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Abstract
A polygenic model of inheritance, whereby hundreds or thousands of weakly associated

variants contribute to a trait’s heritability, has been proposed to underlie the genetic archi-

tecture of complex traits. However, relatively few genetic variants have been positively iden-

tified so far and they collectively explain only a small fraction of the predicted heritability. We

hypothesized that joint association of multiple weakly associated variants over large chro-

mosomal regions contributes to complex traits variance. Confirmation of such regional as-

sociations can help identify new loci and lead to a better understanding of known ones. To

test this hypothesis, we first characterized the ability of commonly used genetic association

models to identify large region joint associations. Through theoretical derivation and simula-

tion, we showed that multivariate linear models where multiple SNPs are included as inde-

pendent predictors have the most favorable association profile. Based on these results, we

tested for large region association with height in 3,740 European participants from the

Health and Retirement Study (HRS) study. Adjusting for SNPs with known association with

height, we demonstrated clustering of weak associations (p = 2x10-4) in regions extending

up to 433.0 Kb from known height loci. The contribution of regional associations to pheno-

typic variance was estimated at 0.172 (95% CI 0.063-0.279; p< 0.001), which compared fa-

vorably to 0.129 explained by known height variants. Conversely, we showed that

suggestively associated regions are enriched for known height loci. To extend our findings

to other traits, we also tested BMI, HDLc and CRP for large region associations, with consis-

tent results for CRP. Our results demonstrate the presence of large region joint associations

and suggest these can be used to pinpoint weakly associated SNPs.

Author Summary

It is widely accepted that genetics influences a broad range of human traits and diseases,
yet only a few genetic variants are known to determine these traits and their impact is
modest. In this report, we made the hypothesis that combining information from a large
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number of genetic variants would help better explain how they together contribute to
traits such as height. To do so, we first had to select a proper method to integrate large
numbers of genetic variants in a single test, here named “large region joint association”.
Next, we tested our method on height in 3,740 European participants from the Health
and Retirement Study. We showed that the contribution of regional associations to varia-
tion in height was 17.2%, as compared to the 12.9% explained by known genetic determi-
nants of height. In other words, the joint effect of multiple genetic variants integrated
together contributed to a substantial fraction of the genetics of height. These results are
significant because they can help identify new genes or genetic regions associated with
human traits or diseases. Conversely, these results can be used to better understand
genes that we already know are associated. Furthermore, our results provide insights on
how traits are genetically determined.

Introduction
It is widely accepted [1,2] that a large fraction of the variance of complex traits is explained by
common genetic variants, yet a relatively small number have been associated at genome-wide
significance and they collectively explain only a minor fraction of the total predicted heritabili-
ty. The discrepancy between predicted heritability from population studies and variance ex-
plained by known genetic determinants has been termed the “missing heritability”, and is
currently one of the most pressing issues in human genetics [3]. Among others, it has been pro-
posed that weak, yet undetected, associations underlie complex trait heritability [2], and that
interaction of multiple genetic variants could potentially account for some of the missing heri-
tability [4]. Clustering of weak associations within defined chromosomal regions has been sug-
gested [5] and indeed, SNPs at known GWAS loci have been shown by variance component
approaches to contribute significantly to heritability [6]. Furthermore, conditioning on known
genetic determinants can reveal novel associations [7], coding and cis-regulatory variants have
been shown to modify the functional effect of each other [8], and genetic variants can impact
cis gene expression over regions spanning hundreds of kilobases [9,10]. Nonetheless, while var-
iance component methods can estimate overall variance explained by genetic variants based on
genetic similarity between individuals, no method has explored the individual and aggregate
contribution of SNPs to large region associations. We hypothesized that joint association of
multiple weakly associated variants over large chromosomal regions contributes to complex
traits variance. Such joint associations will be best characterized by association models that are
robust to linkage disequilibrium (LD) structure and the presence of gene-gene interactions.

Many regional association tests have been proposed [6,11]. However, no report has systemati-
cally evaluated the power of commonly used statistical models to capture the phenotypic variance
explained by SNPs over large regions, while taking into account both the diploid nature of our ge-
nome and the possibility of long-range cis-interactions. In fact, most association studies have an-
alyzed SNPs individually either with or without follow-up conditional analyses [7]. Tregouët
et al. [12] was the first to report haplotype testing on a genome-wide basis, but the proposed
method assumed short haplotypes, and as such did not test for aggregations of weak association
signals over extended regions nor long-range cis-interactions. A recent report [13] described a
method for multi-SNP association where SNPs are first pruned to meet a minimum p-value
threshold in univariate analysis and to ensure linkage disequilibrium r2<0.1. However, methods
to capture genetic variance explained by multiple variants clustering in extended chromosomal
regions when no single variant is strongly or modestly associated by itself have not been fully
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explored. There is thus a need for methods that leverage the potential aggregation of functional
variants within extended genetic regions, irrespective of linkage disequilibrium or whether these
variants contribute to phenotypic variance independently or through cis-interactions.

In this report, we first characterized the ability of commonly used genetic association mod-
els to capture the variance explained by large region joint associations. Through theoretical
derivation and simulations, we showed that multivariate linear models where multiple SNPs
are included as independent predictors have the most favorable profile under a variety of asso-
ciation scenarios. Furthermore, we showed that multivariate linear models are equivalent to
variance component models when the SNPs tested are in complete linkage equilibrium. In-
formed by these results, we tested for regional association with height in 3,740 European partic-
ipants of the Health and Retirement Study (http://hrsonline.isr.umich.edu/). Height was
chosen because of its high heritability, demonstrated polygenic genetic architecture [2,14], and
the presence of 180 known association loci [15]. We confirmed clustering of weak associations
near known height loci, demonstrated that large region joint associations can explain a large
fraction of phenotypic variance, and showed that suggestively associated regions are enriched
for known height loci. To extend our findings to other traits, we also tested Body Mass Index
(BMI), High-Density Lipoprotein cholesterol (HDLc) and C-reactive Protein (CRP) for large
region associations.

Results

Notations and Background
Let matrixH(k×m) represent all possible haplotypes defined bym biallelic SNPs, where k = 2m is
the number of possible haplotypes. The reference and alternate alleles of a SNP are coded as 0
and 1, respectively. The corresponding population haplotype frequencies are given by a vector
of length k:

π ¼ ½p1; p2; . . . ; pk�:

Further, for k possible haplotypes, we define the matrix D(n×k) to represent the diplotypes, i.e.
the combinations of two haplotypes for each of the n individuals. The row entries of matrix D
correspond to the presence or absence of a particular haplotype and are indicated by possible
values of 0, 1, or 2, such that the sum of each row is 2. In other words, if the diplotype of the
ith individual is composed of a pair of two distinct haplotypes corresponding to the uth and
vth columns of matrix H, then the entries Diu and Div take the value 1. On the other hand, if
the individual is homozygote for the uth haplotype then we have Diu = 2 Absence of all other
haplotype is indicated by 0. In addition, the unphased genotype matrix G is given by:

Gðn�mÞ ¼ DH ¼

g11 g12 � � � g1m

g21 g22 � � � g2m

⋮ ⋮ ⋮ ⋮

gn1 gn2 � � � gnm

2
66664

3
77775

where rows represent the number of alternative alleles at each of the m SNPs for a given
individual.

Genetic Association Models
We herein refer to the true underlying genetic association model Y = Dβ + ε as the haplotype
model, whereD is the previously defined matrix of true (unobserved) haplotypes and β a vector
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of unknown haplotype effects. Multiple linear regression is frequently used in genetic associa-
tion studies to model or test the presence of genetic effects. These models assume that a linear
relationship exists between some phenotype Y and the observed genetic covariates X, which
can be genotypes or inferred haplotypes. Let’s posit the following linear regression model

Y ¼ XBþ ε;

where we assume the trait Y is standardized to have mean 0, variance 1 and ε is the standard
normally distributed random error. The unknown coefficients (vector) B represent the real ge-

netic effects and the maximum likelihood estimate can be found by B̂ ¼ X0Xð Þ�1
X0Y. The phe-

notypic variance explained by the real genetic effects then takes the form s2
X ¼ B0X0XB. This

general model can be adapted to specific genetic association models by varying the definition
of X, in this manuscript defined as additive and interaction effect models, genotypic model,
and haplotype probability model. Briefly, in the additive model X = G such that it is equivalent
to a multivariate linear model with the number of alternative allele at each SNP as independent
variables and overall statistical significance determined with an F-test. The interaction model
combines the additive model and all pairwise SNP-SNP interactions. The genotypic model
considers all possible genotypes as categorical variables. The haplotype probability model uses
the probability of each haplotype pair from unphased genotype data as independent variables.
Finally, the variance component model estimates genetic variance explained using pairwise ge-
netic similarity between individuals. A detailed description of models is provided in Methods.

Measure of Non-additivity
We consider a trait to follow a “strictly additive”model if it can be appropriately described by a
linear combination of the number of alternative alleles at each SNP (i.e. when no SNP x SNP
interaction, dominant, recessive or haplotype effects are present). It is relevant to investigate
conditions where the strictly additive model does not adequately explain phenotypic variation.
Deviation from the additive model, or “non-additive effects”, could indicate the presence of ei-
ther non-linear (i.e. recessive or dominant) or interaction effects. We herein define a measure

of non-additivity t
0 ¼ t

max tð Þ where t ¼
s2H�s2G
s2
H

, s2
H is the variance explained by underlying haplo-

types, and s2
G the variance explained by genotypes using an additive genetic association model.

Therefore, τ0 will be equal to 0 when a strictly additive model completely captures the pheno-
typic variance explained by underlying (unobserved) haplotypes and τ0 will be equal to 1 when
deviation from a strictly additive model is maximized (since multivariate linear models always
capture at least a minimal fraction of underlying genetic variance).

Regional Association Involving Common Genetic Variants
We first tested the ability of genetic association models to estimate regional genetic effects
under plausible scenarios involving common variants (minor allele frequency>0.01). We as-
sumed a quantitative trait to be genetically determined according to the underlying (unob-
served) haplotype model Y = Dβ + ε where 2 SNPs define 4 possible haplotypes. To compare
these models on equal footing, we fixed the proportion of variance explained by haplotypes at
0.006 and varied haplotype effects such that the non-additivity parameter(τ0) ranged from 0 to
1 (S1 Fig). We then added “nuisance” SNPs (i.e. not associated with the trait), ensuring the
pairwise LD between all pairs of SNPs was either r2 = 0 or 0.2. Finally, we calculated power for
a sample of 5,000 individuals while arbitrarily setting the p-value threshold at 5x10-5, corre-
sponding to a suggestive regional association.
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The additive model (i.e. where the number of minor alleles at each SNP is included as inde-
pendent predictors in a multivariate linear model) showed a favorable balance of power and
unbiasedness of genetic variance estimates. For instance, the estimated genetic variance was
similar to the variance explained by underlying haplotypes (i.e. 0.006) when non-additivity was
modest (τ0<0.4), irrespective of the number of nuisance SNPs or LD structure (representative
example illustrated in Fig 1). The haplotype probability and interaction (i.e. additive model
plus all pairwise interactions) models provided accurate estimates of genetic variance but had
inferior power, especially when nuisance SNPs were added. The genotypic model also accurate-
ly estimated genetic variance, but had the lowest power among methods tested. This was due to
the high number of degrees of freedom involved, which also explained the lower power of the
haplotype and interaction models when nuisance SNPs were added. As predicted, the variance
component model behaved identically to the additive model when SNPs were in linkage equi-
librium. However, when LD was present, variance component models tended to either under
or overestimate genetic variance. No type I error inflation was observed under the null hypoth-
esis of no association, irrespective of linkage disequilibrium.

We also tested the ability of additive and variance component models to estimate genetic
variance explained when large regions are considered. Using phased 1,000 Genomes data [16],
we simulated windows of 100 SNPs, again fixing genetic variance explained at 0.006, assuming
only two SNPs are truly associated with a quantitative trait, and varying non-additivity. 1,000
Genomes haplotypes were chosen from European Caucasian populations at a randomly chosen
region, excluding SNPs with minor allele frequency lower than 0.01 and further pruning SNPs
such that maximal pairwise linkage disequilibrium was r2 = 0.80. Pairwise r2 between the 2
causal SNPs and the 98 nuisance SNPs varied from 0 to 0.25. As illustrated with representative
examples in Fig 2, consistent results were obtained as compared to previous scenarios including
fewer SNPs, with the additive model more accurately estimating variance explained than the
variance component model. This observation was also true when the 2 causal SNPs were
masked, leaving only the 98 nuisance SNPs for association testing.

Regional Association Involving Rare Genetic Variants
We evaluated the performance of regional association models to capture the phenotypic variance
explained by an untyped rare SNP (MAF� 0.01) when only common SNPs are directly geno-
typed. In these simulations, we assumed that a single rare SNP had an effect on the quantitative
trait and that the proportion of variance explained was 0.0025, 0.005, 0.01 and 0.02. Two com-
mon SNPs in perfect linkage equilibrium were simulated such that together they defined a tagging
haplotype with D´ = 1 and r2 varying from 0.24 to 1 with the rare functional SNP (r2 between in-
dividual common SNPs and rare SNP varied from 0.03 to 0.05). We then proceeded to calculate
the genetic variance captured by each association model using either only the unphased genotypes
at the 2 common SNPs or further adding 3 nuisance common SNPs for a total of 5 SNPs.

The haplotype probability and genotypic model had superior power compared to the addi-
tive and variance component models. For instance, when the rare functional variant explained
0.01 of phenotypic variance and r2 with the tagging haplotype was 1, the haplotype probability
model estimated the genetic variance at 7.8x10-3, whereas the additive model estimated it at
8.0x10-4 (S1 and S2 Tables). In fact, neither the additive, interaction nor variance component
model captured a significant proportion of genetic variance. All three models were underpow-
ered to detect such an association. However, results differed if the rare functional SNP were di-
rectly genotyped and under this latter scenario, the additive, interaction and variance
component models showed superior performance as compared to the haplotype and genotypic
models (S3 Table).
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Fig 1. Estimated variance explained and power as a function of non-additivity measure τ´. A quantitative trait was assumed to be genetically
determined according to the underlying (unobserved) haplotype model Y = Dβ + ε, where 2 SNPs define 4 possible haplotypes. The proportion of variance
explained by haplotypes was fixed at 0.006 while haplotype effects varied such that the non-additivity parameter (τ´) ranged from 0 to 1. Two non-associated
nuisance SNPs were added in (B), (E) and (H), bringing the total number of SNPs tom = 4, and four non-associated nuisance SNPs were added in (C), (F)
and (I), bringing the total number of SNPs tom = 6. In (A), (B) and (C), the frequency of haplotypes was fixed such that pairwise SNP linkage disequilibrium r2
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Large Region Joint Association with Height in HRS
We explored the contribution of large region joint associations to phenotypic variance using
height. First, we individually tested each SNP for association with height in HRS, adjusting for
age and sex (herein referred as a univariate analysis). As expected, given the relatively modest
sample size, association p-values did not depart from the uniform distribution (S2A Fig).
Nonetheless, when analyzing the 180 known [17] height SNPs or their best HRS proxies sepa-
rately, an excess of significant p-values was observed (S2B Fig) although no single SNP reached
genome-wide significance (p-value range: 9.1x10-5–0.99).

We next adjusted height for all 180 known height SNPs, thus removing their main effects.
We then tested for large region joint association using the previously defined additive model,
setting window size at 100 SNPs with a step of 50 SNPs. A total of 9,648 windows were tested
with an average size of 284.2 Kb. There was no discernable departure from the null distribution
when considering all window p-values (Fig 3A). However, when analyzing windows encom-
passing known height loci separately, an excess of significant window p-values was observed
even though all known height associations had been adjusted for (Fig 3B). Considering win-
dows encompassing known height loci as true positives and all other windows as true negatives,
the area under the receiver operating characteristic (ROC) curve for window p-values was
0.537 corresponding to a non-parametric p-value of 0.018 (Fig 3C).

To assess how far away from known height loci regional associations can be detected, we
centered windows on the known height SNPs and slid them away with steps of one SNP. Win-
dows up to 71 SNPs away from the candidate SNP had a significant area under the ROC
(p< 0.05) when compared to all other windows (Fig 4), corresponding to a median distance
between window center and known height SNP of 433.0 Kb and median minimal distance be-
tween window boundary and known height SNP of 132.2 Kb. As sensitivity analyses, we varied
window size (50, 75 or 100 SNPs) using height adjusted for age and sex only (S3 Fig), or addi-
tionally removing known height SNPs and their proxies (S4 Fig) instead of adjusting for
known associations. Consistent results were obtained, with median minimal distance between
significant windows boundary and known height SNPs larger than 100 Kb in all scenarios.

Univariate association p-values from SNPs encompassed by windows centered on known
height loci deviated from the uniform distribution only modestly when adjusting height for
the 180 known associations (p = 0.0187; Fig 5A). Accordingly, no individual SNP was signifi-
cant after correction for the 18,000 SNPs tested (i.e. p<0.05 / 18,000 = 2.8x10-6; lowest p-
value = 7.6x10-5). However, when the corresponding SNP p-values were taken from regional
analyses using additive multivariate models, a more pronounced excess of significant associa-
tions was observed (p = 0.0012; Fig 5B). In fact, the phenotypic variance explained by regional
associations at the 180 known height loci was estimated at 0.172 (95% CI 0.063–0.279;
p<0.001) through a comparison of total variance explained using real and permuted pheno-
type data (1,000 permutations) and assuming an additive contribution of each locus (Table 1;
see Methods for details). As height was adjusted for known associations, this estimate does not
include the phenotypic variance explained by these associations, which was 0.129 in HRS.

Since known height loci showed an excess of significant regional and univariate SNP associa-
tions, we sought to determine whether regional associations could help identify known height
loci. To do so, we repeated the large region joint association analysis without adjusting for

= 0, in (D), (E) and (F) frequencies were fixed such that r2 = 0.2, and in (G), (H) and (I) frequencies were fixed such that r2 = 0.8. Each line corresponds to a
genetic association model, with the underlying haplotype model in black, the additive model in green, the interaction effects model in orange, the genotypic
model in dashed brown, the haplotype probability model in grey, and the variance-component model in dashed purple. The upper panel of each figure
illustrates the estimated proportion of phenotypic variance explained by joint association as a function of non-additivity τ´. The lower panel illustrates the
power to detect such joint association with a p-value threshold of 5x10-5.

doi:10.1371/journal.pgen.1005103.g001
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Fig 2. Estimated variance explained and power as a function of non-additivity measure τ´ in regions of
100 SNPs simulated from 1000 genome data. Regions of 100 SNPs were simulated from phased 1000
Genomes data in 5,000 individuals, excluding SNPs with minor allele frequency higher than 0.01 and further
pruning SNPs such that maximal pairwise linkage disequilibrium was r2 = 0.80. Assuming two SNPs defining
4 haplotypes that are truly associated with a quantitative trait, the additive and variance component models
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were tested for their abilities to capture genetic variance and statistical power. The proportion of variance
explained by haplotypes was fixed at 0.006 while haplotype effects varied such that the non-additivity
parameter (τ´) ranged from 0 to 0.8. Pairwise r2 between the 2 causal SNPs and the 98 nuisance SNPs varied
from 0 to 0.25. Each scenario was simulated 10,000 times, and mean variance explained and power
calculated. The frequency of haplotypes was fixed such that pairwise linkage disequilibrium between the two
truly associated SNPs was either r2 = 0 (A and D), r2 = 0.2 (B and E) or r2 = 0.8 (C and F). In figures (A), (B)
and (C) the two causal SNPs were assumed to be directly genotyped along with the 98 nuisance SNPs. In
figures (D), (E) and (F) the two causal SNPs were masked and only the 98 nuisance SNPs tested for
association. The black line represents variance explained by the underlying haplotype model while the
additive model is represented in green, and the variance-component model in dashed purple. The upper
panel of each figure illustrates the estimated proportion of phenotypic variance explained by joint association
as a function of non-additivity τ´. The lower panel illustrates the power to detect such joint association at a p-
value threshold of 0.0001.

doi:10.1371/journal.pgen.1005103.g002

Fig 3. Large region joint association with height in HRS. First adjusting height for age, sex and 180
known loci, we tested for large region joint association using the previously defined additive model, setting
window size at 100 SNPs with steps of 50 SNPs for a total of 9,648 windows. The quantile-quantile plot of
joint association p-values for all windows is illustrated in (A), with 95% confidence interval. Windows
encompassing each one of the 180 known loci (only) are presented in (B). Considering windows
encompassing one of the 180 known height loci as true positives and all other windows as true negatives, a
receiver-operating curve was constructed based on window p-values (C). Numbers in red represent specific
window p-value thresholds.

doi:10.1371/journal.pgen.1005103.g003
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Fig 4. Large region joint association at known height loci. Adjusting height for age, sex and 180 known
loci, we tested for large region joint association using the previously defined additive model, setting window
size at 100 SNPs with steps of 1 SNP. Windows were initially centered on known height loci and distance (x-
axis) was defined as the number of SNPs between the center of a window and a known height SNP. Genomic
distance (in Kb) covered by windows is illustrated in (A), with red lines representing the median minimum and
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known height loci (S5 Fig). Area under the receiver operating characteristic (ROC) curve for
height loci window p-values was 0.5901 (p = 8x10-9) as compared to all other windows. Indeed,
the third most significant (p = 4.6x10-4) window encompassed the known height SNP rs974801.
The most significant SNP (rs9992793) within this latter window had a univariate p-value of
0.0042 while rs974801 had a p-value of 0.029. Overall, 10% of the windows with p<0.01 con-
tained a known height locus (10 out of 99 windows), corresponding to an enrichment odds ratio
(OR) of 2.99 (95% CI 1.54–5.81; p = 0.001) as compared to windows with p>0.01. In comparison,
8.2% of the windows with p<0.01 contained a known height locus (8 out of 97 windows) when
height was adjusted for age, sex and known height associations, corresponding to an enrichment
OR of 2.38 (95% CI 1.14–4.95; p = 0.019) as compared to windows with p>0.01.

Body Mass Index, High-Density Lipoprotein Cholesterol and C-reactive
Protein Phenotypic Variance Explained by Large Region Joint
Associations in HRS
Finally, we sought to determine whether observations made with height could be translated to
other traits. We thus tested BodyMass Index (BMI) [18], High-Density Lipoprotein cholesterol
(HDLc) [19] and C-reactive Protein (CRP) [20] for total variance explained by large region joint
associations (Table 1). Centering windows (of size 100 SNPs) on known associations, we calcu-
lated variance explained by regional associations, with and without adjustment for known associ-
ations. While no additional variance explained was observed for BMI and HDLc, the proportion
of variance explained by regional associations was estimated at 0.038 (95% CI 0.005–0.066;

maximum distances between window boundaries and known height loci. Median distance between window
center and known height loci is shown as the black line. In (B),—log10 p-value for area under the receiver
operating characteristic curve is illustrated, where windows at each given distance from known height loci are
compared to all 9,648 windows (the red line represents p = 0.05). In (C), corresponding area under the
receiver operating characteristic curve is illustrated.

doi:10.1371/journal.pgen.1005103.g004

Fig 5. Quantile-quantile plots of association p-values of SNPs encompassed by windows centered on known height loci. Height was adjusted for
age, sex and 180 known loci. A quantile-quantile plot of univariate association p-values of all SNPs encompassed by windows centered on known height loci
is illustrated in (A), with 95% confidence interval. Corresponding p-values for the same set of SNPs but from the additive multivariate models are shown in
(B).

doi:10.1371/journal.pgen.1005103.g005
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p = 0.01) for CRP after adjustment for known associations. The proportion of variance explained
before adjustment was 0.062 (95% CI 0.031–0.090; p<0.001), which is consistent with the frac-
tion of variance explained by known CRP SNPs in HRS of 0.033.

Discussion
The “missing heritability” problem is one of the most pressing issues in human genetics. It is
widely assumed that a large number of individually weak associations collectively explain a
substantial fraction of complex trait heritability. In this report, we systematically evaluated the
ability of commonly used statistical genetic models to capture large region joint associations.
Our results showed that additive multivariate models have the best combination of robustness
to linkage disequilibrium structure and non-additive effects while retaining adequate power.
Using height data from the HRS, we then demonstrated both the presence and importance of
large region joint associations using known height loci as positive controls.

Detection of regional associations in HRS is remarkable since this dataset was underpow-
ered to identify height loci in univariate analyses, as evident from the lack of genome-wide sig-
nificant results. Nonetheless, we detected large region joint associations up to 433.0 Kb away
from known loci, a distance consistent with long-range cis regulation of gene expression. Re-
gional associations were not the result of one or a few very significant univariate associations
within tested windows; an observation supported by the modest deviation of SNP p-values
from the uniform distribution (p = 0.02). This was to be expected since height was adjusted for
all 180 known associations. Interestingly, a stronger (p = 0.001) enrichment in lower than ex-
pected p-values was seen when using SNP p-values from the multivariate additive model in-
stead of the univariate model, even though no single SNP stood out. Taken together, these
observations point to the aggregation of weak associations as the basis for joint associations,
possibly combined with SNP-SNP interactions. In any case, the collective effect of these weak
associations was substantial and they explained 0.17 of phenotypic variance, which compares
favorably to the 0.13 explained by the 180 known height associations. Our data thus provide a
further rationale for fine mapping and functional characterization of known loci. These results

Table 1. Variance explained by large region joint associations in HRS.

Trait Variance Explained by Candidate SNPs1 Variance explained by Candidate
Windows (unadjusted2)

Variance explained by Candidate
Windows (adjusted3)

Variance Explained (95%CI) p-value4 Variance Explained (95%CI) p-value4

BMI 0.0146 0.0123 0.28 -0.0019 0.52

(-0.0259–0.0522) (-0.0477–0.0384)

CRP 0.0334 0.0615 <0.001 0.0376 0.01

(0.0306–0.0901) (0.0053–0.0663)

HDL-C 0.0459 0.0307 0.24 -0.0150 0.64

(-0.0544–0.1100) (-0.0966–0.0671)

Height 0.1292 0.3095 <0.001 0.1716 <0.001

(0.2004–0.4070) (0.0632–0.274)

1 28 SNPs from [18] were tested for BMI, 16 SNPs from [20] were tested for CRP, 67 SNPs from [19] were tested for HDLc, and 180 SNPs from [17] were

tested for height.
2 In the unadjusted analysis, traits were not adjusted for candidate SNPs.
3 In the adjusted analysis, traits were first adjusted for candidate SNPs associations.
4 P-values were obtained from 1,000 permutations.

doi:10.1371/journal.pgen.1005103.t001
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also suggest that regional associations could be useful to identify functional loci. Indeed, large
region joint associations with known height loci were detected in HRS despite sample size
being inadequate for detection of univariate associations.

Several features distinguish our approach from other methods for regional association test-
ing. The test we propose is robust to LD although high levels of collinearity should be avoided
through initial pruning of redundant SNPs (defined as r2>0.8). This is contrast to other ap-
proaches where only SNPs in linkage equilibrium are kept (r2<0.1–0.25) [13,21]. We also
showed the equivalence between additive and variance component models when SNPs are in
linkage equilibrium. This observation has significant theoretical and practical implications
since additive models are computationally tractable and closed form solutions can be derived.
Furthermore, estimates of genetic variance explained can be biased when using variance com-
ponent analysis in the presence of LD [22], although strategies to adjust for LD have been pro-
posed [23,24]. This is especially important in the context of regional association where strong
LD is expected. Indeed, our approach sits in between popular variance component [25] and
single marker approaches, combining the ability of variance component to capture overall vari-
ance explained yet providing association results for individual SNPs. In addition, our approach
can cover extended regions as the degrees of freedom increase linearly with the number of
SNPs in contrast to an exponential increase for genotypic and haplotype probability models,
such as the one proposed by Tregouët [12]. Consequently, it is not necessary to first filter SNPs
based on univariate association p-values [13] or condition on significant associations [7,26], an
important feature as univariate SNP p-values followed a uniform distribution in HRS even
though regional associations were present.

A few limitations are worth mentioning. First, despite demonstrating the presence of large
region joint associations, additional studies will be needed to identify specific variants contrib-
uting to these associations. We propose using backward selection because variants with no or
very marginal evidence of association are unlikely to contribute to regional association. Howev-
er, much larger sample size will be needed, especially to assess the role of gene-gene interac-
tions. Second, regional associations might not apply to all traits and genetic architectures
might vary. Although our results support the presence of large region joint associations for
height and CRP, no such association was observed for BMI and HDLc, pointing to differences
in genetic architecture. Third, while variance explained by large region joint association can be
estimated in empirical data using permutations, further work is needed to derive closed form
solutions that are robust to linkage disequilibrium and deviation from normality. Fourth, vari-
ance explained by untyped rare variants is not well captured by our approach.

In this report, we systematically evaluated statistical methods for their ability to detect large
region joint association and determined that additive models, despite their simplicity, had the
most favorable profile. We then confirmed the existence of regional associations with height
extending up to 433.0 Kb from known loci. Regional associations at known height loci ex-
plained 0.17 of phenotypic variance; a substantial fraction given known associations explained
0.13 in the same dataset. These results are significant as they may lead to the identification of
weak associations underlying the polygenic nature of complex traits. Indeed, large region joint
associations could be used to more readily identify functional regions, or conversely to further
our understanding of known association loci.

Materials and Methods

Health Retirement Study
We conducted large region joint association analysis for height using genome-wide data from
the publicly available Health Retirement Study (HRS; dbGaP Study Accession: phs000428.v1.
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p1). HRS quality control criteria were used for filtering of both genotype and phenotype data,
namely: (1) SNPs and individuals with missingness higher than 2% were excluded, (2) related
individuals were excluded, (3) only participants with self-reported European ancestry geneti-
cally confirmed by principal component analysis were included, (4) SNPs with Hardy-
Weinberg equilibrium p<1x10-6 were excluded, (5) individuals for whom the reported sex
does not match their genetic sex were excluded. After further pruning SNPs for LD using
PLINK v.1.07 [27] with window size = 100 SNPs, step size = 50 SNPs and r2 = 0.80, the final
dataset included 3,740 European participants genotyped for 484,089 SNPs. Height was log2
transformed and adjusted for age and sex in all analyses. To mitigate the effect of outliers, we
performed winsorization on log-transformed height, removing values outside the 1st and 99th

percentile range. HRS was not part of the Genetic Investigation of Anthropometric Traits
(GIANT) meta-analysis of height [15,17]. Plasma C-reactive Protein (CRP) and High Density
Lipoprotein cholesterol (HDLc) were measured using standard methods in HRS. CRP, HDLc
and BMI were transformed using a similar procedure as for height (including log2 transforma-
tion and winsorization) before association testing.

Genetic Association Models
Additive and interaction effect models. The simple additive model follows the definition

X = G, where G is the previously defined genotype matrix. In addition, we constructΩ to be an

n by
m

2

 !
matrix representing all

m

2

 !
pairwise interactions betweenm SNPs such that in-

teractions are the product of genotypes. A more general model with interactions is given by

X = ~G, where ~G

n� mþ
m

2

 ! ! ¼ ½G O�. The matrixΩ is set to null if absence of interac-

tion is assumed, whereas a non-nullΩ will test for both genetic main effects and SNP-SNP
interactions.

Genotypic models. Let X ¼ Gn�s be the matrix whose n rows indicate which one of the
s = 3m possible genotypes each of the n individual carries. For example, when two SNPs are
considered, G will be an n by 9 matrix with each column representing all nine possible geno-
types (i.e. 0 0, 0 1, 0 2, 1 0, etc.). Gi1 is coded as 1 if the i

th individual has the 1st specified geno-
type (e.g. “0 0”) and 0 otherwise.

Haplotype probability model. Since haplotypes are generally not experimentally observed
and haplotype phasing can be ambiguous, a probabilistic approach is required to test associa-
tion with haplotypes when using empirical data. Let X = Mn×k be the matrix whose n rows rep-
resent the expected number of k possible haplotypes for each of the n individuals. In other
words, when haplotype phasing is non-ambiguous, each row entry will be 0, 1 or 2 and the row
sum will be 2. On the other hand, when haplotype phasing is ambiguous, row entries will take
values between 0 and 2, corresponding to the expected number of each possible haplotype such
that the row sum will be 2.

Variance component model. The variance explained by SNPs can be estimated using vari-
ance component (VC) models [2]. The variance-covariance matrix of Y can be expressed as

Var Yð Þ ¼ Gs2
g

m
þ Is2

e ;

with I the identity matrix, s2
e the residual variance, s

2
g the variance of total additive genetic ef-

fects, and Γ = ZZ0, an n by n symmetric matrix whose entries Γi,j represent the genetic
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similarity between individuals i and j. Each entry of the matrix Z is the normalized genotypes

zil ¼

�2 xlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 xlð1� xlÞ

p gil ¼ 0ð Þ

1� 2 xlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 xlð1� xlÞ

p gil ¼ 1ð Þ

2� 2 xlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 xlð1� xlÞ

p gil ¼ 2ð Þ

8>>>>>>>>><
>>>>>>>>>:

such that E(zil) = 0 and Var(zil) = 1, where xl is the allele frequency of the l
th SNP. The variance

component model can be alternatively written [2] as D
!
Y2

n2�1ð Þ ¼ u0 þ u1G
!

n2�1ð Þ þ ε, where

Dy2ij ¼ yi � yj
� �2

is the squared pairwise difference of the trait for all possible pairs of individu-

als i and j, and ~G
n2�1ð Þ is a vectorized form of the Γmatrix by row. The regression coefficients

υ0 and υ1 can be estimated from observed data and it has been shown [2] that u1 ¼ �2s2
g .

Equivalence between Additive Model and Variance Component Model
The additive model can be shown to be equivalent to the variance component model when all
SNPs are in linkage equilibrium (i.e. the variance-covariance matrix of Z is the identity matrix).
In this case, the genetic variance explained by the model Y = Zβ + ε is given by:

Ŷ
0
Ŷ ¼ Z β̂

� �0
Z β̂
� � ¼ Z Z

0
Z

� ��1

Z
0
Y

� �0

Z Z
0
Z

� ��1

Z
0
Y

� �

¼ Y
0
Z Z

0
Z

� ��1

Z
0
Y ¼ Y

0
ZZ

0
Y ¼ Y

0
GY

¼ Sn
i¼1S

n
j¼1yiyj Gi;j

¼ s2
g

m
Sn2

i¼1
~G2

i

The latter derivation assumes all individuals are unrelated (as done throughout the manu-
script). Should participants be related, the variance component model would remain appropri-
ate while the additive model would not.

Variance Explained by Genetic Variants and Statistical Power
Genetic association models can be used to estimate the phenotypic variance explained by ge-
netic variants, commonly expressed as the ratio of the genetic variance and total variance, and
herein denoted as R2. As previously defined, the true underlying genetic model is expressed as
Y =Dβ + ε, where D is the matrix of true (unobserved) haplotypes, β is the k × 1vector of hap-
lotype effects, πi the frequency of the ith haplotype, and ε the standard normally distributed
random error. The total variance is given by:

Var Yð Þ ¼ Var Dβð Þ þ Var εð Þ ¼ s2
H þ 1 ¼ Sk

i¼1b
2

i ð2pið1� piÞÞ � 4Sk

i ¼ 1

j > ið Þ

bibjpipj þ 1:

Genetic variance s2
X captured by association testing can be calculated for each specific associa-

tion model used, such that R2 ¼ s2X
s2Hþ1

. Power estimates for additive, interaction, genotypic
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and haplotype probability models can be obtained using the non-central F-distribution with a

non-centrality parameter nR2

ð1�R2Þ [28], where n is the number of individuals. However, the vari-

ance component model has a quadratic formQ = Y0ΓY (i.e. a linear combination of chi-squared
random variables) and the non-central F-distribution is not appropriate. In light of Duchesne
and Lafaye De Micheaux [29],Q can be expressed as a non-central chi-squared random variable
withm degrees of freedom (withm corresponding to the number of SNPs). Several approxima-
tions and exact methods have been suggested for weighted sum of chi-squared random variables
and among these, Davies’ exact method [30] appears to work well in empirical settings [25].

Phenotypic Variance Explained by Regional Associations
Total variance explained by regional associations was estimated using a permutation procedure.
Briefly, variance explained by each window was first estimated on real, non-permuted, pheno-
types. Phenotypes were then permuted 1,000 times (preserving the linkage disequilibrium struc-
ture of SNPs) and variance explained estimated on permuted phenotypes. Adjusted variance
explained by each window was then defined as the difference between variance explained using
real, non-permuted, phenotypes and the mean variance explained by the corresponding window
when testing permuted phenotypes. Total variance explained was then calculated as the sum of ad-
justed variance explained by each window. That is, each locus (i.e. window) was assumed to addi-
tively contribute to total variance explained, regardless of other loci. This permutation procedure
was used to ensure neither linkage disequilibrium nor deviation of the phenotype from normality
would inflate results. This is relevant since each window individually contributes only modestly to
variance explained. Furthermore, the large number of SNPs included across all candidate windows
precludes testing all SNPs at once, thus motivating the use of variance explained per window.

Supporting Information
S1 Fig. Haplotype effect as a function of non-additivity measure τ0. A quantitative trait was
assumed to be genetically determined according to the underlying (unobserved) haplotype
model Y = Dβ + ε, where 2 SNPs define 4 possible haplotypes. The proportion of variance ex-
plained by haplotypes was fixed at 0.006 while haplotype effects varied such that the non-addi-
tivity parameter (τ0) ranged from 0 to 1. In (A), the frequency of the 4 haplotypes was fixed
such that pairwise linkage disequilibrium between SNPs was r2 = 0, corresponding to haplotype
frequencies of π1 = 0.10 (red), π2 = 0.30 (blue), π3 = 0.15 (green) and π4 = 0.45 (black). In (B),
frequencies were fixed such that r2 = 0.2, corresponding to haplotype frequencies of π1 = 0.42
(red), π2 = 0.18 (blue), π3 = 0.10 (green) and π4 = 0.30 (black).
(TIF)

S2 Fig. Quantile-quantile plots of univariate SNP association p-values with height in HRS,
adjusting for age and sex. In (A), p-values for all 484,089 SNPs are illustrated. In (B), only p-
values for the 180 known height SNPs or their best HRS proxies are shown.
(TIF)

S3 Fig. Large region joint association at known height loci, adjusting for age and sex only.
Adjusting height for age and sex only, we tested for large region joint association using the pre-
viously defined additive model, setting window size at 50 (A), 75 (B) or 100 (C) SNPs with
steps of 1 SNP. Windows were initially centered on known height loci and distance (x-axis)
was defined as the number of SNPs between the center of a window and a known height SNP.
Genomic distance (in Kb) covered by windows is illustrated in upper panels, with red lines rep-
resenting the median minimum and maximum distances between window boundaries and
known height loci. Median distance between window center and known height loci is shown as
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the black line. In middle panels,—log10 p-value for area under the receiver operating character-
istic curve is illustrated, where windows at each given distance from known height loci are
compared to all 9,648 windows (the red line represents p = 0.05). In lower panels, correspond-
ing area under the receiver operating characteristic curve is illustrated.
(PPTX)

S4 Fig. Large region joint association at known height loci, adjusting for age and sex only
but removing known height loci. Adjusting height for age and sex only but removing all SNPs
with r2>0.1 with a known height SNP (within 500 Kb), we tested for large region joint associa-
tion using the previously defined additive model. Window size was set at 50 (A), 75 (B) or 100
(C) SNPs, with steps of 1 SNP. Windows were initially centered on known height loci and dis-
tance (x-axis) was defined as the number of SNPs between the center of a window and a known
height SNP. Genomic distance (in Kb) covered by windows is illustrated in upper panels, with
red lines representing the median minimum and maximum distances between window bound-
aries and known height loci. Median distance between window center and known height loci is
shown as the black line. In middle panels,—log10 p-value for area under the receiver operating
characteristic curve is illustrated, where windows at each given distance from known height
loci are compared to all 9,648 windows (the red line represents p = 0.05). In lower panels, cor-
responding area under the receiver operating characteristic curve is illustrated.
(TIF)

S5 Fig. Large region joint association with height in HRS, adjusting for age and sex only.
Adjusting height for age and sex only, we tested for large region joint association using the previ-
ously defined additive model. Window size was set at 50 SNPs with steps of 25 (A, D and G), 100
with steps of 75 (B, E and H) or 150 with steps of 75 (C, F and I). Quantile-quantile plots of joint
association p-values for all tested windows are illustrated in A, B and C. Quantile-quantile plots
for windows encompassing each one of the 180 known loci (only) are presented in D, E and F.
Considering windows encompassing one of the 180 known height loci as true positives and all
other windows as true negatives, receiver operating characteristic curves were constructed based
on window p-values (G, H and I). Numbers in red represent specific window p-value thresholds.
(PPTX)

S1 Table. Power and estimated proportion of variance explained by joint association of two
common SNPs tagging a single untyped rare functional genetic variant.
(DOCX)

S2 Table. Power and estimated proportion of variance explained by joint association of five
common SNPs when two of the five common SNPs tag a single untyped rare functional ge-
netic variant.
(DOCX)

S3 Table. Power and estimated proportion of variance explained by joint association of five
common SNPs when two of the five common SNPs tag a single typed rare functional genet-
ic variant.
(DOCX)
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