was narrowed to a total of 38. To
allow for complete SNP coverage of the refined interval, we
also identified all the known HapMap (Build 23a) SNPs
located in the difficult to sequence amplicons and added these
to our list of candidate SNPs. This brought the total number
of SNPs from the hypothetical and known genes to 39.

In addition to the 39 SNPs in the known and hypothetical
genes, information from HapMap was used to identify
additional intronic and intergenic SNPs in the refined interval.
Using this approach, 120 additional SNPs across the entire
refined interval as well as the region 561 kb proximal and 835

Figure 1. LOD Scores for the fine
mapping linkage analysis on
chromosome 2q37. Parametric (solid
line) and nonparametric (dashed line)
LOD scores are shown for the three
GEM families (GEM0046, GEM0251,
and GEM0206).
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Figure 2. Haplotype analysis in the chromosome 2q37 linkage region for the three GEM families. Haplotype analysis in the chromosome 2q37
linkage region is shown for GEM0206 (A), GEM0046 (B), and GEM0251 (C).
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kb distal to the critical recombination events were chosen.
These were selected to ensure they were evenly spaced and
covered the entire region. There was an approximate spacing
of 4–55 kb (average 51 kb) between each SNP.
Case-control association study: A total of 159 (39+120) SNPs
were genotyped in an independent case-control cohort
consisting of 300 myopic and 291 control individuals from
Australia. Power calculations were undertaken and suggested
that a cohort of this size will have 80% power to detect an odds
ratio of 1.78. The average genotyping success rate for these
SNPs was 98.1%. A total of eight SNPs (5.0%) were found
not to be in Hardy–Weinberg equilibrium and so were
excluded from further analysis. An additional 14 SNPs (8.8%)
were not polymorphic in this cohort, and they were also
excluded from further analysis leaving 137 SNPs for the case-
control association analysis. The 22 excluded SNPs were
scattered throughout the linked region with no bias for one
gene or genomic segment. All p values from the case-control
association study for the remaining 137 SNPs underwent a
Bonferroni correction. Using a conservative significance level
of 5×10−4, we observed no statistically significant association
to the genotyped SNPs [58].

DISCUSSION
Using a fine mapping linkage based approach, we have been
able to identify a novel locus for myopia on chromosome
2q37. Initially, this region was described as overlapping with
the known high grade myopia locus, MYP12. However,
further fine mapping and haplotype analyses have enabled us
to better refine this region to a smaller 1.83 cM segment on
chromosome 2q37. Hence, the locus harboring the causative
myopia gene in these GEM families is novel and distinct from
the MYP12 locus, indicating a degree of genetic heterogeneity
in this region of chromosome 2. Detailed SNP analysis and
DNA sequencing of all known and hypothetical genes in the
refined interval provided no evidence of a causative variant in
the coding region of these genes. The best evidence for a
causative variant in the region was provided by the two
intronic SNPs of rs1986830 and rs4663724, but these only
showed suggestive rather than statistically significant
association.

Despite strong evidence for a hereditary component
influencing myopia, identification of causative genes or DNA
variants has so far proven difficult to achieve. To date, five
genes, transforming growth factor beta induced factor
homeobox 1 (TGIF) [59], paired box 6 (PAX6) [60], collagen,
type 1, alpha 1 (COL1A1) [61], hepatocyte growth factor
(HGF) [62], and uromodulin-like 1 (UMODL1) [27], have
been positively associated with high grade myopia and
collagen, type 2, alpha 1 (COL2A1) [63] with common
myopia. Of these six candidates, TGIF and COL1A1 can be
excluded as candidates as subsequent replication studies have
been negative [64-67]. COL2A1,HGF, and UMODL1 have
each been reported in single studies and await replication. The

final gene, PAX6, has been positively associated with high
grade myopia in two independent studies, but results have
been negative for common myopia [29,63,68,69]. Hence, to
date, PAX6, HGF, and UMODL1 remain the strongest
candidates for high grade myopia and COL2A1 for common
myopia.

The methodological approach that we have taken to gene
identification, namely linkage analysis and DNA sequencing,
mirrors the approach that has been used in many other studies
mapping myopia loci [70-73]. Unfortunately, these studies
have also failed to find a causative variant in the coding region
of candidate genes. Given that myopia is a complex disease,
it is possible that causative variants are located in intron or
flanking regulatory regions as has been demonstrated for other
complex diseases such as breast cancer, type 2 diabetes, and
chronic kidney disease [74-76]. More detailed assessment of

Figure 3. Ideogram of human chromosome 2 showing the location
of the newly fine mapped region relative to the original linkage
region and MYP12. Fine mapping linkage analysis now clearly
indicates that the region of interest is adjacent to but does not overlap
MYP12.
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non-coding regions in these linked regions may provide more
clues as to the genetic drivers of myopia. SNPs located in the
non-coding sequence may affect gene/protein expression
indirectly by affecting gene regulation and hence may be
important drivers of the disease process. Given this, we
extended our assessment of the candidate region to include
intronic and intergenic SNPs spanning the linkage interval.

Our study has identified a relatively small linkage region
on the long arm of chromosome 2 that represents a novel locus
for common myopia. Further analysis of this region failed to
convincingly identify genetic variants associated with
myopia. However, there are a total of 1,048 known SNPs in
the refined linkage interval, and we cannot rule out the
possibility that additional SNPs in this region are associated
with myopia. There are also several other issues that should
be considered when interpreting our findings. One could argue
that the cohort we used for the case-control study was
underpowered to detect all variants that might be positively
associated with myopia. While this is a possibility, the variants
that are most likely to be missed are those that have small
effect sizes. Although such variants may still contribute to
myopia, they are likely to be only minor players. Furthermore,
it is also important to be able to assess segregation of SNPs in
the original GEM families used in the linkage analysis.
However, the relatively small number of families used for this
study would make segregation analysis statistically
underpowered, and consequently, reliable data cannot be
generated. We were aware of this study limitation from the
onset and as a consequence, opted instead to validate SNPs in
an independent case-control cohort to replicate the initial
linkage result.

The findings presented here do not represent the
conclusion of this study but do provide ongoing data for
further investigation into the exact genetic causes of myopia.
Further work needs to be undertaken to extend these findings
to ensure complete coverage of this region. SNP genotyping
also needs to be confirmed in a larger case-control cohort and
also replicated in additional cohorts of both Caucasian and
different ethnicities. Clearly, much more work is needed to
further elucidate the underlying genetic influences on the
development of myopia.
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