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Abstract: In the field of molecular oncology, microRNAs (miRNAs) and their role in regulating
physiological processes and cancer pathogenesis have been a revolutionary discovery over the last
decade. It is now considered that miRNA dysregulation influences critical molecular pathways
involved in tumor progression, invasion, angiogenesis and metastasis in a wide range of cancer
types. Hence, altering miRNA levels in cancer cells has promising potential as a therapeutic
intervention, which is discussed in many other articles in this Special Issue. Some of the most
significant hurdles in therapeutic miRNA usage are the stability and the delivery system. In this
review, we cover a comprehensive update on the challenges and strategies for the development of
therapeutic miRNA delivery systems that includes virus-based delivery, non-viral delivery (artificial
lipid-based vesicles, polymer-based or chemical structures), and recently emerged extracellular vesicle
(EV)-based delivery systems.
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1. MicroRNA Overview

The central dogma of molecular biology was no longer “central” after the discovery that gene
expression involves more complex layers of regulation than the DNA sequences. MicroRNAs (miRNAs)
are one of the most well-studied non-coding RNAs that play a critical role in gene regulation, some of
which are dysregulated in association with certain cancer types. The first cancer-associated miRNA
was discovered from the study on the commonly deleted region 13q14 in B-cell chronic lymphocytic
leukemia (B-CLL), where the minimally deleted region among patients located at first exons of two
non-protein coding RNA transcripts, DLEU 1 and DLEU 2 (Deleted In Lymphocytic Leukemia 1 and 2),
aligned in opposite directions [1]. In 2002, Calin and his colleagues identified two miRNAs, miR-15a
and miR-16-1, located within the intron of the DLEU2 gene that was deleted or downregulated in the
majority of CLL patients [2]. Further studies revealed that these miRNAs function as tumor suppressors
to induce apoptosis by repressing the B-cell lymphoma 2 (Bcl-2) gene, and inhibit the cell cycle by the
repression of cyclin-related genes such as CCND1 and CCNE1 [3,4]. These discoveries sparked the
field of miRNA-cancer research, the exploration of a unique miRNA transcriptome for each cancer
type, empowering the better classification of specific cancer types and prognostic information.

The canonical pathway of miRNA biogenesis initiates from a capped and polyadenylated long
primary transcript (pri-miRNA or pri-miR) transcribed by RNA polymerase II (Pol II), resembling that of
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protein-coding transcripts [5]. A stem-loop structure of pri-miRNA is recognized and further processed
by the nuclear RNaseIII enzyme—a double-stranded RNA binding domain protein (DROSHA-DGCR8)
complex—into a hairpin-loop structure, called precursor-miRNA (pre-miRNA or pre-miR) [5,6].
Pre-miR is exported from the nucleus by the Exportin-5-Ran-GTP axis and further processed into the
mature form of double-stranded RNA by Dicer-TRBP complex [7]. RNA-induced silencing complex
(RISC) containing Argonaute (Ago) proteins incorporates one strand of the miRNA duplex and guides it
to the partially complementary site within 3’UTR of the target gene [8]. There are several non-canonical
pathways of miRNA biogenesis including a miRNA derived from an intronic region of mRNA by
splicing (Miltron) independent of Drosha processing, and a miRNA trimmed by poly(A)-specific
ribonuclease (PARN) independent of Dicer cleavage [9,10]. Nevertheless, the vast majority of miRNAs
fall into the former category of biogenesis, in which processes and machinery are highly conserved
across evolutionarily distant species.

There were reports on correlations between the dysregulation of miRNA machinery and disease
progression and poor prognosis in several tumor types such as ovarian cancer [11], neuroblastoma [12]
and lung cancer [13]. In most cases, cancer cells exhibit a distinct miRNA pattern that contributes to
specific traits of malignancies, possibly because other RNA species share the same regulatory pathway.
MiRNA binding through a partial complementary sequence (seed sequence) within the target mRNA
3’UTR primarily inhibits translation or promotes its degradation. A specific miRNA can regulate
hundreds of genes, but in reality, only 30–40% of genes are regulated by miRNAs and the target sites are
often selectively conserved within the 3’UTR [14,15]. There are a couple of reports on miRNA-mediated
gene activation or miRNA binding to non-3’UTR region, which appear as infrequent cases [16].

MiRNA regulation: Genomic loci of miRNA can be either intergenic when they have their
own promoter driving their expression or intragenic where the miRNA gene is within the intron or
exon of a protein-coding gene. According to the integrating miRNA inter- and intragenic database
(miRIAD), of 1871 human miRNAs, 1072 (57.3%) are intragenic and 799 (42.7%) are intergenic [17].
The transcriptional regulation of miRNA genes is much like that of protein-coding genes, determined
by factors including transcription factors, DNA methylation, mutations, copy number variations,
RNA stability and cleavages [18–20]. One such example is when glucocorticoid, one of the commonly
used steroid hormones to treat hematopoietic malignancies, binds to its receptor, and the receptor
complex binds to the upstream promoter region of the miR-17-92 cluster gene resulting in transcriptional
repression [21]. On the contrary, miRNAs’ specific regulatory mechanism involves miRNA biogenesis
or processing machineries, often leading to a global miRNA alteration associated with human cancers.
Such dysregulation of RNaseIII type enzymes, nuclear DROSHA and cytoplasmic DICER, as well
as components of the RISC complex, TARBP2 and AGO2, were reported in association with various
types of cancers [22]. The emerging role of the growth-promoting tumor microenvironment involves
intra-cellular miRNA regulation [23]. Recent research reported that miRNAs play key roles in the
crosstalk between cancer-associated fibroblasts (CAFs) and tumor cells, which were transferred
by cell-derived extracellular vesicles. The extracellular miRNAs from cancer-associated fibroblasts
granted favorable traits such as growth promotion, survival and drug resistance in various tumor
types, including colorectal cancer, breast cancer and pancreatic cancer [24–27]. In summary, the fine
tuning of miRNA levels is comprehensively coordinated by both internal and external regulatory
mechanisms [28].

2. Altered MicroRNA Expression in Cancer Cells

2.1. Altered miRNA Profile in Malignancies

Over the past decade, it has come to light that miRNAs present altered expression patterns in
malignant tissues and cells. Some miRNAs regulate essential genes for cellular homeostasis in which
the alteration will result in abnormal biological changes, including uncontrolled cell proliferation,
angiogenesis, metabolism and apoptosis, leading to malignant formation. All of the key cancer pathways



Cancers 2020, 12, 1852 3 of 21

have an association with miRNA alterations; sensitivity to growth signals (e.g., let-7 family, miR-21);
insensitivity to antigrowth signals (e.g., miR-17-92 cluster, miR-195); apoptosis escape (e.g., miR-34a,
miR-185, miR-15/miR-16); angiogenesis (e.g., miR-210, miR-26, miR-15b, miR-155); invasion and
metastases (e.g., miR-10b, miR-31, miR-200 family, miR-21, miR-15b); evading immune destruction
(e.g., miR-124, miR-155, miR-17-92); tumor-promoting inflammation (e.g., miR-23b, miR-155, let-7d);
and genomic instability (e.g., miR-21, miR-155, miR-15b) [29–31]. The malignant transformation will
alter cell- and cellular state-specific miRNA expression profiles in healthy tissues. Furthermore, miRNAs
are capable of driving malignant formation either by repressing tumor suppressor genes or increasing
oncogene expression, thus emphasizing the importance of miRNAs in malignant transformation and
as biomarkers to further subclassify cancer types [32–34].

Comprehensive miRNA expression analyses revealed a set of miRNAs that show distinct
expression patterns in various cancer types, which led to biomarker discovery, or further functional
validation of these miRNAs. For example, global miRNA expression analysis of diffuse large B-cell
lymphoma (DLBCL) revealed a reduced level of miR-150 and miR-29b [35,36]. Following this finding,
Xiao et al. identified that miR-150 targets transcription factor c-Myb, essential in the development of
lymphocytes [37], and Li et al. showed that miR-29b regulates protein kinase B (Akt) which promotes
survival and growth through the PI3K/Akt signaling pathway [38]. Therefore, comprehensive miRNA
expression analysis of cancer cells holds great potential for therapeutic target and biomarker discovery.

Tumor-related miRNAs are broadly classified into two groups: Oncogenic miRNAs (OncomiRs),
and Tumor Suppressor miRNAs (TS-miRNAs, TS-miRs). Most, if not all, types of cancers display an
induced expression of some oncomiRs, which promote tumorigenesis by blocking the translation of
tumor-suppressive mRNAs (e.g., miR-17-22, miR-125b, and miR-125) [39–41], whereas the reduced
expression of TS-miRNAs (e.g., miR-133a, miR-145, and miR-143) directly inhibits the translation of
oncoproteins [42,43]. Thus, miRNA expression versatility emphasizes their utility in cancer therapeutic
strategies. Therefore, antisense-miRNA (anti-miRs) or miRNA mimics were developed for miRNA
therapy and are widely used to repress oncomiRs or to restore TS-miRs, respectively [44–46].

MiRNAs are found in both intracellular and extracellular regions of the body. Recently, several studies
have revealed the potential of circulating miRNAs as a new class of biomarkers. For example, both the tissue
and sera of oral cancer patients presented induced elevated levels of miR-31, which target NAD-dependent
deacetylase SIRT3 that regulates metabolism and energy production [47,48]. Both tissue and sera from gastric
and germ cell cancer patients exhibit elevated miR-371-3, which promotes tumor growth and metastasis by
directly targeting tumor-suppressor gene TOB1 (transducer of ERBB2, 1) [49,50]. Additionally, chemotherapy
resistance-related miRNA alteration was reported, miR-155 and miR-221/miR-222 overexpression was
associated with a poor outcome in lung cancer and poor therapeutic outcomes of anti-estrogenic therapies
(Tamoxifen, Fulvestran), respectively [51]. The implication of miRNAs in diagnosis and therapy differs
over a wide range of cancer types.

2.2. MiRNA Editing as Cancer Therapy

Certain miRNAs are master regulators of tumorigenesis in some cancers, and thus represent
powerful therapeutic targets.

For example, supplementing the reduced miR-29b, the regulator of cell growth, proliferation,
and angiogenesis, caused tumor reduction in xenograft mice of breast and gastric cancers [38,52].
MiR-34a is another therapeutic miRNA that is generally under-expressed in many cancer types, notably
breast cancer. Some potent targets of miR-34a include transcription factor, Fos-related antigen (Fra-1) that
regulates apoptosis/proliferation/differentiation, and NAD+ dependent histone deacetylase Sirtuin-1
(SIRT1) that deactivates tumor suppressor p53 [53,54]. A phase I clinical trial using miR-34a showed
antitumor activity in a subset of patients with refractory advanced solid tumors with pre-dexamethasone
treatment, which is discussed in more detail later in this review [55].

The dysregulation of the miR-15a and miR-16-1 cluster involves multiple oncogenic phenotypes
such as cell survival, proliferation, and invasion by directly targeting CCND1 (cyclin D1), WNT3A,
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and BCL2, evident in prostate and pancreatic cancers. WNT3A is part of the Wnt/beta-catenin signaling
pathway responsible for cell–cell adhesion, and the promotion of oncogenes like c-Myc and CCND1.
Thus, miR-15a re-expression showed a decreased viability of pancreatic tumor cells, and its knockdown
resulted in an increased invasion and proliferation in prostate cancer in vivo models [56,57].

While the role of miRNA as a regulator of various physiological processes is evident, challenges
lie within its delivery. In a body, crude miRNAs are unstable due to various ribonucleases in the blood,
if not cleared by phagocytosis through the reticuloendothelial system (RES). In addition, crude miRNAs
are unable to cross the cell membrane or the vascular endothelium due to their negative charges.
To overcome these problems, various approaches were examined to deliver miRNAs. We will provide
examples of in vivo experimental approaches to modulate miRNA levels across multiple tumor models
for therapeutic applications in the following sections.

2.3. MiRNA Inhibition Therapies for OncomiRs

Reducing oncomiRs, frequently overexpressed in human cancers, allows for the restoration
of target tumor-suppressor expression that could work as a therapeutic strategy. Commonly used
miRNA inhibitors, single-stranded antisense, anti-miR oligonucleotides (AMOs), locked nucleic
acid (LNA) anti-miRs, antagomiRs, miRNA sponges and small molecule inhibitors of miRNAs
(SMIRs), interfere with miRNA biogenesis or block miRNA-mRNA interaction [31,58–61]. For instance,
the intravenous injection of antagomiRs against miR-16, miR-122, miR-192, and miR-194 significantly
reduced their endogenous expression without provoking an immune response [62]. Another example
is with the oncogenic miR-21 antagonist, repressing AKT and subsequent Mitogen-activated protein
kinase (MAPK) pathway activation, which hampered Epithelial–mesenchymal transition (EMT) and
angiogenesis in breast cancer [63–65]. MiRNA sponges (RNA molecules with repeated miRNA binding
sequences that can sequester the miRNAs of choice) successfully repress miR-23b expression both
in vitro and in vivo, reducing glioma angiogenesis, invasion, and migration [66].

2.4. MiRNA Replacement Therapies for Tumor-Suppressor MiRNAs

Supplementing tumor-suppressive miRNAs in cancer cells is another therapeutic approach for
miRNA alteration. The use of synthetic double-stranded miRNA mimics, pre-miR, or plasmid-encoded
miRNA genes compensates for lost tumor-suppressor miRNAs in order to target tumor-promoting
mRNAs [31,44]. The miR-34 family, defective in about half of human cancers, plays a critical role in
the suppression of tumor development [67]. The delivery of miR-34 mimics to cancer cells showed a
growth inhibitory effect, and confirmed the promising use of miRNA mimics in cancer treatment [67].
However, the challenges for miRNA therapy need to be addressed. As previously mentioned, miRNAs
are unstable in the body due to multiple ribonucleases and RES clearance. Moreover, their negative
charges impede the crossing of the cell membrane or the vascular endothelium. Even though they reach
inside of a cell, they are subject to endolysosomal degradation. To ensure effective treatment in cancer
cell-specific delivery, it is crucial not to disrupt the healthy tissue [68]. Impaired blood perfusion in
tumors lowers systemic delivery of miRNAs, while the tumor microenvironment acts as a barrier and
disrupts efficient miRNA delivery [69,70]. Tumor-associated immune cells (macrophages, neutrophils
and monocytes) in the tumor microenvironment can nonspecifically uptake miRNAs encapsulated in
the delivery system [65,71]. To overcome these problems, researchers have tried different approaches
in delivering therapeutic miRNA mimics or inhibitors.

In the following sections, we will provide several examples to modulate miRNA levels, using in vivo
models for therapeutic applications. Table 1 shows the summary of miRNA mimics or inhibitors tested
in vivo via different delivery methods.
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Table 1. The Summary of MicroRNA (miRNA) Mimics or Inhibitors Tested in Vivo.

Delivery Systems miRNAs miRNA Type Drug Delivery Route Target Disease Target Gene Ref

Lipid-based system
Cationic liposome miR-29b mature-miR - Tail-vein Lung cancer CDK6, DNMT3B, MCL1 [72]
Cationic liposome miR-7 pre-miR - Intratumoral Lung cancer IRS-1, RAF-1, EGFR [73]
Neutral liposome miR-34a pre-miR - Intravenous Lung cancer BCL-2, c-Met [74]

Neutral liposome let-7
miR-34a mimic-miR - Intravenous Lung cancer KRAS [75]

Ionizable liposome miR-200c plasmid - Subcutaneous Lung cancer PRDX2, GAPB/Nrf2, SESN1 [76]

Polymer-based system
PEI-PEG miR-34a dsRNA - Tail-vein Hepatocellular carcinoma SNAI1 [77]

Polyurethane-PEI miR-145 plasmid - Intracranial Glioblastoma Oct4, Sox2 [78]

PEI miR-145
miR-33a dsRNA - Intraperitoneal

Intravenous Colon carcinoma c-Myc, ERK5 [79]

Polymeric micelle miR-205 mimic-miR Gemcitabine Intratumoral Pancreatic cancer ZEB-1, SIP-1, HRAS, LRP-1, CAV-1, E-CAD [80]
Polymer micelle anti-miR-21 dsRNA Doxorubicin Intratumoral Glioma PTEN [81]
PACE polymer anti-miR-21 dsRNA Temozolomide Intracranial Glioblastoma PTEN [82]

PEI miR-203 dsRNA - Subcutaneous Basal cell carcinoma c-JUN [83]

Inorganic-based system
Carbonate apatite miR-4711-5p mimic-miR - Intravenous Colon cancer KLF5, TFDP1 [84]
Carbonate apatite miR-4689 mature-miR - Intravenous Metastatic colorectal cancer KRAS, AKT1 [85]
Carbonate apatite miR-29b mimic-miR - Intravenous KRAS-mutant colorectal cancer BCL-2, MCL1 [86]

Extracellular Vesicles-based system
Exosome miR-143 BP-miR Intravenous Colon cancer - [87]
Exosome miR-146b plasmid - Intratumoral Glioma - [88]
Exosome miR-145 dsRNA - Tail-vein Lung cancer CDH2 [89]

Exosome miR-122 plasmid Sorafenib Intratumoral
Intraperitoneal Hepatocellular carcinoma ADAM10, IGF1R, CCNG1 [90]

Exosome-GE11 peptide let-7 mimic-miR - Intravenous Breast Cancer HMGA2 [91]

Other Biomaterials
Atelocollagen miR-34a pre-miR Subcutaneous Colon cancer E2F [92]
Atelocollagen miR-16 pre-miR Intravenous Prostate cancer CDK1, CDK2 [93]
Atelocollagen miR-15, miR-16-1 miR with 2′-fluoro - Prostate cancer BCL-2, CCND1, WNT3A [94]
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3. Approaches for MiRNA Therapeutic Delivery

3.1. Local Delivery

Due to its bioavailability and reduced toxicity, the intratumoral injection of miRNA mimics or inhibitors
are significantly more effective than those delivered by systemic routes. However, local administration is
limited to the localized and readily accessible primary solid tumors such as melanoma, breast and cervical
cancers. One advantage of local delivery is minimal nonspecific uptake by healthy organs, which can lead
to unwanted toxicity and immunogenicity.

Halle et al. presented the anti-tumor effect of intratumoral convection-enhanced delivery (CED) of
a 2′-O-methoxyethyl anti-miR-let-7a in combination with phosphodiester/phosphorothioate backbone
using a highly invasive glioblastoma (GBM) orthotopic xenograft model. Importantly, no animals
showed signs of severe adverse effects while retaining the functional anti-miR effect following one
month of anti-miR administration [95].

Trang et al. showed that both the intratumoral and intravenous administration of let-7a mimics led
to decreased tumor size in the non-small-cell lung cancer (NSCLC) mouse model [75,96]. In hepatoma
xenograft models, intratumoral administration of cholesterol-conjugated 2′-O-methyl-modified miR-375
mimics suppressed tumor growth by targeting the AEG-1 gene (astrocyte elevated gene-1) [97].
The same group performed intranasal delivery of the lentiviral vector expressing let-7a using the
aggressive human NSCLC xenograft model, resulting in an increased let-7 expression followed by
the growth inhibition of KRAS-dependent lung tumors. Additionally, the local delivery of synthetic
let-7b using a polymer-based delivery triggered a specific inhibitory response leading to tumor
reduction by 60–70% [96]. The polyethylenimine (PEI)-mediated local application of miR-145 achieved
a significant anti-tumor effect in colon carcinoma mouse models [79]. Lastly, Nanoparticles -mediated
intratumoral delivery of siRNA specific to DCAMKL-1 induced expression of let-7a and miR-144 and
subsequent repression of proto-oncogenes c-Myc and Notch-1 in colorectal cancer xenografts, thus
resulting in tumor growth inhibition [98]. Local administration is limited to accessible tumors; thus,
the development of a systemic delivery approach is necessary to treat other types of cancers and
metastatic tumors.

3.2. Systemic Delivery

The ideal delivery system should protect miRNAs from early degradation in the bloodstream,
carry them to the target cells, and facilitate cellular uptake without inducing any immunogenic
response [99,100]. To this end, oligonucleotide editing and systemic miRNA delivery systems
were explored as improved therapeutic deliveries of miRNA mimics and inhibitors. The chemical
modification of miRNA oligonucleotides enhances miRNA stability and prevents their degradation by
nucleases in the circulation. For example, an addition of 2′-O-methyl (2′-O Me), 2′-O-methoxyethyl or
2′-fluoro to the 2′-OH in riboses, enhances the stability and binding affinity of anti-miR, and provides
long-lasting effects in the liver, lung, kidney, heart, intestine, fat, skin, bone marrow, muscle, ovaries and
adrenals [101]. LNAs are another type of chemically modified RNA nucleotide analog with high
nuclease resistance, applicable to siRNA and miRNA mimics/inhibitors. The systemic administration
of the LNA-anti-mir-122 showed a dose-dependent downregulation of liver-specific miR-122 levels in
mice liver for several weeks, and the upregulation of a set of target mRNAs [102]. LNA-anti-miR-122
prevents hepatitis C virus (HCV) replication, and is the first miRNA drug to successfully enter Phase II
trials for the treatment of HCV infection. In turn, this represents a promising preventive therapy for
hepatocellular carcinoma (HCC) resulting from HCV infection [103]. However, such modified miRNAs
have short half-lives because of the rapid renal and hepatic clearances resulting in limited tumor uptake
and biodistribution [65]. In 2016, Teplyuk et al. tested three delivery routes for the miR-10b antisense
oligonucleotide inhibitors (ASO): 1) direct intratumoral injections, 2) continuous osmotic delivery and
3) systemic intravenous injections in intracranial human glioma-initiating stem-like cells (GSC)-derived
xenograft and murine GL261 allograft models in athymic and immunocompetent mice, both resulting
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in the miR-10b target genes (i.e., MBNL1-3, SART3, and RSRC1) increased expression thus inducing
the reduction of growth and progression of intracranial GBM with no significant systemic toxicity
when using the ASO local or systemic administrations [104].

Viral (3.3) and non-viral (3.4) vectors are commonly used vectors for miRNA delivery [41,105].
Although viral vectors are popular due to their efficiency, the adverse effects from immune responses are
inevitable. Thus, non-viral vectors are the preferred choice for clinical studies. Moreover, the formulation
of miRNAs in nanoparticles is an alternative strategy investigated by many groups [106].

3.3. Viral Delivery

Viral vectors transfer pre-miR or mature miRNA cloned in a plasmid to the tumor cells,
generate mature miRNA, drive expression with the viral promoter, and subsequently repress and/or
degrade target mRNAs [41]. Lentivirus, adenovirus and adeno-associated virus (AAV)-mediated
delivery systems have successfully delivered either miRNA mimics or antagonists to the nuclei of tumor
cells, followed by miRNA expression and function [107]. Kasar et al. showed the lentiviral delivery of
miR-15a/16 to a New Zealand Black (NZB) mouse model of chronic lymphocytic leukemia (CLL) restored
expression of these miRNAs whose expression were lacking in CLL [108]. Another study showed the
intravenous administration of lentivirus containing miR-494 antagonists, which reduced the activity of
myeloid-derived suppressor cells (MDSCs) through miR-494 inhibition, which is pro-angiogenesis and
promotes tumor growth, in a murine breast cancer model [109]. Genetic manipulation allows for the
conjugation of targeting moieties to the viral capsid proteins, which improves the affinity between viral
vectors and cancer-specific receptors for specific delivery into the tumors [65]. Nevertheless, one should
keep in mind that lentiviruses integrate their viral DNA into the host genome, which could lead to
mutagenesis and the activation of oncogenic pathways. In contrast, AAVs are an attractive alternative
for therapeutic delivery because of their nature, keeping their genomes in an episomal form. Kota et al.
showed that the AAV-mediated delivery of miR-26a, known for its tumor-suppressing property, in
an HCC mouse model resulted in the significant reduction of tumor growth without toxicity [68].
Although viral vectors can efficiently deliver functional miRNA antagonists or miRNA mimics
into tumor tissues, the immunogenic response remains a serious concern in clinical applications.
Thus, various non-viral delivery methods were developed as a safer alternative for miRNA delivery [110].

3.4. Non-Viral Delivery

Compared to viral delivery, non-viral methods are generally inefficient in miRNA transfer
with an even shorter efficacy in target gene repression. However, recent advancements in the
field have improved miRNA delivery by chemical modifications, making them suitable for clinical
applications [65]. Non-viral vectors are classified broadly into these groups: polymeric vectors (PEIs,
polylactic-co-glycolic acid/PLGA, chitosans and dendrimers) [111], lipid-based carriers (neutral/cationic
and targeting-modified), biomaterials [112], and inorganic materials (gold, diamond, silica, and ferric
oxide) [113].

3.5. Nanoparticles

Among non-viral vectors, nanoparticles are the most common choice in delivering exogenous
nucleic acids, including DNA, mRNA, siRNA and miRNA, as seen in recent studies [114,115].
Despite their popularity, technical problems, including safety and efficacy, restrict its clinical usage
as a therapeutic vector [116]. Nanoparticle-mediated miRNA delivery must overcome hurdles in
the body, such as degradation, rapid renal clearance, endosomal escape, and pharmacokinetics for
efficient delivery [110,117,118]. In particular, nanoparticles accumulate in tumors through the enhanced
permeability and retention (EPR) effect, where the enriched targeting highly depends on the size of
nanoparticles [119]. When designing nanoparticles, these problems need to be addressed. The following
section will introduce some of the improved nanoparticle delivery systems.
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3.5.1. Lipid-Based Vectors

Lipid-based vectors are the most widely used nanoparticle for in vivo gene therapy to date,
which form spherical structures composed of phospholipid bilayers with an aqueous core encapsulating
nucleic acids-drugs [120]. The advantages of liposome-based nanoparticles include biocompatibility,
flexibility, low immunogenicity, and versatility of administration routes. The efficiency depends on
physicochemical properties such as particle size, surface charge and lipid composition. Recent advances
in the understanding and modeling of liposomes have enabled adjustments of their performance
parameters, such as pharmacokinetics and bioavailability, in specific clinical applications that are
optimal for the disease context [121]. For instance, the cationic Lipoplex-based delivery of miR-29
mimics and miR-7-encoding plasmid efficiently accumulated in the tumor site and achieved significant
tumor reduction in a murine xenograft tumor model of lung cancer (Figure 1a) [72,73]. Neutral liposomes
have improved tumor accumulation as compared to cationic liposomes due to reduced RES clearance
and prolonged circulation [122]. In fact, the neutral liposome-mediated delivery of miR-34a and let-7b
mimics facilitated lung tumor-repression without elevating liver and kidney enzymes in serum without
inducing a nonspecific immune response in the mice [74,75]. Ionizable liposomes (NOV340) are cationic
at low pH, and neutral or anionic at neutral or higher pH, and can selectively enhance cellular uptake.
This attribute was used to deliver miR-200c resulting in enhanced radiosensitivity of lung cancer
in vivo [76]. The ionizable liposome-miR-34 complex (MRX34) entered phase I clinical trials for liver
cancer and metastasis from other cancers (NCT01829971), which were later halted following multiple
immune-related severe adverse events (SAE) observed in patients dosed with MRX34 over the course of
the trial [123].
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Glioblastoma (GMB) cells [78]. (c) Tumor sizes of xenograft mice after systemic super carbonate apatite
(sCA)-mediated miR-4711-5p delivery [84]. (d) Inhibition of metastatic tumor growth in bone tissues by
the atelocollagen-mediated miRNA treatment [93]. (e) Inhibition of breast cancer development in vivo
using GE11-positive exosomes containing let-7a [91].

3.5.2. Polymer-Based Vectors

Polymer-based vectors encompass synthetic biodegradable polymers, copolymer, or natural
polymers such as collagen, chitosan and gelatin. Polymer nanoparticle’s advantages include high
stability, ease of substitution, the addition of functional groups and flexibility [124]. The characteristics
of these polymers such as size, morphology, charge and degradation can be altered by changing the
molecular weight, polymer composition, or architecture, including linear, branched, dendrimer and
copolymer. PEI, cationic polymer is the most frequently used polymer-based vector for therapeutic
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gene delivery. Cationic polymers have many amino groups and can use the proton sponge effect to
promote escape from endosomal membranes. PEI-mediated miRNA mimics were proven effective in
hepatocellular carcinoma by miR-34a, in glioblastoma by miR-145, and in colon cancer by miR-145 and
-33 (Figure 1b) [77–79]. Cationic polymer-mediated co-delivery of miRNA mimics and chemotherapeutic
drugs, such as Gemcitabine, Doxorubicin and Temozolomide, have improved therapeutic effects in
in vivo tumor models [80–82]. While the results were promising, PEI toxicity, regardless of modifications,
derived from excess positive charge, and low biological degradation in serum from non-specific binding
to proteins in vivo, excluded them from a choice of clinical vectors [41].

Polyamidoamine (PAMAM) dendrimers, dendrimer-based polymeric vectors, are hyperbranched
polymers with high positive surface charge, which increases the toxicity following its administration
due to hepatic accumulation [125]. Conjugation with negatively charged polyethylene glycol (PEG) can
prevent PAMAM toxicity [41]. Chitosan has a profound nucleic acid binding affinity when complexed
with miRNA. MiR-200c in vitro and miR-34a in vivo efficiently delivered into breast cancer cells
and into the bone metastasis model, respectively, resulted in decreased angiogenesis, invasion, EMT,
metastasis, and increased apoptosis [126–129]. PLGA (Poly lactic-co-glycolic acid) is a negatively charged
biodegradable and biocompatible polymeric nanocarrier, approved by the FDA as a drug-delivery
system and is in phase II clinical trials for siRNA therapeutic delivery (NCT01676259) [110]. Physical and
chemical surface manipulations, such as an addition of branched polyesters with modified amine and
cationic residues (PVA-PLGA, DEAPA-PLGA, DMAPA) stabilize the nucleic acids in the polymeric
matrix in order to further reduce the toxicity and degradation issues [130,131]. Indeed, the formulation
of PLGA complexed with positively-charged PEI and anionic hyaluronic acid was found to efficiently
deliver a DNA plasmid-containing miR-145 to colon cancer cells in vivo, thus leading to increased
anti-proliferative and pro-apoptotic activities [132]. Similarly, miR-34a mimics packaged in the PLGA
chitosan delivery vector decreased tumor size and improved survival in a multiple myeloma xenograft
model [133]. Zhou et al. demonstrated that ester-based dendrimer carrier-mediated delivery of let-7g
miRNA mimics significantly suppressed liver tumor growth with low dendrimer-related toxicity
in vivo [134]. Shatsberg et al. developed a polymeric nanogel complex with miR-34a mimics for active
cytoplasmic delivery, resulting in the inhibition of tumor growth in human U-87 MG GBM-bearing
SCID mice, thus emphasizing the therapeutic potential of such strategy for GBM [135].

3.5.3. Inorganic Vectors

Altering the size, shape, and porosity allows for the engineering of inorganic vectors.
Among well-studied inorganic vectors, including calcium phosphate, porous silica, gold and
carbon nanotubes, calcium phosphate (CaP) is the most successful vehicle for miRNA gene therapy.
CaP, the inorganic component of bone and teeth, is biocompatible, biodegradable, easy to handle and
dissolves under acidic pH in endosomes, leading to osmotic swelling and the release of encapsulated
miRNA within the cell [136]. The CaP-mediated delivery of miR-4711-5p in colon cancer (Figure 1c) [84],
miR-4689 in metastatic colorectal cancer [85], and miR-29b in KRAS-mutant colorectal cancer [86] were all
shown to be effective. A study using a hydrogel-embedded gold-nanoparticle-based delivery system in
combination with cisplatin revealed that the efficient release of miR-96 and miR-182 strongly suppressed
metastasis with significant shrinkage of the primary tumor in a breast cancer mouse model [137].
In 2017, T.J. et al. showed a targeted therapy strategy for glioblastoma using folate (FA)-conjugated
to three-way-junction (3WJ)-based RNA nanoparticles (RNP) for the delivery of anti-miR-21 LNA.
Following its specific delivery, miR-21 expression was repressed in glioblastoma cells both in vitro and
in vivo, thus resulting in antioncogenic PTEN and PDCD4 expression restoration, cell apoptosis and
the regression of tumor growth [138]. Bertucci et al. developed a strategy using mesoporous silica
nanoparticles (MSNPs) loaded with temozolomide (TMZ), an antineoplastic agent for malignant glial
tumor treatment. These nanoparticles conjugated with the polyarginine-peptide nucleic acid R8-PNA,
which targets miR-221, induced a pro-apoptotic effect in a temozolomide-resistant T98G cell line [139].
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3.5.4. Other Biomaterials

Atelocollagen (ATE), a nanoformulation, prepared by pepsin treatment from type I collagen
of calf dermis, is one of the biomaterials with potential application as a gene delivery vector [140].
The intratumoral administration of ATE-miR-34a complex into a xenograft model of colon cancer
resulted in a significant decrease in tumor size [92]. Similarly, the use of ATE in vivo for the transfection
of synthetic miR-16 into the bone metastasis of prostate cancer efficiently inhibited tumor growth
(Figure 1d) [93]. Additionally, the conjugation of miR-15a and miR-16-1 to ATE-RNA aptamer (APT)
hybrid to target prostate-specific membrane antigen (PSMA) expressed PCa cells enhanced the strategy
efficacy in vitro and in vivo by inducing the killing of cancer cells [94].

3.5.5. Exosome/Extracellular Vesicle-Based Vectors

Lipid-bilayer membrane-enclosed biological nanoparticles, termed exosomes, or extracellular
vesicles (EVs), are naturally secreted from cells, and mediate cellular communication within the body
by transferring nucleic acids, such as DNA, RNA and proteins from one cell to the other [141,142].
Because of their potential diagnostic and therapeutic value, the exploitation of EVs for clinical
application is under intensive investigation [143–146].

EVs are mainly divided into three categories: exosomes, microvesicles and apoptotic bodies.
Exosomes (30–150 nm) originate from the endosomal system, whereas microvesicles (50–1000 nm) shed
from the plasma membrane. Despite their distinct biogenesis and intracellular origin, there is no apparent
difference between these subpopulations except median size, and there is no precise method to separate
these populations at this stage, thus “EV” is used as a collective term for exosomes and microvesicles of
sizes around 100 nm [141,147–149]. As a natural biomolecular carrier, EV-mediated miRNA delivery has
significant advantages over other delivery systems. MiRNAs are transported and selectively delivered
to other cell types via surface receptors or proteins present on the surface of recipient cells [150–153].
Unlike synthetic nanoparticles, miRNAs delivered by EV are not entrapped by endosomes within the
cell (Figure 2). Hence, the miRNAs evade the endosome trap and escape pathway, thus act faster and
more efficiently in target gene repression at the cellular level. EVs can protect encapsulated miRNA
from RNase degradation or harsh environments, enabling the transportation in bodily fluids [154,155].
EV-mediated miRNA delivery was proven effective for delivery of miR-143 in colon cancer [87], miR-146b
in glioma [88], and miR-145 in lung cancer [89]. Other groups have demonstrated that exosome-mediated
miR-122 enhanced the chemosensitivity of Sorafenib in hepatocellular carcinoma [90]. There are several
methods for conjugation of peptides to EVs membrane that enhances cell specificity [155–157]. Ohno et al.
developed EVs conjugated with epidermal growth factor (EGF)–specific peptide (GE11) that delivered
let-7a to EGFR-expression breast cancer (Figure 1d) [91]. These studies revealed the promising potential
of EVs to bring innovation to current therapeutic delivery approaches. However, methods of mass
production, as well as effective packaging, are yet to be developed.
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The advantages and disadvantages of each delivery method are shown (Table 2).

Table 2. Advantages and Disadvantages of MicroRNA therapeutic Delivery Systems.

Delivery Systems Advantages Disadvantages

Viral Vectors - High gene delivery efficiency - Highly immunogenic

Adenoviral vector
- High gene delivery efficiency

- High packaging gene-size capacity
- Ability to transfer dividing cell

- Highly immunogenic
- Short term transgene expression

Adeno-associated viral vector

- High gene delivery efficiency
- Long term transgene expression

- Organ specificity possible (serotype)
- Ability to transfer dividing and non-dividing cells

- Low immunogenicity

- Hard production vectors
- Low gene-packaging capacity

Lentiviral vector

- High gene delivery efficiency
- Long term transgene expression

- Ability to transfer dividing and non-dividing cells
- Low immunogenicity

- Potential genomic integration

Lipid-based system

- Ability to functionalize for targeting
- Ability to co-deliver gene therapy and chemotherapy

- Controllable size
- Systemic gene delivery

- High packaging gene-size capacity
- Non-immunogenic

- Transient expression

- Low delivery efficiency in vivo
- Nonspecific gene delivery

- Cytotoxicity

Polymer-based system

- Ability to functionalize for targeting
- Ability to co-delivery gene therapy and chemotherapy

- Controllable size
- Systemic gene delivery

- High packaging gene-size capacity
- Non-immunogenic

- Transient expression

- Low delivery efficiency in vivo
- Nonspecific gene delivery

- Cytotoxicity

Inorganic-based system

- Ability to functionalize for targeting
- Controllable size

- Systemic gene delivery
- High packaging gene-size capacity

- Non-immunogenic
- Transient expression

- Easy to produce

- Low gene delivery efficiency

Extracellular Vesicle-based system

- Ability to functionalize for targeting
- Ability to co-delivery gene therapy and chemotherapy

- Systemic gene delivery
- High packaging gene-size capacity

- Non-immunogenic
- Highly compatibility

- Low immune clearance
- Organ specificity possible

- High stability

- Insufficient studies on EV-based gene therapy
- Diverse composition

- Low production

4. MiRNA-Based Therapies in Animal Models and Clinics

4.1. Therapeutic MiRNA Candidates in Preclinical Studies

Several of the miRNA-based therapeutics are currently being tested in preclinical and clinical trials.
MiR-10b is a promising target for glioblastoma therapy involved in regulating cell migration, invasion and
metastasis [158]. The clinical significance of miR-10b is its role in metastatic tumors where antagomiR-10b
reduces metastasis in tumor-bearing mice by restoring Hoxd10 gene expression [158–160]. Over 100 studies
on miR-10b with metastatic cancers have revealed its central role in various metastatic tumors [161]. MiR-221
is another potent target for metastatic cancer, in which anti-miR-221 caused a significant decrease in the
size and number of tumor nodules in the liver of the transgenic mice model [162]. Cantafio et al. performed
pharmacokinetic (PK) and pharmacodynamic (PD) studies, and revealed a short-half-life, optimal tissue
bioavailability and minimal urine excretion of LNA-anti-miR-221 (LNA-i-miR-221) along with three-week
span p27 target upregulation in xenograft tumors. No LNA-i-miR-221 associated toxicity was observed in
their non-human primate study [163]. The loss of miR-16 is associated with a diverse range of tumors,
including NSCLC [164], prostate cancer [57], or malignant pleural mesothelioma [165]. Reid et al. used
bacteria-derived minicells to deliver miR-16 mimics in malignant pleural mesothelioma nude mouse
models to show tumor growth inhibition through Bcl-2 and CCND1 targeting [165].
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4.2. Clinical Studies Involving MiRNA-Based Therapy

The first siRNA drug approval for clinical use established the groundwork for miRNA drug
development [166]. Mirna Therapeutics, Inc. (Carlsbad, CA, USA) developed anti-miRNA technology,
including MRX34, a miR-34 mimic encapsulated in a liposomal nanoparticle formulation (NOV40). It is
the first miRNA mimic to enter clinical development with a focus on patients diagnosed with primary
liver cancer, NSCLC, lymphoma, melanoma, multiple myeloma, or renal cell carcinoma. In parallel,
MRX34 administration alone or in combination with radiotherapy (XRT) reduced p53 regulated PDL1
expression in non-small-cell lung tumors and antagonized T-cell exhaustion. However, immune-related
adverse responses led to patient deaths (immune reactions still remains unclear), after which the
multicenter phase I trial was halted, and now these preclinical trials are under investigation to
understand better the immune-related toxicities [55,123,167].

In collaboration with Asbestos Diseases Research Institute (Sydney, Australia), the Australian
company EnGeneIC started the phase I clinical trial using miR-16 mimic (MesomiR-1) loaded
to bacterial-derived nanocells system, which achieved the potent inhibition of tumor growth
(NCT02369198). Malignant pleural mesothelioma (MPM) and advanced NSCLC patients, refractory
to standard therapy, were intravenously administered the miR-16 mimic-based EnGeneIC Delivery
Vehicle (EDV) complex in which the surface is conjugated with an EGFR-targeting antibody to facilitate
tumor site targeting. The first-dose level of 5 billion nanocells loaded with 1.5 µg miR-16 mimics did
not induce an adverse immune response or toxic effects, which allows for the continuation of the phase
II clinical trial [168,169].

Owing to promising preclinical results, MiRagen Therapeutics, Inc. (Boulder, CO, USA) initiated
the phase I clinical trial of the anticancer LNA anti-miR-155 (MRG-106) efficacy on mycosis fungoides
(MF) patients, which is the most common subtype of cutaneous T-cell lymphoma (CTCL) (NCT02580552).
In this trial, the reported adverse toxic effects pended the trial to optimize safer therapeutic doses
and specific administration routes [41,145,170]. Table 3 shows a summary of miRNA-based Therapy
Clinical Trials in the U.S.

Table 3. MiRNA-based Therapy Clinical Trials in the U.S.

Company Name Therapeutic
Agent

Delivery
System Condition or Disease Clinical Phase, Status

miRagen
Therapeutics MRG-106 Anti-miR-155 LNA-antisense

Cutaneous T-cell Lymphoma
(CTCL)/Mycosis Fungoides

(MF)

Phase II (NCT03837457),
Enrolling by invitation

Phase I (NCT03713320),
Active, not recruiting

miRagen
Therapeutics MRG-106 Anti-miR-155 LNA-antisense

CTCL, MF, Chronic
Lymphocytic Leukemia (CLL),

Diffuse Large B-cell
Lymphoma (DVBCL),
Activated B-cell (ABC)
subtype, Adult T-cell

Leukemia/Lymphoma (ATLL)

Phase I (NCT02580552),
Active, not recruiting

Mirna
Therapeutics Inc. MRX-34 miR-34 mimic

dsRNA
liposomal

nanoparticle
Melanoma Phase I (NCT02862145),

Withdrawn

Mirna
Therapeutics Inc. MRX-34 miR-34 mimic

dsRNA
liposomal

nanoparticle

Primary liver cancer, SCLS,
Lymphoma, Melanoma,

Multiple myeloma, Renal cell
carcinoma, NSCLC

Phase I (NCT01829971),
Terminated

EnGeneIC MesomiR-1 miR-16 mimic EnGeneIC
Dream Vector

Malignant pleural
mesothelioma,

Non-small-cell lung cancer

Phase I (NCT02369198),
Completed

5. Conclusions

The development of strategies aimed to efficiently deliver miRNAs will enhance the
effectiveness of therapeutic interventions. MiRNAs are one of the most promising therapeutic
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targets with well-characterized expressions and functions within cancer cells with high specificity
to cancer-related pathways. However, their delivery remains a challenge for miRNA therapeutics.
The growing effort in the development of delivery vehicles, including nanoparticles, biomaterials and EVs,
addresses the obstacles associated with cell-specific targeting, intracellular delivery, miRNA stability and
carrier-associated toxicity. The newly emerged natural delivery system of exosomes/EVs offers enormous
potential as a delivery vehicle in conjunction with the targeting ligand on their surface, which allows
for a biocompatible delivery system with specificity to cancer cell types. The improvements in miRNA
encapsulation, surface engineering and isolation/generation of EVs will advance the development of
targeted-therapeutic miRNA delivery.
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