
sensors

Article

Distributed Joint Cooperative Self-Localization and
Target Tracking Algorithm for Mobile Networks

Junjie Zhang 1, Jianhua Cui 1,*, Zhongyong Wang 2,*, Yingqiang Ding 2 and Yujie Xia 1

1 School of Physics and Electronic Information, Luoyang Normal University, Luoyang 471934, China
2 School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
* Correspondence: cuijh@lynu.edu.cn (J.C.); iezywang@zzu.edu.cn (Z.W.)

Received: 9 July 2019; Accepted: 2 September 2019; Published: 4 September 2019
����������
�������

Abstract: Location information is a key issue for applications of the Internet of Things. In this paper,
we focus on mobile wireless networks with moving agents and targets. The positioning process is
divided into two phases based on the factor graph, i.e., a prediction phase and a joint self-location
and tracking phase. In the prediction phase, we develop an adaptive prediction model by exploiting
the correlation of trajectories within a short period to formulate the prediction message. In the
joint positioning phase, agents calculate the cooperative messages according to variational message
passing and locate themselves. Simultaneously, the average consensus algorithm is employed to
realize distributed target tracking. The simulation results show that the proposed prediction model is
adaptive to the random movement of nodes. The performance of the proposed joint self-location and
tracking algorithm is better than the separate cooperative self-localization and tracking algorithms.

Keywords: mobile networks; distributed localization; variational message passing; average consensus;
prediction model

1. Introduction

With the development of the Internet of Things (IoT) and related new information technology,
wireless sensor networks (WSNs) are expected to gradually penetrate various industries and
applications [1–4], influencing all aspects of people’s lives. WSNs connect the material world
with the human world. Embedded in various “things”, sensors sense the states of the “things”
and transmit collected information to processing terminals via the Internet to achieve monitoring
and management in real-time [5]. The information collected by sensors is meaningful only when
combined with location information, which helps the administrators know what, when, and where
“things” happened. Therefore, cooperative self-localization and target tracking are two key issues in
location-based applications of WSNs.

In WSNs, there are a small number of anchors and thousands of agents. Anchors are equipped
with Global Position System (GPS) receivers or other devices with known coordinates, while the agents
use a cooperative self-localization algorithm to estimate their own positions. In addition, when a target
enters the WSNs, anchors and agents work cooperatively to track and locate it. In static WSNs, anchors
and agents are fixed and so their coordinates do not change with time, meaning agents only need to
locate themselves once. In mobile WSNs, anchors and agents move with time. Therefore, agents need
to locate themselves in a sequential manner. In contrast with static WSNs, mobile WSNs alleviate
several issues, such as coverage optimization and target tracking. A plethora of localization systems
are proposed in the literature. In [6], the authors provided a general overview of localization in WSNs
and showed the importance of different localization approaches in modern IoT applications. In [7],
the authors focused on mobile WSNs and analyzed localization algorithms in mobile WSNs.

Sensors 2019, 19, 3829; doi:10.3390/s19183829 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19183829
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/18/3829?type=check_update&version=2


Sensors 2019, 19, 3829 2 of 17

Cooperative self-localization and target tracking are closely related because target tracking
can only be carried out when the locations of agents are clear. In recent years, some researches
combined self-localization with target tracking and proposed a series of joint location algorithms.
In [8], a simultaneous localization and tracking algorithm was introduced to solve the problem of
tracking a non-cooperative target while simultaneously localizing and calibrating the static nodes
in the network. In [9], a Bayesian method based on belief propagation (BP) was proposed for the
distributed sequential localization of mobile networks composed of both cooperative agents and
non-cooperative targets. This provided a consistent combination of cooperative self-localization and
distributed tracking. However, the motion parameters (such as velocity) and the state-transition
probability density function (pdf) of each node were assumed to be available. In [10], a distributed
variational filtering was presented to simultaneously localize the detecting sensors and track the target
by exploiting a series of measurements generated in the sensors when the target moved through the
network field.

Target tracking is divided into two categories, i.e., centralized and distributed. In centralized
target tracking, the nodes that detect the target transmit their measurements related to the target to a
central processing node in a hop-by-hop communication mode. Then, the central node determines the
positioning of the target by uniformly processing all of the measurements. However, the communication
overhead of multi-hop data transmission is very large and energy consumption is too high. In distributed
target tracking, each node locates the target according to all measurements related to the target.
Therefore, the key problem is how to make each node obtain all of the measurements. In [11], a scheme
was proposed in which agents broadcasted their own measurements, identification numbers, and
additional information, such as the ID of the target. They also received these from other nodes and
updated the information. All of the agents repeated the process until each agent obtained all of the
measurement information related to the target. In this way, each agent was a fusion center and could
perform tracing tasks. However, much redundant information existed in the network, and the required
storage space was also very large. Therefore, this method is suitable for a fully connected network
with a large communication radius. Consensus algorithm [12–14] provides another way for each agent
to communicate observations with the remaining agents engaged in the tracking. Consensus is a
distributed iterative algorithm relying on communication links between neighboring nodes and can
achieve entire network polymerization (such as sum, average, or maximum). This does not need a
routing algorithm and is robust to changes in network topology and unreliable network environments.
Therefore, consensus algorithm is widely used in distributed target tracking [15,16]. In [17], each node
calculated the mean and variance of the local posterior by weighted sampling. Then, the average
consensus algorithm was employed to calculate the approximation of the global posterior to complete
distributed target tracking. In [18], the global likelihood function was approximated to a Gaussian
distribution, and each node obtained the approximation through consensus iteration. Furthermore, a
consensus algorithm, which is applicable to any exponential likelihood function, was proposed in [19].

As an implementation of approximate Bayesian inference, messaging passing algorithm is
particularly well-suited to distributed calculation and has been applied to cooperative self-localization
and tracking of WSNs [9,20,21]. In previous work [22], we proposed a distributed cooperative
self-localization algorithm by employing variational message passing (VMP) on factor graphs for
static WSNs. With regard to the non-Gaussian messages caused by the nonlinear ranging model,
we approximated them to Gaussian messages by exploiting second-order Taylor expansion, which
significantly reduced the computational complexity. Then, we further combined the VMP approach
in [22] with BP and proposed a cooperative self-localization algorithm for mobile WSNs in [23].
In this paper, we focus on mobile networks with anchors, moving agents, and targets deployed in
a two-dimensional plane. In particular, the anchors have perfect location information at all times,
while the cooperative agents and the non-cooperative targets are at unknown positions and can move
independently. We divide the positioning process into two phases, i.e., a prediction phase and a joint
self-location and tracking phase. Firstly, an adaptive prediction model is proposed to calculate the
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prediction message from the previous time slot. Then, in the joint self-location and tracking phase,
the agents locate themselves using the measurements from neighboring nodes (agents and anchors)
and the detectable targets, and the average consensus algorithm is employed to achieve distributed
positioning of the targets. The simulation results show that the proposed prediction model is more
adaptive and accurate than instant prediction, linear prediction, or square prediction, and the proposed
joint self-location and tracking algorithm is better than the separate cooperative self-localization and
target tracking algorithms.

This paper is organized as follows. In Section 2, we first describe the system model of cooperative
self-localization, and tracking. Then, the corresponding probabilistic model and factor graph are
analyzed. In Section 3, the proposed distributed joint self-location and tracking algorithm are described
in detail, including a prediction phase and a joint self-location and tracking phase. The performance
of the proposed prediction model and joint localization algorithm are evaluated in Section 4. Finally,
conclusions are drawn in Section 5.

Notations: Boldface lowercase and uppercase letters denote vectors and matrices, respectively.
Superscript ( )T and symbol ||·|| stand for transposition and Euclidian norm, respectively. The probability
density function (pdf) of a 1D Gaussian distribution with mean µ and variance σ2 is represented by
N

(
x;µ, σ2

)
while the pdf of a 2D Gaussian distribution with mean vector µ and covariance matrix V is

represented byN(x;µ, V).

2. System Model and Factor Graph

We consider a network with anchors, moving agents, and targets deployed in a two-dimensional
plane, which can be defined by a vertices setV and an edges set E, i.e., G = (V,E). Here, each vertex
i ∈ V represents a node in the plane and each edge (i, j) ∈ E indicates a neighborhood structure
between node i and node j. We divide setV into three parts: V = A∪M∪S, whereA designates
all anchors with perfect location information, M includes all agents at unknown positions, and S
represents all non-cooperative targets. Moreover, the number of anchors, agents, and targets are
denoted by NA, NM, and NO, respectively.

Time is slotted and we assume that all agents and targets move independently. At the kth time

slot, the position variable of node i ∈ V is denoted by xk
i ,

[
xk

i , yk
i

]T
. For simplicity of illustration,

the communication link between cooperative neighbors is assumed to be symmetric, which means
(i, j) ∈ E and ( j, i) ∈ E if |xk

i − xk
j |≤ R , where R is the communication radius. At the kth time slot,

if (i, j) ∈ E, nodes i can obtain the current position of node j and a ranging measurement dk
i← j

with Gaussian noise ωk
i j ∼ N

(
ωk

i j; 0,
(
σk

i j

)2
)
. Consequently, the ranging measurement dk

i← j can be

formulated as
dk

i← j = ||x
k
i − xk

j ||+ωk
i j,

and the likelihood function of the position variables of xk
i and xk

j is a Gaussian pdf, i.e.,

p(dk
i← j

∣∣∣∣xk
i , xk

j)∼ N(dk
i← j ; ||xk

i − xk
j ||, σ

k
i j).

For convenience of description, we define Vk
o , A

k
o ∪M

k
o (Ak

o for anchors andMk
o for agents)

to represent all nodes who can detect target at the kth time slot. Similarly, letVk
m , A

k
m ∪M

k
m ∪S

k
m

denote all nodes from whom node m ∈ M can implement ranging measurement at the kth time slot.
Typically, notation Sk

m represents all targets that node m can detect at the kth time slot. Moreover,
we denote the position variables of all nodes by Xk ,

{
xk

i ,∀i ∈ A∪M∪S
}
, the ranging measurements

of node m ∈ M by Zk
m ,

{
dk

m← j,∀ j ∈ Ak
m ∪M

k
m ∪S

k
m

}
, and the ranging measurements of target O ∈ S

by Zk
o ,

{
dk

j←o,∀ j ∈ Ak
o ∪M

k
o

}
, respectively. Then, let Xk ,

{
xk

i ,∀i ∈ V
}

and Zk ,
{
Zk

i ,∀i ∈ M∪S
}

represent the position variables of all nodes and ranging measurements at the kth time slot, respectively.
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Furthermore, let X0:K ,
{
Xk, k = 0 : K

}
denote the position variables of all nodes from the 0th time slot

to the kth time slot and Z1:K ,
{
Zk, k = 1 : K

}
denote the ranging measurements from the 1st time slot

to the Kth time slot, respectively.
According to Bayesian rules and the assumption that all nodes move independently, the joint a

posteriori distribution of X0:K with given observations Z0:K can be formulated as

p(X0:K
∣∣∣Z1:K ) ∝ p(X0)

K∏
k=1

p(Zk
∣∣∣Xk )p(Xk

∣∣∣Xk−1 )

∝
∏
i∈V

p(x0
i )

K∏
k=1

∏
m∈M

∏
j∈Vk

m

p(dk
m← j

∣∣∣∣xk
m, xk

j)
∏
o∈S

∏
j∈Vk

o

p(dk
j←o

∣∣∣∣xk
o, xk

j)
∏
i∈V

p(xk
i

∣∣∣xk−1
i )

, (1)

where p
(
x0

i

)
is the a prior distribution of node I, which is assumed to be a Gaussian pdf with mean µ0

i

and covariance matrix V0
i , σ

2
i0I2×2, p(dk

i← j

∣∣∣∣xk
i , xk

j) is the likelihood function of node i and node j, and

p
(
xk

i

∣∣∣xk−1
i

)
is the probabilistic state-transition function.

For simplicity, we define f k|k−1
i , p

(
xk

i

∣∣∣xk−1
i

)
and f k

i j , p(dk
i← j

∣∣∣∣xk
i , xk

j) . Based on the factorization

in (1), the joint a posteriori distribution of p
(
X0:K

∣∣∣Z0:K
)

can be represented by a factor graph, as shown
in Figure 1. In the factor graph, each variable node represents the position variable xk

i of node i and is

depicted by a circle, while each factor node represents a local function f k|k−1
i or f k

i j and is drawn by a
square. Moreover, if a variable is an argument of a local function, it is connected to the factor node
through an edge.

Figure 1. The factor graph corresponding to the factorization in (1).

Generally speaking, factor graphs are undirected digraphs, which means the edge between a
factor node and a variable node is undirected. However, in Figure 1, messages only flow forward in
time regarding the spatiotemporal constraints of the network. We do not calculate the messages from
the present to the past because network connectivity may change and the states of the nodes may
be outdated. Furthermore, the variable node of an anchor’s position ignores the messages from its
neighbors as anchors’ positions are known.
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3. Distributed Joint Self-Location and Tracking Algorithm

As shown in Figure 1, for the cooperative agent m ∈ M and the non-cooperative target O ∈ S,
the beliefs of xk

m and xk
O, denoted by b

(
xk

m

)
and b

(
xk

o

)
, consist of two kinds of message: Prediction

messages from the (k−1)th time slot and cooperative messages from the neighbors. Based on message
passing rules, for node i ∈ M∪S, the belief b

(
xk

i

)
can be described as

b
(
xk

i

)
=

1
Z

m f k|k−1
i →xk

i

(
xk

i

) ∏
j∈Vk

i

m f k
i j→xk

i

(
xk

i

)
, (2)

where Z is the normalization constant and m f k|k−1
i →xk

i

(
xk

i

)
and m f k

i j→xk
i

(
xk

i

)
represent messages from

factor node and factor nodes f k
i j (∀ j ∈ Vk

i ) to variable node xk
i , respectively. Therefore, agent m ∈ M

determines b
(
xk

m

)
and b

(
xk

o

)
(m ∈ Vk

o) by two phases, i.e., a prediction phase and a joint self-location and
tracking phase.

3.1. Adaptive Prediction Model and Prediction Message Calculating

In (1), the probabilistic state-transition function p(xk
i |x

k−1
i ) of node i is related to the position

prediction model. In this paper, according to the inertia of the motion, we propose an adaptive
prediction model by exploiting the correlation of trajectories of node i within a short period.

We denote the trajectory of node i from the (k−N)th time slot to the (k−1)th time slot as Ti(k− 1, N) ,(
(x̂k−1

i )
T

, (x̂k−2
i )

T
, · · · , (x̂k−N

i )
T
)T

, where x̂k−N
i , [x̂k−N

i , ŷk−N
i ]

T
, . . . ,x̂k−1

i , [x̂k−1
i , ŷk−1

i ]
T

are the estimated

positions of node i at the (k−N)th, . . . , (k−1)th time slot. Similarly, the trajectory of node i from the

(k−N + 1)th time slot to the kth time slot can be described as Ti(k, N) ,
(
(x̂k

i )
T

, (x̂k−1
i )

T
, · · · , (x̂k−N+1

i )
T
)T

.

Then, we formulate the prediction model of node i as

Ti(k, N) = Pi
·Ti(k− 1, N) , (3)

where Pi is the prediction matrix of node i and its dimension is 2N × 2N. Obviously, there are only two
different elements between Ti(k− 1, N) and Ti(k, N), i.e., x̂k

i and x̂k−N
i . Therefore, the elements from the

3rd to the 2Nth rows are

pi
r,s =

{
0, r ≥ 3 and r , s + 2
1, r ≥ 3 and r = s + 2

. (4)

According to the inertia of the motion of node i, we assume that the prediction matrix Pi is
unchanged in a short period. Based on the prediction model in (4), we have

Ti(k− 1, N) = Pi
·Ti(k− 2, N) . (5)

Consequently, it can be formulated as

Ti(k, N) = (Pi)
n
·Ti(k− n, N). (6)

Based on Equations (3) and (5), we have

Ti(k, N) − Ti(k− 1, N) = Pi
·[Ti(k− 1, N) − Ti(k− 2, N)] . (7)
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Obviously, translational motion will not change the prediction matrix Pi. Therefore, it can be
expressed as

Ti(k, N) −H = Pi
·[Ti(k− 1, N) −H] , (8)

and H satisfies the constraint as follows

H = (Pi)
n
·H, (9)

where H , [a, b, . . . , a, b]T2N×1 and its two base vectors are h1 , [1 0 1 0 . . . 1 0]T and h2 , [0 1 0 1 . . . 0 1]T.
Then we have h1 = Pi

·h1 and h2 = Pi
·h2.

Assume that each node stores M (M > N) estimated positions before the kth time slot, which
constitute M−N + 1 trajectories, i.e., Ti(k− 1, N), Ti(k− 2, N), . . . , Ti(k−M + N − 1, N). Based on the
prediction model in Equation (3), we obtain an equation set which can be expressed as

Ti(k− 1, N) = Pi
× Ti(k− 2, N)

Ti(k− 2, N) = Pi
× Ti(k− 3, N)

...
Ti(k−M + N, N) = Pi

× Ti(k−M + N − 1, N)

. (10)

According to Equations (4) and (10), we have
(

1 0
)
= hT

1 ×
(
(pi

1,∗)
T

(pi
2,∗)

T )(
0 1

)
= hT

2 ×
(
(pi

1,∗)
T

(pi
2,∗)

T ) , (11)

where pi
1,∗ and pi

2,∗ are the first and second rows of Pi. For convenience of description, we define

Bi,M−N ,



x̂k−1
i

x̂k−2
i
...

x̂k−M+N
i

1
0

ŷk−1
i

ŷk−2
i
...

ŷk−M+N
i

0
1


, Ti,M−N ,



[Ti(k− 2, N)]T

[Ti(k− 3, N)]T

...
[Ti(k−M + N − 1, N)]T

hT
1

hT
2


.

Then, according to Equations (4), (10), and (11), we have

Bi,M−N = Ti,M−N·
(
(pi

1,∗)
T

(pi
2,∗)

T )
. (12)

Consequently, pi
1,∗ and pi

2,∗ can be determined based on the least square method, i.e., pi
1,∗

pi
2,∗

 = BT
i,M−N·Ti,M−N·

[
(TT

i,M−N·Ti,M−N)
−1

]T
. (13)

Finally, the prediction matrix Pi is given by Equations (4) and (13). Let x̃k
i ,

[
x̃k

i , ỹk
i

]T
denote the

predicted position of node i. According to the prediction model in Equation (3), x̃k
i can be given by

x̃k
i =

 pi
1,∗

pi
2,∗

·Ti(k− 1, N) (14)
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Then, we use the predicted position x̃k
i to formulate the prediction message m f k|k−1

i →xk
i
(xk

i ) as

m f k|k−1
i →xk

i

(
xk

i

)
= N

(
xk

i ; x̃k
i , Ṽ

k
i

)
, (15)

where the covariance matrixes are Ṽ
k
i = σ̃2

i,kI2×2 and σ̃2
i,k = ||x̂

k−1
i − x̃k−1

i ||
2.

3.2. Joint Self-Location and Tracking Phase

After calculating the prediction message based on the adaptive prediction model, agent m ∈ M
locates itself using ranging measurements, not only from its neighbor anchors and agents j ∈ Ak

i ∪M
k
i ,

but also from targets O ∈ Sk
i that it can detect. Meanwhile, agents and anchors that can detect target

O share information with each other based on consensus iteration and determine the position of the
target O. Compared with the separate cooperative self-localization and algorithms, agents use the
ranging measurements from targets to improve the self-location accuracy, which promotes tracking
performance in turn.

3.2.1. Self-Location of Agents Based on Variational Message Passing

At the kth time slot, agent m ∈ M obtains its prediction message m f k|k−1
m →xk

m

(
xk

m

)
= N

(
xk

m; x̃k
m, Ṽ

k
m

)
based on the adaptive prediction model described in Section 3. Then, according to VMP update rules,
cooperative messages from its neighbors are expressed as follows:

m f k
ma→xk

m

(
xk

m

)
, exp

{∫
mxk

a→ f k
ma

(
xk

a

)
ln f k

ma

(
xk

a, xk
m

)
dxk

a

}
= N

(
dk

m←a; ‖ xk
m − µ

k
a ‖,

(
σk

ma

)2
)
,

(16)

m f k
mj→xk

m

(
xk

m

)
= exp

{∫
mxk

j→ f k
mj

ln p
(
dk

m← j

∣∣∣∣xk
m, xk

j

)
dxk

j

}
= exp

{∫
b
(
xk

j

)
lnN

(
dk

m← j; ‖ xk
m − xk

j ‖,
(
σk

mj

)2
)
dxk

j

}
.

(17)

In (16), µk
a is the position of anchor a ∈ A at the kth time slot. Consequently, the belief b(xk

m) in
Equation (2) can be rewritten as

b
(
xk

m

)
= 1

ZN

(
xk

m; x̃k
m, Ṽ

k
m

)
×

∏
a∈Ak

m

N

(
dk

m←a; ‖ xk
m − µ

k
a ‖,

(
σk

ma

)2
)

×
∏

j∈Mk
m∪S

k
m

exp
{∫

b
(
xk

j

)
lnN

(
dk

m← j; ‖ xk
m − xk

j ‖,
(
σk

mj

)2
)
dxk

j

}
.

(18)

Considering the communication overhead, the messages passed on in Figure 1 are restricted
to Gaussian distribution. However, b(xk

m), given by Equation (18), is non-Gaussian because of the
nonlinear ranging model. In [20], we propose a low-complexity approximation method based on
second-order Taylor expansion. In this way, the belief b(xk

m) is approximated into a Gaussian function

denoted by b̂(xk
m) ∼ N

(
xk

m; µ̂k
m, V̂k

m

)
, where µk

i and Vk
i are as follows:

Vk
m ,

(Ṽk
m)
−1

+
∑

a∈Ak
m

I2×2 − dk
m←a∇

2
Fma

(σk
ma)

2 +
∑
j∈Mk

i

1

(σk
mj)

2 [I2×2 − dk
m← j

∂2Fmj

∂(xk
m)

2 ]


−1

, (19)
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µk
m , V̂k

m

{
(Ṽ

k
m)
−1

x̃k
m +

∑
a∈Ak

m

µk
a−dk

i←a(∇Fma−∇
2
Fma
µk∗

m )

(σk
ma)

2 +
∑

j∈Mk
m∪S

k
m

1
(σk

mj)
2 [µ

k∗
j + dk

m← j(
∂Fmj

∂xk
m
−

∂2Fmj

∂(xk
m)

2µ
k∗
m)]

. (20)

In Equations (19) and (20), the notations µk∗
m and µk∗

j represent the estimated positions of nodes

m and j in the latest iteration, respectively, notations ∇Fma and ∇2
Fma

are the first-order gradient and

the Hessian matrix of Fk
ma , ||xk

m − µ
k
a|| at µk∗

m , respectively, and the notations
∂Fmj

∂xk
m

and
∂2Fmj

∂(xk
m)

2 are the

first-order partial derivatives of Fk
mj , ||x

k
m − xk

j || and 1
∂xk

m
(
∂Fmj

∂xk
m
) at (µk∗

m ,µk∗
j ), respectively (please see [22]

for detailed derivation). Consequently, agent i ∈ M obtains its location based on maximum a posteriori
(MAP), i.e., x̂k

i = µ
k
i .

3.2.2. Target Tracking Based on Average Consensus

At kth time slot, node i ∈ Sk
o, which can detect target O ∈ S, computes the prediction message

m f k|k−1
o →xk

o

(
xk

o

)
= N

(
xk

o; x̃k
o, Ṽ

k
o

)
and the local message m f k

oi→xk
o

(
xk

o

)
. Then, m f k

oi→xk
o

(
xk

o

)
is approximated into

Gaussian function N
(
xk

o;µk
oi, Vk

oi

)
using the approximation method in [22]. Therefore, the Gaussian

approximation of b
(
xk

o

)
can be expressed as

b̂
(
xk

o

)
=

1
Z
N

(
xk

o; x̃k
o, Ṽ

k
o

)
×

∏
i∈Vk

o

N

(
xk

o;µk
oi, Vk

oi

)
. (21)

The mean vector µk
o and the covariance matrix Vk

o are given by (Vk
o)
−1

= (Ṽ
k
o)
−1

+
∑

i∈Vk
o

(Vk
oi)
−1

and µk
o = Vk

o

(Ṽk
i

)−1
µk

i +
∑

i∈Vk
o

(
Vk

oi

)−1
µk

oi

, respectively. Each node i ∈ Sk
o can calculate Ṽ

k
o and Vk

oi locally.

However, node i ∈ Sk
o cannot determine b̂(xk

o) unless all other neighbors of target O share their local
information with it.

For convenience of discussion, let Wk
o , (Vk

o)
−1

, W̃
k
o , (Ṽ

k
o)
−1

and Wk
oi , (Vk

oi)
−1

; therefore, we have

Wk
o = W̃

k
o +

∑
i∈Vk

o

Wk
oi, (22)

Wk
oµ

k
o = W̃

k
ox̃k

o +
∑
i∈Vk

o

Wk
oiµ

k
oi. (23)

In order to locate the target in a distributed manner, we use the average consensus based on
Metropolis weights proposed in [13] to diffuse information across the network. During the process,
each node updates its data with a weighted average of its neighbors’ data, which converges to the
global average. Let t denote the iteration index and Nk

i represent the number of neighbors of node i,
respectively. The consensus iteration process is as follows.

Step 1: Each node i ∈ Vk
o uses local information to initialize the global average Wk,(0)

i and

Wk,(0)
i µ

k,(0)
i as

Wk,(0)
i = Wk

oi, Wk,(0)
i µ

k,(0)
i = Wk

oiµ
k
oi,
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while each node i <Vk
o initializes Wk,(0)

i and Wk,(0)
i µ

k,(0)
i as

Wk,(0)
i = 0, Wk,(0)

i µ
k,(0)
i = 0.

Step 2: Each node computes the Metropolis weight matrix, which is defined as

ξ
(t)
i, j =


1

1+max
{
Nk

i ,Nk
j

} if j ∈ Vk
i ,

1−
∑

l∈Vk
i

ξ
(t)
i,l if i = j,

0 otherwise.

(24)

Step 3: Each node broadcasts its global average computed in the latest iteration and collects the
information broadcasted by its neighbors. Then, each node updates the global average Wk,(t+1)

i and

Wk,(t+1)
i µk,(t+1)

i by

Wk,(t+1)
i = ξ

(t)
i,i Wk,(t)

i +
∑
j∈Vk

i

ξ
(t)
i, j Wk,(t)

j , (25)

Wk,(t+1)
i µ

k,(t+1)
i = ξ

(t)
i,i Wk,(t)

i µ
k,(t)
i +

∑
j∈Vk

i

ξ
(t)
i, j Wk,(t)

j µ
k,(t)
j . (26)

Step 4: If t = tmax (where tmax is the maximum number of iteration), the consensus process ends.
Otherwise, go to Step 2.

After sufficient consensus iterations, all nodes obtain the global average of
∑

i∈Vk
o

Wk
oi and

∑
i∈Vk

o

Wk
oiµ

k
oi.

Therefore, each node i ∈ Vk
o can compute

∑
i∈Vk

o

Wk
oi and

∑
i∈Vk

o

Wk
oi µ

k
oi by

∑
i∈Vk

o

Wk
oi = Nk

o ×Wk,(tmax)
i , (27)

∑
i∈Vk

o

Wk
oiµ

k
oi = Nk

o ×Wk,(tmax)
i µ

k,(tmax)
i . (28)

Submitting Equations (27) and (28) to Equations (22) and (23), each node i ∈ Vk
o has

Wk
o = W̃

k
o + Nk

o ×Wk,(tmax)
i , (29)

Wk
oµ

k
o = W̃

k
ox̃k

o + Nk
o ×Wk,(tmax)

i µk,(tmax)
i . (30)

Therefore, each node i ∈ Vk
o can determine the position of target O based on MAP, i.e., x̂k

o = µ
k
o.

3.3. Implementation Scheme of the Joint Self-Location and Tracking Algorithm

The proposed distributed joint self-location and tracking algorithm based on VMP and average
consensus is stated as follows.



Sensors 2019, 19, 3829 10 of 17

Algorithm 1: Distributed joint self-location and tracking algorithm

1 for k = 1 : kmax(k is the time slot index)
2 Each agent m ∈ M updates M historical position information of itself and the targets before the kth time

slot.
3 Each agent m ∈ M calculates its prediction matrix Pm using Equation (4) and Equation (13), then predicts

its position x̃k
m using Equations (14) and obtains its prediction message m f k|k−1

m →xk
m
(xk

m) using Equation (15).

4 Each node i ∈ Sk
o predicts the position of target O using Equation (4), Equation (13), and Equation (14), i.e.,

x̃k
o. Then, the prediction message m f k|k−1

o →xk
o
(xk

o) is calculated using Equation (15).

5 Initialization: Each agent m ∈ M initializes its position as xk
m = x̃k

m and initializes the position of the target
that it detects as xk

o = x̃k
o.

6 for q = 1 : qmax(where q is the iteration index)
7

(1) Each agent m ∈ M collects ranging measurements from its neighbors and calculates cooperative

messages m(q)
f k
ma→xk

m

(
xk

m

)
(∀a ∈ Ak

m) from neighbor anchors using Equation (16) and

m(q)
f k
mj→xk

m

(
xk

m

)
(∀ j ∈ Mk

m ∪S
k
m) from neighbor agents and targets using Equation (17), respectively.

Then, each agent m ∈ M calculates µk,(q)
m and Vk,(q)

m of b̂(p)
(
xk

m

)
using Equations (19) and

(20), respectively.

8

(2) Each node i ∈ Sk
o receives the local message m(q)

f k
oi→xk

o
(xk

o) and approximates it into Gaussian function

N(xk
o;µk,(q)

oi , Vk,(q)
oi ) based on the Taylor expansion approximation method in [20]. Then the global

average is calculated based on average consensus iteration from Step 1 to Step 4, which are depicted

in Section 3.2.2. Then, each node i ∈ Sk
o computes Wk,(q)

o and Wk,(q)
o µk,(q)

o using Equations (27)–(30).

9

(3) Each agent m ∈ M broadcasts the mean µk,(q)
m and the covariance matrix Vk,(q)

m of b̂(p)(xk
m). Each

node i ∈ Sk
o broadcasts Wk,(q)

o µk,(q)
o and Wk,(q)

o . At the same time, they collect the information
broadcasted by its neighbors.

10 end for q
11 Each agent m ∈ M determines its position based on MAP and broadcasts µk

m and Vk
m. Each node i ∈ Sk

o
determines the position of target O based on based on MAP and broadcast Wk

o and Wk
oµ

k
o.

12 end for k

4. Stimulation Results and Analysis

In this section, we evaluate the performance of the proposed adaptive prediction model and the
distributed joint self-location and tracking algorithm (denoted by JSLT).

4.1. Stimulation Results and Performance Analysis of the Proposed Adaptive Prediction Model

In order to assess the performance of the proposed adaptive prediction model, we compare it
with linear prediction and square prediction. We consider a 50 m × 50 m plane with 10 moving nodes.
The prediction error is defined as the distance between the true position and the prediction position.
The average prediction errors in Figures 2–4 are obtained by averaging over 10,000 realizations,
with each realization continuing 20 time slots.
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Figure 2. The performance of the proposed adaptive prediction model with different numbers of
historical positions and an adjustment parameter α.

Sensors 2019, 19, x 10 of 16 

 

9 [3] Each agent m∈  broadcasts the mean ,( )k q
mμ and the covariance matrix ,( )k q

mV  of 
( )ˆ ( )p k

mb x . Each node k
oi∈  broadcasts ,( ) ,( )k q k q

o oW μ and ,( )k q
oW . At the same time, they 

collect the information broadcasted by its neighbors. 
10 end for q 
11 Each agent m∈  determines its position based on MAP and broadcasts k

mμ and k
mV . Each 

node k
oi∈  determines the position of target O based on based on MAP and broadcast k

oW  

and k k
o oW μ . 

12 end for k 

4. Stimulation Results and Analysis 

In this section, we evaluate the performance of the proposed adaptive prediction model and the 
distributed joint self-location and tracking algorithm (denoted by JSLT). 

4.1. Stimulation Results and Performance Analysis of the Proposed Adaptive Prediction Model 

In order to assess the performance of the proposed adaptive prediction model, we compare it 
with linear prediction and square prediction. We consider a 50 m × 50 m plane with 10 moving nodes. 
The prediction error is defined as the distance between the true position and the prediction position. 
The average prediction errors in Figures 2–4 are obtained by averaging over 10,000 realizations, with 
each realization continuing 20 time slots. 

 
Figure 2. The performance of the proposed adaptive prediction model with different 
numbers of historical positions and an adjustment parameterα . 

 
Figure 3. The performance comparison of the four prediction models with different 
standard deviations of the random variables. 

0 0.2 0.4 0.6 0.8 1
2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

α

A
ve

ra
ge

 p
re

di
ct

io
n 

er
ro

r (
m

)

 

 
L=3
L=4
L=5
L=6

1 1.5 2 2.5 3
2

2.5

3

3.5

4

4.5

5

σ(m)

A
ve

ra
ge

 p
re

di
ct

io
n 

er
ro

r (
m

)

 

 
Instant prediction
Linear prediction
Square prediction
Adaptive prediction

Figure 3. The performance comparison of the four prediction models with different standard deviations
of the random variables.

Sensors 2019, 19, x 11 of 16 

 

 
Figure 4. The performance comparison of the four prediction models with different 
adjustment parameter α  values. 

We employ the Gauss–Markov (GM) mobility model [24] to simulate the motion of nodes. In the 
GM model, the velocity and direction of nodes are time-dependent Gauss–Markov processes, which 
means the velocity and direction at the kth time slot is related to that at the (k–1)th time slot. Let k

id  

and k
iθ  denote the velocity and direction of node i from the kth time slot to the (k–1)th time slot, 

respectively, then we have 

1 2

1 2

(1 ) 1

(1 ) 1

k k
i i i d

k k
i i i

d d d

θ

α α α ω

θ αθ α θ α ω

−

−

 = + − + −


= + − + −
, (31) 

where constants id  and iθ  are the velocity and direction of node i when k → ∞ , dω  and θω  are 

Gaussian random variables independent of id  and iθ , and [0,1]α ∈  is an adjustment parameter to 

control the randomness of motion. When α  increases, the impact of 1k
id

−  and 1k
iθ −  rises, while the 

impact of dω  and θω  declines. As discussed above, the Gauss–Markov mobility model not only 
reflects the relationship between the current moment and a historical moment, but also reflects the 
randomness of motion. Therefore, it is very suitable for the simulation of high random motion, such 
as the travel of birds and the diffusion of gas. 

The performance of the proposed adaptive prediction model with different numbers of historical 
estimated positions and α  is illustrated in Figure 2. Simulation configurations are as follows. For 
the GM mobility model shown in Equation (31), we set 5 m/sid = and o60iθ = . For the prediction 
using Equation (13), the parameters are 1N =  and 3 / 4 / 5 / 6M = . As we know, the prediction 
algorithm is based on the historical estimated positions. In initialization, we use the true positions 
along with Gaussian noise (mean = 0 and variance = 4 m2) as the estimated positions. As shown in 
Figure 2, there is little difference in the average prediction error using different historical positions 
with different α . Comparatively speaking, when the value of α  is smaller, more historical 
positions are used and the more accurate the obtained prediction is; when the value of α  is bigger, 
more historical positions are used and a more accurate prediction is achieved. This is because a 
smaller α  value indicates a greater randomness of motion, therefore the impact of the (k–1)th time 
slot on the kth time slot is less. More historical positions can reflect the trend of the movement. 
However, a bigger α  value leads to a stronger correlation between the kth time slot and the (k–1)th 
time slot. In this situation, the contribution of the earlier time slots to the current moment is small, 
and using too much historical information even influences the accuracy of prediction. Moreover, 
greater the number of historical positions used, the more information the nodes store and the greater 
the energy consumption. In subsequent simulations, we use three historical positions, meaning each 
node stores three historical positions. 

0 0.2 0.4 0.6 0.8 1
2.2

2.6

3

3.4

3.8

4.2

α

A
ve

ra
ge

 p
re

di
ct

io
n 

er
ro

r (
m

)

 

 
Instant prediction
Linear prediction
Square prediction
Adaptive prediction

Figure 4. The performance comparison of the four prediction models with different adjustment
parameter α values.
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We employ the Gauss–Markov (GM) mobility model [24] to simulate the motion of nodes. In the
GM model, the velocity and direction of nodes are time-dependent Gauss–Markov processes, which
means the velocity and direction at the kth time slot is related to that at the (k−1)th time slot. Let dk

i and
θk

i denote the velocity and direction of node i from the kth time slot to the (k−1)th time slot, respectively,
then we have  dk

i = αdk−1
i + (1− α)di +

√

1− α2ωd

θk
i = αθk−1

i + (1− α)θi +
√

1− α2ωθ
, (31)

where constants di and θi are the velocity and direction of node i when k→∞ , ωd and ωθ are Gaussian
random variables independent of di and θi, and α ∈ [0, 1] is an adjustment parameter to control the
randomness of motion. When α increases, the impact of dk−1

i and θk−1
i rises, while the impact of ωd and

ωθ declines. As discussed above, the Gauss–Markov mobility model not only reflects the relationship
between the current moment and a historical moment, but also reflects the randomness of motion.
Therefore, it is very suitable for the simulation of high random motion, such as the travel of birds and
the diffusion of gas.

The performance of the proposed adaptive prediction model with different numbers of historical
estimated positions and α is illustrated in Figure 2. Simulation configurations are as follows. For the
GM mobility model shown in Equation (31), we set di = 5 m/s and θi = 60

◦

. For the prediction using
Equation (13), the parameters are N = 1 and M = 3/4/5/6. As we know, the prediction algorithm
is based on the historical estimated positions. In initialization, we use the true positions along with
Gaussian noise (mean = 0 and variance = 4 m2) as the estimated positions. As shown in Figure 2,
there is little difference in the average prediction error using different historical positions with different
α. Comparatively speaking, when the value of α is smaller, more historical positions are used and the
more accurate the obtained prediction is; when the value of α is bigger, more historical positions are
used and a more accurate prediction is achieved. This is because a smaller α value indicates a greater
randomness of motion, therefore the impact of the (k−1)th time slot on the kth time slot is less. More
historical positions can reflect the trend of the movement. However, a bigger α value leads to a stronger
correlation between the kth time slot and the (k−1)th time slot. In this situation, the contribution
of the earlier time slots to the current moment is small, and using too much historical information
even influences the accuracy of prediction. Moreover, greater the number of historical positions
used, the more information the nodes store and the greater the energy consumption. In subsequent
simulations, we use three historical positions, meaning each node stores three historical positions.

To further evaluate the performance of the proposed adaptive prediction model, we compare
the proposed model with linear prediction, square prediction, and instant prediction, which use the
movements in x axis and y axis at the (k−1)th time slot to predict the position at the kth time slot.
Simulation configurations are α = 0.7, di = 3 m/s, θi = 60

◦

, N = 1, and M = 3. The performance
comparison of the four prediction models with different standard deviations σωd = σωθ = σ of the
random variables ωd and ωθ is shown in Figure 3. It is observed that the average prediction error of
the four prediction models increases with an increase in σ. Specifically, the performance of instant
prediction is the worst and the performance of the proposed adaptive prediction is the best. Moreover,
the advantage of the proposed adaptive prediction model is more obvious when σ is bigger. Figure 4
illustrates the performance of the four prediction models with different adjustment parameter α values.
Simulation configurations are α = 0.7, di = 3 m/s, θi = 60

◦

, σ = 1 m and M = 3. It can be observed
that the average prediction error of the proposed adaptive prediction model is smaller than the other
three prediction models and the difference is bigger with increasing α. In fact, from the Gauss–Markov
mobility model in Equation (31), we see that the randomness of motion rises with the decline of α and
the increase in σ. Therefore, the proposed adaptive prediction model better adapts to different motion
patterns than the other three prediction models.
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4.2. Stimulation Results and Performance Analysis of the Proposed Distributed Joint Self-Location and
Tracking Algorithm

The proposed distributed joint self-location and tracking (JSLT) algorithm is evaluated by
comparison with the distributed cooperative self-localization algorithm and the centralized target
tracking algorithm in this section. We consider a 50 m × 50 m plane with NA = 5 anchors, NM agents,
and NO targets. The communication radius and ranging radius of anchors and agents are Rc = 25 m,
the detection radius is Rd = 25 m, and the standard variance of ranging measurement noise is 1
m. At the 0th time slot, the variance matrix of the prior of agents and targets are set to be 25I2×2.
The iterations of the average consensus algorithm and the joint location algorithm are 20 and 10,
respectively. The results in Figures 5–7 are obtained by performing 10,000 realizations over 20 time slots.
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Figure 5. Self-localization performance of the proposed joint self-location tracking JSLT algorithm and
the cooperative self-localization (CSL) algorithm (NM= 20).
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Figure 6. Self-localization performance of the proposed JSLT algorithm and the CSL algorithm
(NM= 10).
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Self-localization performance of the proposed JSLT algorithm and the cooperative self-localization
(CSL) algorithm in [23] with different numbers of agents and targets are shown in Figures 5 and 6.
In Figure 5, NM= 20, NA = 1 or 10; in Figure 6, NM= 10, NA = 1 or 5. It can be seen that the localization
performance of both algorithms improves as time increases. This is because the agents’ and their
neighbors’ positions become more accurate with the increase in time. However, a higher k value does
not always correspond to improved positioning accuracy. The estimated accuracy becomes stable as
time goes on. Furthermore, in the two scenarios, the proposed JSLT algorithm has a higher positioning
accuracy than the CSL algorithm. This is because, in the JSLT algorithm, agents not only use the
distance observation from the neighboring anchors and agents as in the CSL algorithm, but they also
make use of the ranging measurements from the targets that they can detect, which improves the
self-localization accuracy. Moreover, the performance of the two algorithms is quite different with
fewer agents and more targets. When the density of agents is high, agents have enough neighbors.
Therefore, they can localize themselves well by cooperating with neighboring anchors and agents.
However, when the density of agents is low, many agents have few neighboring anchors and agents to
localize themselves. In this case, the ranging measurements from targets play an important role in the
self-localization of agents. The computational complexity of both algorithms depends on the number
of neighbors. For agent m ∈ M, we define NA

m, NM
m , and NO

m to denote the number of neighboring
agents, anchors, and targets that can detected at a certain time. The computational complexity of the
CSL algorithm and the proposed JSLT algorithm areO(NA

i +NM
i ) andO(NA

i +NM
i +NO

i ), respectively.
With regard to communication overhead, as all messages are approximated to Gaussian function, each
agent broadcasts the mean and the covariance to its neighbors and collects the information broadcasted
by its neighbors. The information collected by each agent is O(NA

i + NM
i ) and O(NA

i + NM
i + NO

i )

for the CSL algorithm and the proposed JSLT algorithm, respectively. Since NO
i � NA

i + NM
i , the

complexity and the communication overhead of the two algorithms are similar.
Figure 7 shows the tracking performance of the proposed JSLT algorithm and the centralized

tracking (CT) algorithm is illustrated with NM= 20 and NA = 1. In the CT algorithm, agents first
localize themselves using the CSL algorithm in [23], then anchors and agents track the targets by
sending information to a control center. As shown in Figure 7, the tracking performance of the proposed
distributed JSLT algorithm is very close to that of CT algorithm, but the communication overhead of
JSLT algorithm is much less than that of CT algorithm. In the CT algorithm, the information collected
and broadcasted by each node (anchor or agent) are both proportional to the number of neighbors.
In the proposed JLST algorithm, each node broadcasts its global average to its neighbors and collects
global averages broadcasted by its neighbors, which is proportional to the number of neighbors.
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Therefore, the communication overhead sharply reduces by half. Moreover, in the CT algorithm,
anchors and agents transmit information to the control center in a multi-hop manner, which leads to a
fair amount of redundant information in the networks and information delay.

In order to visualize the tracking performance, a single trial performance of target tracking is
shown in Figure 8. We can see that the trajectory recognized by the proposed algorithm is close to the
actual trajectory of the target, except for at the initial time and at the moment of a sharp turn.
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5. Conclusions

In this paper, we built an adaptive prediction model by exploiting the correlation of trajectories
and then proposed a joint self-location and tracking algorithm based on VMP and average consensus.
Simulation results and analysis illustrated that, compared with instant prediction, linear prediction,
and square prediction, the proposed prediction model was more adaptive to the movement of the
nodes. The self-location performance of the proposed algorithm is better than the separated cooperative
self-localization, and the tracking performance of the proposed algorithm is close to the centralized
tracking algorithm with less communication overhead.

The proposed algorithm is suitable for tracking bird migration patterns, monitoring gas diffusion,
etc. In these applications, the motion of the targets is random. The following research aimed to apply the
proposed approach to practices. In practical networks, delays in data transmission and communication
errors are two important issues which affect positioning accuracy and real-time tracking. Future
research will focus on the issue of how to deal with the impact of these two issues.
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