
ORIGINAL RESEARCH
published: 07 April 2022

doi: 10.3389/fneur.2022.833952

Frontiers in Neurology | www.frontiersin.org 1 April 2022 | Volume 13 | Article 833952

Edited by:

Hari Kishan Reddy Indupuru,

University of Texas Health Science

Center at Houston, United States

Reviewed by:

Marialuisa Zedde,

IRCCS Local Health Authority of

Reggio Emilia, Italy

Julia Ferrari,

Krankenhaus der Barmherzigen

Brüder Wien, Austria

*Correspondence:

Hongying Ma

wangwf2004@163.com

Yongqiu Li

yongqiuli@126.com

Specialty section:

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

Received: 12 December 2021

Accepted: 08 March 2022

Published: 07 April 2022

Citation:

Li Y, Gao H, Zhang D, Gao X, Lu L,

Liu C, Li Q, Miao C, Ma H and Li Y

(2022) Clinical Prediction Model for

Screening Acute Ischemic Stroke

Patients With More Than 10 Cerebral

Microbleeds.

Front. Neurol. 13:833952.

doi: 10.3389/fneur.2022.833952

Clinical Prediction Model for
Screening Acute Ischemic Stroke
Patients With More Than 10 Cerebral
Microbleeds
Yifan Li 1, Haifeng Gao 2, Dongsen Zhang 2, Xuan Gao 2, Lin Lu 2, Chunqin Liu 2, Qian Li 2,

Chunzhi Miao 2, Hongying Ma 2* and Yongqiu Li 2*

1Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China, 2Department of Neurology,

Tangshan Gongren Hospital, Tangshan, China

Background: Hemorrhagic transformation is one of the most serious complications in

intravenous thrombolysis. Studies show that the existence of more than 10 cerebral

microbleeds is strongly associated with hemorrhagic transformation. The current

study attempts to develop and validate a clinical prediction model of more than 10

cerebral microbleeds.

Methods: We reviewed the computed tomography markers of cerebral small vessel

diseases and the basic clinical information of acute ischemic stroke patients who

were investigated using susceptibility weighted imaging from 2018 to 2021. A clinical

prediction model of more than 10 cerebral microbleeds was established. Discrimination,

calibration, and the net benefit of the model were assessed. Finally, a validation was

conducted to evaluate the accuracy and stability of the model.

Results: The multivariate logistic regression model showed hypertension, and some

computed tomography markers (leukoaraiosis, lacunar infarctions, brain atrophy) were

independent risk factors of more than 10 cerebral microbleeds. These risk factors were

used for establishing the clinical prediction model. The area under the receiver operating

characteristic curve (AUC) was 0.894 (95% CI: 0.870–0.919); Hosmer–Lemeshow

chi-squared test yielded χ
2 = 3.946 (P = 0.862). The clinical decision cure of the model

was higher than the two extreme lines. The simplified score of the model ranged from 0 to

12. The model in the internal and external validation cohort also had good discrimination

(AUC 0.902, 95% CI: 0.868–0.937; AUC 0.914, 95% CI: 0.882–0.945) and calibration

(P = 0.157, 0.247), and patients gained a net benefit from the model.

Conclusions: We developed and validated a simple scoring tool for acute ischemic

stroke patients with more than 10 cerebral microbleeds; this tool may be beneficial

for paradigm decision regarding intravenous recombinant tissue plasminogen activator

therapy of acute ischemic stroke.

Keywords: cerebral microbleeds, prediction model, cerebral small vessel disease, intravenous thrombolysis,

hemorrhagic transformation
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INTRODUCTION

Cerebral microbleeds (CMBs) are small, round, or oval
hypointense lesions found on susceptibility-weighted imaging
(SWI) as subclinical hemosiderin deposits due to hemorrhage
from microvascular lesions (1). The prevalence rate of cerebral
microbleeds ranges from 15 to 71% (2, 3) in patients with acute
ischemic stroke (AIS) and 50-80% in patients with hemorrhagic
stroke (4). Symptomatic intracranial hemorrhage (sICH) caused
by thrombolytic therapy is associated with CMB, and a
heavier burden of CMB imparts a higher risk of hemorrhagic
transformation (HT) (5–7). A CMB burden of more than 10 on
baseline neuroimaging before intravenous thrombolytic therapy
was independently associated with symptomatic hemorrhagic
transformation, which ranges from 28.6 to 46.9% (8–11).
Schlemm et al. also found that intravenous thrombolysis was
associated with higher mortality in patients with >10 CMBs (8).

sICH is a severe therapeutic complication that greatly
impedes functional recovery and increases mortality (12). sICH
is observed in approximately 5% of patients treated with
intravenous thrombolysis (13). Thus, early prediction of sICH
before thrombolytic therapy is extremely necessary for guiding
precise treatment paradigm decisions. In the event of acute
cerebral infarction, thrombolytic therapy should be performed as
soon as possible, except in patients with contraindications. SWI
(14) is the preferred deterministic diagnostic technique for CMB,
but it is not possible to conduct SWI before thrombolysis (15), as
this would lead to a delay in the short time frame during which
treatments should be initiated, thus violating the “time is brain”
principle; furthermore, this cannot be performed in primary
hospitals. Computed tomography (CT) scans must be completed
before thrombolytic therapy for patients with AIS and can also
reveal imaging manifestations of some cerebral small vessel
disease (CSVD) such as leukoaraiosis, brain atrophy, lacunar
infarctions, and recent small infarctions (16). As a CSVDmarker,
CMBs are related to the CSVD burden, which may be indicated
by the number of CMBs. However, the relationship between the
number of CMBs and CT markers of CSVD is unknown.

The purpose of this study was to develop and validate a
practical and easily implemented operating clinical prediction
model (CPM) to predict the probability of the presence of >10
CMBs on the basis of easily collected information such as CT
markers of CSVD and past medical history.

MATERIALS AND METHODS

Participants
This study was conducted at the Tangshan Gongren Hospital and
Tangshan Nanhu’ Hospital. Patients with AIS who underwent
SWI and head CT scans during hospitalization from January
2018 to December 2021 were recruited. The inclusion criteria
were AIS without intravenous thrombolytic therapy and patient
age of ≥18 years. The exclusion criteria were as follows:
(1) coagulation disorders; (2) arteriovenous malformation; (3)
moyamoya disease; (4) previous intracerebral hemorrhage and
subarachnoid hemorrhage; (5) cerebral trauma; (6) infarct size
greater than 2/3 of the territory of the middle cerebral artery

supply; (7) previous history of anticoagulant therapy; (8) heart,
liver, or kidney failure; or (9) active internal bleeding.

Demographic information (including sex and age),
self-reported history of disease (such as hypertension,
stroke, and diabetes), and unhealthy lifestyle factors were
noted retrospectively.

This study was approved by the Ethics Committee of
Tangshan Gongren Hospital (Approval Number: GRYY-LL-
KJ2021-K93).

Imaging Examination
All patients underwent a brain magnetic resonance imaging
(MRI) scan (Philips Achieva 1.5T) with a 12-channel head coil
and a brain CT scanning of the brain with a 64-detector row
(Siemens Germany). Scanning sequences included bothMRI and
SWI sequences.

Imaging Assessment
CMBs (17) present as small, rounded or circular, well-
circumscribed, hypointense parenchymal lesions as large as
2–10mm in size on the SWI. Participants were divided
into two groups according to the number of CMBs: 0-10
and >10.

Imaging manifestations of CSVD on CT scanning were
determined as follows. Leukoaraiosis was evaluated according
to the Blennow scale (18) (scores ranged from 0 to 3). The
global scale of cortical atrophy (19) was used to assess the
degree of brain atrophy based on a five-point scale (0 =

“none,” 1 = “mild,” 2 = “moderate,” and 3 = “severe”).
We defined lacunar infarctions as round or ovoid hypodense
lesions of 3-20mm diameter in the basal ganglia, deep white
matter, cerebellum, or pons on the CT scan. Lacunar infarctions
were scored as follows: 0, no lacunar lesion; 1, 1–5 lacunar
infarctions; 2, 5–10 lacunar infarctions; and 3, >10 lacunar
infarctions (12).

The images were interpreted cooperatively by
three neurologists who were blinded regarding
the relationship of CT scan characteristics, CMBs
on SWI, and clinical information. The three
neurologists consisted of one neuroimagist and two
neurologist clinicians.

Statistical Analysis
In the development and validation cohorts, we compared
data between patients with 0–10 and >10 CMBs. Continuous
variables are presented as means and standard deviations.
Between-group comparisons were performed using Student’s t-
test if data were normally distributed and the Mann–Whitney
test if data were not normally distributed. Categorical variables
are presented as numbers and frequencies. We compared
categorical variables between groups with the χ² test or Fisher’s
exact test.

In the development cohort, univariate logistic regression was
used to examine the relationship between a single covariate, such
as CT scan characteristics and other clinical information, and
the existence of >10 CMBs as indicated by SWI. Multivariate
logistic regression was used to investigate independent risk
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factors using all risk factors selected. Independent risk
factors were applied to construct the CPM for >10 CMBs,
based on coefficients and odds ratios with 95% confidence
intervals (CIs).

The clinical predictor efficiency of the CPM was evaluated
by the following steps. First, we assessed discrimination using
Harrell’s C statistic, which was equivalent to the area under
the receiver operator characteristic (ROC) curve (AUC). An
AUC of 0.5 indicates no discrimination, whereas an AUC of
1.0 indicates perfect discrimination. Second, calibration was
carried out to evaluate the accuracy of the model. The goodness-
of-fit based on the Hosmer–Lemeshow chi-squared test of
the CPM was performed for assessing the fit of the model.
A P-value ≥ 0.05 was determined to show goodness-of-fit.
Third, decision curve analysis (DCA) was generated on the
basis of the multivariate prediction model using R software
(version 4.0.3) and was used to evaluate the net benefit of
the model.

P-values were two-sided, and values of <0.05 were
considered statistically significant. All data were analyzed
using SPSS software (version 22.0, IBM company, New
York, USA).

RESULTS

Characteristics of the Development and
Validation Cohorts
In total, 1,776 patients with AIS underwent head CT and SWI,
123 of whom were excluded, leaving 1,653 patients enrolled in
the study. Among them, 836 patients from Tangshan Workers’
Hospital were selected as the development cohort from January
2018 to December 2019 and 396 patients were selected as the
internal validation cohort from January 2020 to December 2020.
Four hundred and twenty one patients from Nanhu’ Hospital
were enrolled for the external validation cohort from October
2020 to December 2021 (Figure 1). Of the included patients,
483 exhibited >10 CMBs, accounting for 31.58, 25.00, and
28.50% of patients in the development, internal and external
cohorts, respectively. Characteristics of the development and
validation cohorts are shown in Table 1. There were statistically
significant differences between the 0–10 CMB and >10 CMB
groups in terms of age, history of hypertension, leukoaraiosis,
brain atrophy, and lacunar infarction. The proportion of patients
with stroke history in the >10 CMB group was higher than that
in the 0–10 CMB group (P = 0.035 in the internal validation

FIGURE 1 | Flow chart of the study.
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TABLE 1 | Characteristics in development cohort and validation cohort.

Variable Development cohort [n (%)] Internal validation cohort [n (%)] External validation cohort [n (%)]

0-10CMBs >10 CMBs P-value 0-10CMBs >10 CMBs P-value 0-10CMBs >10 CMBs P-value

[572 (68.42)] [264 (31.58)] [297 (75.00)] [99 (25.00)] [301 (71.50)] [120 (28.50)]

Age (X ± s) 59.99 ± 10.68 63.89 ± 10.48 <0.001 60.61 ± 10.97 64.10 ± 9.81 0.005 61.23 ± 12.82 62.26 ± 10.85 0.445

Male [n (%)] 384 (67.13) 184 (69.70) 0.369 186 (62.63) 69 (69.70) 0.204 181 (60.13) 84 (70.00) 0.058

Medical history

Diabetes [n (%)] 101 (17.65) 56 (21.21) 0.479 80 (26.94) 20 (20.20) 0.183 84 (27.91) 25 (20.83) 0.127

Hypertension [n (%)] 378 (66.08) 214 (81.44) <0.001 184 (61.95) 88 (88.89) <0.001 181 (60.13) 103 (85.83) <0.001

Drinking [n (%)] 138 (24.13) 81 (30.68) 0.061 73 (24.58) 28 (28.28) 0.558 47 (15.61) 26 (21.67) 0.140

Coronary heart disease [n (%)] 129 (22.55) 30 (11.36) 0.954 50 (16.84) 16 (16.16) 0.876 45 (14.95) 26 (21.67) 0.104

Stroke [n (%)] 155 (27.10) 95 (35.98) 0.083 68 (22.90) 35 (35.35) 0.035 78 (25.91) 42 (35.00) 0.072

Characteristics of CT

Leukoaraiosis <0.001 <0.001 <0.001

0–1 score [n (%)] 503 (89.94) 101 (38.26) 255 (85.86) 26 (26.26) 233 (77.41) 18 (15.00)

2 score [n (%)] 55 (9.62) 89 (33.71) 39 (13.13) 50 (50.50) 62 (20.60) 60 (50.00)

3 score [n (%)] 14 (2.45) 74 (28.03) 3 (1.01) 23 (23.23) 6 (1.99) 42 (35.00)

Brain atrophy <0.001 <0.001 <0.001

0–1 score [n (%)] 477 (83.39) 60 (22.73) 228 (76.77) 19 (19.19) 194 (64.45) 22 (18.33)

2 score [n (%)] 53 (9.27) 56 (21.21) 46 (15.49) 27 (27.27) 64 (21.26) 29 (24.17)

3 score [n (%)] 42 (7.34) 148 (56.06) 23 (7.74) 53 (53.54) 43 (14.29) 69 (57.50)

Lacunar infarction <0.001 <0.001 <0.001

0–1 score [n (%)] 401 (70.10) 66 (25,00) 228 (76.77) 20 (20.20) 231 (76.74) 32 (26.67)

2 score [n (%)] 122 (21.33) 101 (38.26) 52 (17.51) 23 (23.23) 51 (16.94) 23 (19.17)

3 score [n (%)] 49 (8.57) 97 (36.74) 17 (7.74) 56 (56.57) 19 (6.31) 65 (54.17)
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TABLE 2 | Univariate analysis of risk factors for more than 10 CMBs.

Variable Subgroup B S.E Wald/χ2 Univariate analysis

OR 95%CI P-value

Age 0.036 0.007 22.977 1.036 1.021–1.051 <0.001

Male 0.145 0.161 0.805 1.156 0.843–1.585 0.369

Diabetes 0.134 0.190 0.502 1.144 0.789–1.659 0.479

Hypertension 0.787 0.180 19.069 2.197 1.543–3.127 <0.001

Drinking 0.311 0.166 3.509 1.338 0.986–1.888 0.061

Coronary heart disease −0.047 0.186 0.064 0.954 0.662–1.374 0.800

Stroke 0.279 0.161 3.004 1.322 0.964–1.814 0.083

Leukoaraiosis 183.823 <0.001

0–1 score 1.000

2 score 2.108 0.203 107.634 8.231 5.527–12.257 <0.001

3 score 3.280 0.311 111.020 26.587 14.443-48.943 <0.001

Brain atrophy 239.549 <0.001

0–1 score 1.000

2 score 2.797 0.233 88.913 9.000 5.700–14.210 <0.001

3 score 3.305 0.223 220.633 27.257 17.622–42.159 <0.001

Lacunar infarction 144.484 <0.001

0–1 score 1.000

2 score 1.625 0.189 74.103 5.080 3.509–7.354 <0.001

3 score 2.477 0.220 126.567 11.904 7.732–18.326 <0.001

TABLE 3 | Multiariable logistic regression analysis.

Variable Coefficients S.E Wald P-value OR 95%CI

Age −0.011 0.010 1.107 0.293 0.989 0.970 1.009

Hypertension 0.589 0.246 5.723 0.017 1.802 1.112 2.919

Leukoaraiosis

0–1 score 44.450 0.000

2 score 1.090 0.264 17.074 0.000 2.975 1.774 4.990

3 score 2.251 0.364 38.244 0.000 9.489 4.652 19.376

Brain atrophy

0–1 score 118.612 0.000

2 score 1.303 0.275 22.446 0.000 3.681 2.147 6.311

3 score 2.696 0.248 117.812 0.000 14.823 9.109 24.120

Lacunar infarction

0–1 score 23.425 0.000

2 score 0.866 0.243 12.743 0.000 2.377 1.478 3.824

3 score 1.311 0.291 20.306 0.000 3.712 2.098 6.566

Constant −2.554 0.652 15.368 0.000 0.079 - -

cohort), but there were no differences between the development
and external validation cohorts.

CPM Development
Univariate risk factors for the presence of >10 CMBs are
summarized in Table 2; having >10 CMBs was associated with
age, hypertension, leukoaraiosis, brain atrophy, and lacunar
infarctions and was closely related to the severity of leukoaraiosis,
brain atrophy, and lacunar infarction. In contrast, sex, diabetes,
alcohol consumption, coronary heart disease, and stroke

were independent of >10 CMBs. Multivariate analyses were
performed using the risk factors determined in the univariate
analysis, such as age, hypertension, leukoaraiosis, brain atrophy,
and lacunar infarction. Hypertension, leukoaraiosis, brain
atrophy, and lacunar infarction were revealed as significant
independent factors for >10 CMBs, whereas age was not an
independent factor. The multivariate logistic regression model
was established as follows (see Table 3):

Logit P = −2.554 + 0.589 × (hypertension) + 1.090 × (2
score, leukoaraiosis) + 2.251 × (3 score, leukoaraiosis) + 1.303
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× (2 score, brain atrophy) + 2.696 × (3 score, brain atrophy)
+ 0.866 × (2 score, lacunar infarction) + 1.311 × (3 score,
lacunar infarction).

Risk factor scoring was as follows: hypertension, yes = 1 and
no = 0; leukoaraiosis, 0–1 = 0, 2 = 1, and 3 = 2; brain atrophy,
0–1= 0, 2= 1, and 3= 2; and lacunar infarction, 0–1= 0, 2= 1,
and 3= 2.

Simplified CPM Score
A simple scoring method was developed by assigning the
independent risk factors a value expressed as a whole number.
The value was obtained using coefficients as indicated in
Table 3. The coefficients of leukoaraiosis, brain atrophy, and
lacunar infarction were divided by the smallest coefficient
of hypertension (0.589), the quotients and the divisor were
converted into whole numbers according to the principle of
rounding-up, and they were assigned values of corresponding
independent risk factors. Assignment of independent risk factors
in the model was as follows: hypertension was assigned as 1,
a leukoaraiosis scale of 2 as 2, a leukoaraiosis scale of 3 as 4,
moderate brain atrophy as 2, severe brain atrophy as 5, 2 lacunar
infarctions as 1, and 3 lacunar infarctions as 2. The total scores
ranged from 0 to 12, as summarized in Table 4.

CPM Assessment
Based on the multi-factor analysis, the prediction accuracy of the
CPM was 84.3%; as this was more than 80%, this implied that the
CPM score could be used for clinical practice. The AUC of the
CPM was 0.894 (95%CI, 0.870–0.919); as this was larger than 0.5,
this indicated the CPM has good discrimination (Figure 2A).

The χ
2 value was 3.946 (P= 0.862) in the Hosmer–Lemeshow

chi-squared test to assess the fit of the model. Calibration scatter
plots are presented in Figure 2B. According to the scatter plot,
values did not significantly deviate from the reference line,
suggesting good discrimination and accuracy.

TABLE 4 | Simplified CPM.

Variable in CPM Score

Hypertension

NO 0

YES 1

Leukoaraiosis

0–1 score 0

2 score 2

3 score 4

Brain atrophy

0–1 score 0

2 score 2

3 score 5

Lacunar infarction 0–1score0

0–1 score 0

2 score 1

3 score 2

We used DCA to evaluate the clinical practicability of the
CPM. The DCA of the CPM was higher than the two extreme
lines, indicating that the CPM manifests practical clinical value
(Figure 2C).

CPM Internal and External Validation
The prediction accuracy of the internal and external validation
were 85.1 and 87.1%. The AUC of the internal and external
validation, which indicates discrimination ability, were 0.902
(95% CI, 0.868–0.937) and 0.914(95% CI, 0.882–0.945); the ROC
curves were shown in Figures 3A, 4A. The CPM still achieved
good discrimination in the internal and external validation.

The χ
2 value in the Hosmer–Lemeshow test of the internal

and external validation group was 7.992 (P = 0.157), and 7.878
(P = 0.247), as displayed in Figures 3B, 4B. The P-values were
>0.05, indicating that the predicted observation values showed
good consistency with the actual observation values. Accordingly,
the use of the CPM accurately predicted individual outcomes
when applied to the internal and external validation.

The DCA of the internal and external validation was also
higher than the two extreme lines, indicating that the CPM has
practical clinical value and can be beneficial in patients, as shown
in Figures 3C, 4C.

CPM Prediction Capability
All 836 subjects from the development cohort were enrolled
into the predictive model scoring system for clinical analysis.
According to the ROC curve, the cut-off point for the
discrimination of >10 CMBs was 5, with a sensitivity and
a specificity of 72.73 and 90.73%, respectively. The accuracy,
positive predictive value, and negative predictive value of the
CPM were 85.41, 78.36, and 87.82%, respectively. The sensitivity
and specificity of CPMwere 63.64 and 92.26%, respectively in the
internal validation, 80.67 and 84.49% in the external validation
(see Table 5).

DISCUSSION

Currently, thrombolysis is one of the most effective treatments
for AIS. sICH is the most terrible and unpredictable
complication of thrombolysis. To date, there is no accurate
and practicable method to predict the probability of hemorrhagic
transformation. The current study, through univariate analysis
and multivariate logistic regression analysis, found that history
of hypertension and CSVD manifestations of CT (leukoaraiosis,
lacunar infarction, brain atrophy) were independent risk factors
of >10 CMBs in the brain parenchyma. A CPM for >10 CMBs
was established according to the independent risk factors.
The clinical efficacy of the CPM was exhibited through good
discrimination, accuracy, and clinical practicability; therefore,
patients can benefit from the application of the CPM. The
simplified score of the CPM ranged from 0 to 12, with a
cut-off value of 5 for discrimination of >10 CMBs. Through
the validation, it was verified that the CPM had good clinical
predictive ability and stability. Accordingly, the CPM can
accurately and effectively predict the probability of >10 CMBs,
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FIGURE 2 | Discrimination, Calibration, clinical practicability of CPM were exhibited. (A) AUC of ROC, which indicated discrimination ability of the CPM; (B) Calibration

scatter plots, which assessed calibration of the CPM; (C) DCA, which evaluated clinical practicability of the CPM.

thus providing an easy and practical screening tool for physicians
to make clinical decisions.

CMBs are one type of imaging characteristic of CSVD (20).
Neuroimaging manifestations on MRI of CSVD include (1)
recent subcortical small infarct: a small (<20mm) subcortical
infarction with T1-weighted hypointensity and T2-weighted and
FLAIR image hyperintensity and identified by hyperintensity
on diffusion weighted imaging (DWI); (2) lacunar infarction of
presumed vascular origin: a cerebrospinal fluid-filled cavity (3–
15mm) surrounded by a hyperintense rim on FLAIR images
and with a signal similar to cerebrospinal fluid on all sequences;
(3) white matter hyperintensities (WMH) (21) of presumed
vascular origin: white matter lesions commonly distributed in
the deep brain parenchyma or periventricle with hyperintensities
on T2-weighted and FLAIR imaging and hypointensities on
T1-weighted imaging; (4) enlarged perivascular space (EPVS)
(22, 23): small, round or linear (parallel to vessels) space (<3mm)
with cerebrospinal fluid-like signal on all MRI sequences without
a hyperintense rim on T2-weighted or FLAIR imaging; (5)

CMB (24): small (2–10mm) hypointensity on SWI but no
corresponding signal on other conventional MR imaging; and (6)
brain atrophy: local or entire cortex. As a necessary examination
for patients with AIS before thrombolysis, a CT scan also
reveals some CSVD imaging features such as leukoaraiosis,
brain atrophy, lacunar infarction, and recent small infarction.
It has been suggested that standardized visual rating scales of
leukoaraiosis, lacunar infarction, and brain atrophy display good
agreement between CT and MRI (25); accordingly, the burden of
CSVD can be speculated using CT scan results.

CMBs often present in the area of the basal ganglia and pons,
where intracerebral hemorrhage of presumed hypertensive origin
typically occur (26); another location of CMBs is the subcortical
region, often resulting from cerebral amyloid angiopathy (27–
29). The main pathological mechanisms of CMB are considered
to be hypertensive microangiopathy (lipohyalinosis and fibrinoid
necrosis) and cerebral amyloid angiopathy (30); this causes
destruction of the vessel wall, microaneurysm formation, and
blood-brain barrier damage (31). These findings are consistent
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FIGURE 3 | The internal validation: (A) AUC of the internal validation; (B) calibration scatter plots of the internal validation. (C) DCA of the internal validation.

with the vascular pathological changes of sICH (32, 33).
Moreover, CMB (34) is considered to be an early warning signal
of intracerebral hemorrhage. In addition, clinical vascular events
can occur when CMBs burden reaches a certain degree (35), and
it has been reported that >10 CMBs can accurately predict sICH
risk (36).

In recent years, it was reported that CSVD is a dynamic,
whole-brain disorder (37); these types of CSVD often coexist
when the disease is advanced. First, CSVD effects on the
whole brain interstitial fluid produce subtle changes in normal
white matter (38), leading to white matter hyperintensity
formation (39). Next, WMHs progress, leading to secondary
cortical thinning, after which acute small subcortical infarcts
might appear. Finally, these cause WMH, lacunar infarctions,
microbleeds, secondary cortical thinning, and worsening of long
tract degeneration (40), thus leading to a heavier burden of
CSVD and higher possibility of coexisting CMBs (41). In the
present study, 26.80% of participants manifested the coexistence

of leukoaraiosis, lacunar infarction, cerebral atrophy, and CMBs.
The burden of CSVD revealed on the CT scan may indicate the
number of CMBs.

All types of CSVD presenting in neuroimages correlate with
each other in disease pathogenesis (42). Furthermore, CMBs
and leukoaraiosis may have the same risk factors, such as
hypertension (43). Poels et al. (44) confirmed that the presence
of lacunar infarction and leukoaraiosis were associated with
microbleeds in the deep brain parenchyma. Additionally, some
investigations (45, 46) demonstrated that leukoaraiosis is a strong
predictor of cerebral microbleeds. Brain atrophy frequently
occurs together with WMH in elderly patients (47). Some studies
demonstrated that increased hyperintensities in the deep brain
parenchyma or periventricle accelerate brain atrophy (48). In
addition, Yamada et al. (49) found that high-grade leukoaraiosis
was a significant independent predictor for CMBs and that
leukoaraiosis grade was strongly associated with the number
of CMBs. However, there was no report on the relationship
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FIGURE 4 | The external validation: (A) AUC of the external validation; (B) calibration scatter plots of the external validation. (C) DCA of the external validation.

between CMB burden and CSVD total load, especially the CSVD
manifestation of CT. In the current study, CT scan markers
of CSVD were graded. We found a significant correlation
of >10 CMBs with leukoaraiosis grade, brain atrophy, and
lacunar infarction; this relationship was more obvious when
the grade leukoaraiosis was ≥2, brain atrophy ≥2, and lacunar
infarction ≥2.

Previous studies have shown that CMB was associated with
age, hypertension (45), diabetes (50), coronary heart disease,
history of stroke (51), smoking, and alcohol consumption
(52). Age and hypertension were the strongest risk factors for
CMBs. The detection rate of CMBs increased with age and was
extremely low in young patients, 6.5% in patients aged 45–
50 years, and 35.7% in patients aged ≥80 years (44, 53). The
incidence of CMBs tends to increase with aging, and the risk of
developing CMBs increases by 3% for each additional year of
age (40). However, Benedictus et al. found that after adjusting
for the interference of risk factors, there was no significant
correlation between CMBs and age (54). In the current study,

the mean age of the >10 CMB group was higher than that
of the <10 CMB group, and the difference was statistically
significant in univariate analysis; however, age was not an
independent risk factor in the multivariate logistic regression
analysis. The relationship between the number of CMBs and age
needs to be explored further. Hypertension results in continued
damage to smooth muscle cells and arteriolar injury; long-
term hypertension can cause abnormalities in arterioles, such
as arteriolosclerosis, lipohyalinosis, fibrinoid necrosis, and blood
extravasation, leading to lacunar infarction, WMH, CMBs, and
cerebral hemorrhage (47). CMBs and hypertensive intracerebral
hemorrhage are often located similarly at the basal ganglia,
pons, and cerebellum, indicating a common pathogenesis. It
is well known that in addition to intracerebral hemorrhage,
hypertension is an important risk factor in the development of
CMB (55).

It takes a relatively short time for neurologists to evaluate
CT scans and consult the hypertension history of the patient.
By interpreting CT scans and inquiring about the medical
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TABLE 5 | CPM prediction capability of the development cohort, the internal and

external validation.

0–10CMBs >10 CMBs

Development cohort

0–5 score 519 (62.08%) 72 (8.61%)

6–12 score 53 (6.34%) 192 (22.97%)

Internal validation

0–5 score 274 (69.19%) 36 (9.09%)

6–12 score 23 (5.81%) 63 (15.91%)

External validation

0–5 score 255 (60.57%) 23 (5.46%)

6–12 score 47 (11.16%) 96 (22.81%)

history, neurologists can quickly evaluate patients with AIS.
When the CPM sum score is more than to 5, the patients
will be more likely to have >10 CMBs. In the case of AIS,
the CPM may be a useful tool to assess the likelihood of
the presence of >10 CMBs and provide a more accurate
prediction of hemorrhagic transformation to guide thrombolytic
therapy (56).

Limitations
The CPM needs to be further validated externally in more
medical institutions at different levels to verify the repeatability
and universality of the model. Although hypertension is a
recognized risk factor for CMBs, this study did not consider
the grade and duration of hypertension. Furthermore,
previous antiplatelet therapy and antiplatelet duration
may affect CMB burden, but this was not discussed in
this study. Maria et al. (2) found that the distribution of
CMBs was significantly associated with sICH. Conversely,
some studies found no significant correlation between the
location of cerebral microbleeds and sICH (7). Therefore,
the CMB anatomical distribution was not considered
in the establishment of CPM. However, the relationship
between CMB distribution and sICH remains to be
further studied.

Conclusions
We established a simple, easily implemented operating scoring
scale.When the CPM sum score is more than 5, the patient will be
more likely to have >10 CMBs. Neurologists can quickly screen
patients at high risk of hemorrhagic transformation without the
use of MRI, guiding thrombolysis treatment and reducing the
occurrence of sICH after intravenous thrombolytic therapy.
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