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Abstract: Background: Leukemia is the most common cancer in pediatrics, with many late effects such
as higher risk of dyslipidemia, insulin resistance, obesity, and metabolic syndrome. The objective of
this work was to investigate substrate oxidation during submaximal exercise in survivors of childhood
acute leukemia. Methods: A total of 20 leukemia survivors and 20 healthy children were matched
by sex, age, and Tanner stage. They all took a submaximal incremental exercise test to determine
fat and carbohydrate oxidation rates. Results: Cardiorespiratory fitness was significantly lower in
leukemia survivors, with lower relative VO2 peaks (p < 0.001), lower heart rate values (p = 0.02),
and lower exercise power (p = 0.012), whereas rest metabolism and body mass index did not differ
between the two groups. During exercise, upward of heart rate relative to VO2 peak was significantly
higher (p < 0.001) in childhood leukemia survivors. We found lower carbohydrate and fat oxidation
rates (p = 0.07) in leukemia survivors compared with healthy children, and also a significantly lower
relative maximal fat oxidation rate (p = 0.014). Conclusion: Despite impaired physical fitness and
metabolic response to exercise, childhood leukemia survivors remained sensitive to physical activity
interventions, and could readily adapt to submaximal exercise intensity.
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1. Introduction

Acute childhood leukemia, lymphoblastic (ALL) and myeloblastic (AML), is the most common
cancer in pediatrics, with an overall age-specific incidence of 46.4 per million persons per year [1].
Although prevalence has been increasing in recent decades, survival rates have also improved, from
65% to 85% depending on the type of leukemia [2–4]. The long-term health condition of such
patients is still a major public health concern. Leukemia treatments, which always depend on several
chemotherapies and sometimes radiotherapy and bone marrow transplantation, have significantly
improved the prognosis of these children. Even so, treatment leaves 50% of them with at least one
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chronic medical disease that has a significant impact on mortality and morbidity [5]. Several articles
have been published on late effects of treatment in this population, notably increased endocrine
deficiency [6,7], obesity [8], mitochondrial dysfunction [9], pulmonary [10] and neuromuscular [11]
toxicity, cardiovascular diseases [12], and metabolic syndrome [13,14]. This metabolic syndrome
is related to a range of disorders including insulin resistance, central obesity, high blood glucose,
dyslipidemia, and high blood pressure, and is an important risk factor for cardiovascular disease [15].

Long-term cardiometabolic diseases and metabolic syndrome in leukemia survivors may cause
metabolic impairments [16]. The ability to oxidize lipids and carbohydrates during incremental exercise
reflects a profile of metabolic fitness correlated to the physiological status of the muscles [17,18].
In children cured of acute leukemia, despite advances in diagnostic and therapeutic methods,
levels of physical activity deteriorate [19], and there is an increase in sedentary lifestyle [20] and
fatigue [21] closely linked to excess energy intake and reduced energy expenditure [22]. Survivors
of childhood leukemia have increased incidence of metabolic syndrome and impaired muscular [23]
and cardiorespiratory functional capacity [24,25] that may reflect impaired metabolism and substrate
utilization during exercise compared to their healthy counterparts. The published evidence is positive
for the impact of exercise on muscle strength and flexibility, and is mixed for the impact of physical
activity intervention on cardiopulmonary fitness among children with an acute lymphoblastic leukemia
and among survivors exposed to cardiotoxic agents [26].

Our aim was to determine whether the disease and its treatment affected metabolic responses to
exercise. For this purpose, we studied substrate oxidation during submaximal exercise in leukemia
survivors compared to matched healthy controls.

2. Methods

2.1. Participants

This prospective cross-sectional case-control study ran from May 2019 to October 2019. It included
children cured of acute leukemia followed at Clermont-Ferrand University Hospital in France and
their matched healthy controls. Children in remission of leukemia of any type (ALL and AML), aged
6–18 years, without treatment for at least one year and without physical disability due to the disease
were compared to an equal number of healthy controls recruited as peers and matched for age, sex,
and sexual maturity. Physicians assessed sexual maturity using pubic hair indices and male genital
or female breast development, as described by Tanner [27]. Subjects were excluded if they had an
infection diagnosed by a physician, if they had corticosteroid treatment in the previous three months,
if they were unable to exercise, or if they had a contraindication to physical exercise (cardiorespiratory
disorders incompatible with submaximal exercise or orthopedic or neurologic dysfunctions that ruled
out pedaling). We firstly included leukemia survivors, then we included matched healthy controls.
Healthy controls were recruited from the entourage (classmates, family, sports club) of the patients.

This study was carried out in accordance with the recommendations of Comité de Protection
des Personnes (CPP) Ile-de-France VII, (no. 2018-A03247-48) with written informed consent from all
subjects, as prescribed by the Declaration of Helsinki. The protocol was approved by the Comité de
Protection des Personnes (CPP) Ile-de-France VII. Trial registration: in ClinicalTrials.gov, reference
number NCT 03913962, registered on 12 April 2019.

2.2. Physical Activity Assessment

To assess physical activity level (PAL), we asked the children, with the help of their parents, to keep
an activity booklet logging the child’s physical activity five days a week during schooldays and two
days on weekends. To assess physical activity levels, we used validated a pediatric questionnaire—the
International Physical Activity Questionnaire for Adolescents (IPAQ-A) [28]. Total metabolic equivalent
of task (MET)-minutes per week was calculated using the formula: [walking MET-minutes/week =

3.3 ×walking minutes ×walking days] + [moderate MET-minutes/week = 4.0 ×moderate-intensity
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activity minutes ×moderate days] + [vigorous MET-minutes/week = 8.0 × vigorous-intensity activity
minutes × vigorous-intensity days] = total physical activity (PA) MET-minutes/week [29].

2.3. Experimental Procedure

Submaximal exercise was performed at least 3 h after the last meal. The children avoided
calorie-rich food and refrained from strenuous physical activity for at least 24 h beforehand. After
sitting for 20 min (rest metabolism was measured during the last 10 min with oxygen consumption) [30],
the subjects performed, to the point of volitional fatigue, a graded submaximal exercise test on an
electromagnetically braked cycle ergometer with continuous gas collection and heart rate monitoring.
Following a 2 min warm-up consisting of unloaded pedaling, subjects at Tanner stages 1 and 2 started
cycling at 10 W, and their work rate was increased by 10 W every 3 min. Subjects at Tanner stages
greater than or equal to 3 started at 20 W, and their work rate was increased by 15 W every 3 min.
When heart rate was unstable (heart rate variation more than ±5 beats per minute), this stage was
extended for up to 5 min to obtain a heart rate stable to within ±5 beats. When the respiratory exchange
ratio (RER) was greater than or equal to 1.00 (indicating the absence of fat oxidation), work rate was
increased by the same increments at 1 min intervals until volitional fatigue was reached. The VO2

peak was considered to have been reached when the RER was greater than or equal to 1.05 and the
subject achieved his or her age-predicted maximal heart rate (HRmax: 220—age), according to the
methodology validated by Riddell et al. [31].

2.4. Measurements

All the tests were performed on a Cyclus 2 ergometer (RBM Elektronik-Automation GmbH,
Leipzig, Germany). Oxygen consumption (VO2) and carbon dioxide (VCO2) were measured breath by
breath through a mask connected to an O2 and CO2 analyzer (MetaMax 3b, Cortex Biophysik, Leipzig,
Germany). Ventilatory parameters were averaged every minute during the submaximal exercise test
and the subsequent 10 min recovery period. Heart rate was monitored continuously throughout the
duration of the tests (Polar RS 800cx monitor, Polar, Finland).

2.5. Data Analysis

Indirect calorimetry is the recognized standard method of quantifying substrate oxidation rates
at rest and during exercise [32]. The intensity of the exercise was calibrated according to theoretical
VO2max estimated in milliliter per minute (mL/min) from the Wasserman equations [33]: male = (52.8
×weight) – 303.4, female = (28.5 −weight) + 288.1. The VO2 and VCO2 values were averaged over
the last minute of each work rate, and the results used to calculate fat oxidation over a wide range of
exercise intensities for each subject using Péronnet and Massicotte’s equation [34]: lipid (mg/min) =

1.6946 × VO2 − 1.7012 × VCO2, carbohydrate (CHO) (mg/min) = 4.585 × VCO2 − 3.2255 × VO2.
For each child, a best-fit polynomial curve was constructed for fat and CHO oxidation rate

(expressed as milligram per minute) vs. exercise intensity (expressed as a percentage of the VO2 peak).
Each individual curve was then used to determine the peak fat oxidation rate and the exercise intensity
associated with the maximal fat oxidation (MFO) rate [35].

2.6. Statistical Considerations

The sample size was determined according to (i) CONSORT 2010 statement, extension to
randomized pilot, and feasibility trials [36], and (ii) Cohen’s recommendations [37], which define
effect size (ES) bounds as small (ES: 0.2), medium (ES: 0.5), and large (ES: 0.8, “grossly perceptible and
therefore large”). With 20 participants per group, an effect size greater than 1 could be evidenced for a
two-sided type I error at 5% and a statistical power greater than 80%.

Statistical analyses were performed using Stata software (version 13, StataCorp, College Station,
USA). The tests were two-sided with a type I error set at 5%. Continuous data were expressed as
mean ± standard deviation (SD) or median (interquartile range) according to statistical distribution.
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The assumption of normality was assessed using the Shapiro–Wilk test. For non-repeated measures,
continuous variables were compared between independent groups using Student’s t-test, or the
Mann–Whitney test when the t-test assumptions were not met. Homoscedasticity was analyzed using
the Fisher–Snedecor test. The results were expressed as effect-sizes and 95% confidence intervals.
The study of relationships between continuous parameters was analyzed by estimating Pearson or
Spearman correlation coefficients (noted as r). For measurements at each scale, usual statistical tests
were inappropriate because the hypothesis of data independence was not met (several measurements
for the same subject). Random effects models for correlated data (more precisely linear mixed model)
were also used to take into account between- and within-subject variability. Scale-point evaluations,
group, and their interactions were considered as fixed effects, and subject was a random effect. The
assumption of residual normality was tested as described above. When appropriate, a logarithmic
transformation was used to obtain normality of the dependent variable and guarantee the correct use
of the above analyses. Finally, these analyses were completed by a multivariable approach to adjust
univariate results on possible confounder covariates determined according to their clinical relevance:
age, sex, Tanner stage, and body mass index (BMI) z-score. These parameters were added to the
random-effects models as fixed effects.

3. Results

3.1. Patients

The characteristics of the subjects are summarized in Table 1. Most were children cured of ALL
(18 ALL versus 2 AML). Total cumulative dose of chemotherapies is reported in Figure 1. In the
whole population, no patients had radiation therapy and two patients had hematopoietic stem cell
transplantation. There was no significant difference between our childhood leukemia survivors and
healthy children in rest metabolism (1577.9 ± 579.4 vs. 1553.5 ± 517.3 kcal.day−1, p = 0.51, Hedge’s
g = −0.04 (−0.66, 0.58)), physical activity level (1883.5 ± 1042.9 vs. 2527.7 ± 1496.2 MET-minutes/week,
p = 0.30, Hedge’s g = 0.49 (−0.14, 1.12)), and in BMI for age percentile (50.5 ± 28.9 vs. 42.3 ± 27.3
percentile, p = 0.35, Hedge’s g = −0.29 (−0.91, 0.34)). Absolute VO2 peak (mL min−1) and relative VO2

peak (VO2 peak kg−1 of body weight) were significantly lower in the childhood leukemia survivors
than in the control group (respectively 1245.4 ± 413.3 vs. 1603.2 ± 621.9 mL min−1, p = 0.003, and
29.4 ± 6.9 vs. 40.6 ± 11.3 mL.min−1 kg−1, p < 0.001). Likewise, the measured maximum heart rate
during exercise was significantly lower in the childhood leukemia survivors than in the controls
(155 ± 17 vs. 168 ± 19 beats min−1, p = 0.016).
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Table 1. Participants’ characteristics.

AL Survivors Healthy Controls p Hedge’s g

n 20 20
Sex (male/female) 10/10 10/10
Age (years) mean ± SD 12.2 ± 3.3 12.3 ± 3.4 ns
Tanner stage (I–II/III–V) 13/7 13/7
Body mass index for age percentile, mean ± SD 50.5 ± 28.9 42.3 ± 27.3 ns −0.29 (−0.91, 0.34)
BMI (kg/m2) mean ± SD 19.0 ± 3.7 17.8 ± 2.9 ns
Absolute VO2 peak (mL/min) mean ± SD 1245.4 ± 413.3 1603.2 ± 621.9 0.003
Relative VO2 peak (mL/kg/min) mean ± SD 29.4 ± 6.9 40.6 ± 11.3 <0.001
Rest metabolism (kcal/day) mean ± SD 1577.9 ± 579.4 1553.5 ± 517.3 ns −0.04 (−0.66, 0.58)
Exercise maximum heart rate (bpm) mean ± SD 155.4 ± 17.0 168.1.7 ± 19.3 0.016
Level of physical activity (MET-minutes/week) mean ± SD 1883.5 ± 1042.9 2527.7 ± 1496.2 ns 0.49 (−0.14, 1.12)
Age at diagnosis (years), mean ± SD 4.8 ± 3.4 NA
Time since end of treatment (years) mean ± SD 4.9 ± 3.5 NA

Type of acute leukemia (n) 20

NA

AL lymphoblastic 18
Leukocytosis < 50,000/mm3 + no MI 15
Leukocytosis > 50,000/mm3 + no MI 1
Leukocytosis > 50,000/mm3 +MI 2
AL myeloblastic * 2

LVEF (%) mean ± SD 69.2 ± 2.7 ND

NA: not applicable, AL: acute leukemia, MI: meningeal invasion, * AL myeloblastic: M2–M7, LVEF: left ventricular ejection fraction. ns: p > 0.05.
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Figure 1. Cumulative chemotherapy heatmap. Alkylating agents: busulfan, cyclophosphamide, melphalan, iphosphamide; thyrosine kinase inhibitor: imatinib; anti-
metabolite: cytarabine, amsacrine; topoisomerase II inhibitor: etoposide; purine antagonists: 6-thioguanine, 6-mercaptopurine; vinca-alcaloide: vindesine, vincristine; 
folate antagonist: methotrexate. 
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anti-metabolite: cytarabine, amsacrine; topoisomerase II inhibitor: etoposide; purine antagonists: 6-thioguanine, 6-mercaptopurine; vinca-alcaloide: vindesine,
vincristine; folate antagonist: methotrexate.
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3.2. Oxidation of Metabolites

The oxidation rates of fat and carbohydrates as a function of percentage of VO2 peak are shown
in Figure 2. At exercise intensities corresponding to the same percentages of VO2 peak, the rates of
carbohydrates and fat oxidation were lower in leukemia survivors (p = 0.07) (Figure 2A,B). However,
for exercise intensities corresponding to the same VO2 peak percentages, we found significantly lower
heart rate values (p = 0.02) and lower exercise power (p = 0.012) for childhood leukemia survivors
than for controls (Figure 2C,D). Heart rate versus relative VO2 peak during exercise was significantly
displaced upward and displayed a greater slope (p < 0.001), comparing childhood leukemia survivors
with healthy controls (Figure 3).
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3.3. Maximal Fat Oxidation

The maximal fat oxidation rate (MFO) was significantly different between the two groups.
For childhood leukemia survivors and controls, the respective absolute and relative MFOs were
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133.4 ± 43.4 vs. 172.1 ± 96.1 mg min−1 (p = 0.04) and 3.2 ± 1.1 vs. 4.3 ± 1.8 mg min−1 kg−1 (p = 0.014)
(Figure 4A,B).
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Between childhood leukemia survivors and controls, there was no difference in heart rate (123 ± 17
vs. 128 ± 20 beats min−1, p = 0.15, Hedge’s g = 0.25 (−0.37, 0.87)) or percentage of VO2 peak (51.1 ± 7.7
vs. 47.9 ± 15.2%, p = 0.55, Hedge’s g = −0.77 (−1.14, −0.12)) or RER (0.88 ± 0.03 vs. 0.87 ± 0.04, p = 0.09,
Hedge’s g = −0.28 (−0.90, 0.35)) to reach MFO. However, power to reach MFO was significantly lower
in leukemia survivors than in controls (27.3 ± 11.6 vs. 35.2 ± 16.2 W, p = 0.03).

4. Discussion

All the children enrolled completed the exercise test with no adverse effects (such as a cardiovascular
event, lightheadedness, or general malaise). Submaximal exercise was feasible and safe for children
surviving leukemia. In our study, the first main finding was that the carbohydrate and fat oxidation
rates, independently of exercise intensity, were lower in leukemia survivors than in healthy controls,
also with a significantly lower maximal fat oxidation. Secondly, relative and absolute VO2 peaks were
significantly lower in leukemia survivors, as were heart rate values during this submaximal exercise.
These results suggest a dysregulation of metabolic and physical fitness during exercise in leukemia
survivors, although they still adapted well to exercise, with no significant difference between the two
groups in terms of heart rate, RER, or percentage of VO2 peak to reach MFO.

VO2 peak reflects cardiovascular fitness, a determining factor in response to exercise. There were
significantly lower absolute and relative VO2 peaks in leukemia survivors, associated with significantly
lower measured maximum heart rates independently of exercise intensity in these children. This
result could reflect an impairment in cardiorespiratory fitness in these patients and could be a side
effect of treatments, especially anthracyclines. All the leukemia survivors received anthracyclines
(see Figure 1), a drug with high cardiotoxicity, known to adversely affect cardiomyocytes and modify
the function of the left ventricle, as well as the ability to perform exercise [38]. An impact on cardiac
function was probably identified with significantly lower heart rate values for exercise intensities
corresponding to the same percentage of VO2 peak in leukemia survivors than in controls. This
probable cardiotoxicity was not confirmed by echocardiography, with a normal left ventricular ejection
fraction (LVEF 69.2± 2.7) in leukemia survivors, which could be explained by the early examination and
lack of ultrasound data during the exercise. However, there is evidence that anthracycline cardiotoxicity
is dose-related and cumulative, leading to congestive heart failure or asymptomatic left ventricular
dysfunction [39]. Hence, lower VO2 peaks in leukemia survivors compared with healthy controls
could be due to chemotherapy, but also to a lower level of physical activity. In our study, we found
no significant difference in physical activity level between these two groups, either with the IPAQ
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questionnaire or the MET minutes/week calculation. Nevertheless, MET minute/week values showed
a medium effect size (1883.5 ± 1042.9 vs. 2527.7 ± 1496.2 MET minutes/week, p = 0.30, Hedge’s g = 0.49
(−0.14, 1.12)), suggesting that leukemia survivors could be less physically active overall than healthy
controls. This would be in line with studies reporting a lower level of physical activity in leukemia
survivors [40], particularly in relation to the lack of physical activity throughout the duration of their
prolonged treatments (including multiple chemotherapies and repeated hospitalizations) associated
with secondary impairment of physical fitness and an increased risk of chronic health problems [41].
In Figure 3, we can see that leukemia survivors always had heart rates higher than controls, with
a relative VO2 that was lower. This corroborated previous results, namely, a lower VO2 peak in
leukemia survivors. This VO2 peak was considered as an individual index of aerobic fitness, and this
graph could be interpreted as showing a higher fatigability when performing physical exercise, even
submaximal, which could be related to a probable impairment in cardiorespiratory and physical fitness
in these patients.

In our study, there was a significantly lower MFO in leukemia survivors, which could reflect
impaired metabolic fitness, especially because they had lower lipid oxidation rates and carbohydrate
oxidation rates (see Figure 2), irrespective of exercise intensity. Although these results point to a
probable dysfunction in metabolic abilities in these patients during a submaximal exercise, they still
adapted well to the exercise, with no significant difference between the two groups in heart rate, RER,
or percentage of VO2 peak to reach MFO. These values reflect the intensity at which maximal rates of
fat oxidation occur during exercise, also called Fatmax. MFO and Fatmax can vary independently,
especially according to interindividual variations (sex, body composition, physical activity level) [42].
In our study, this lower MFO associated with a lower power at MFO could indicate a metabolic
impairment and could be explained by a lessened oxidative capacity of muscle during exercise. Skeletal
muscle is the main site where exercise adaptation reactions occur in terms of metabolic flexibility, in
close interaction with mitochondrial signaling pathways [43]. Metabolic flexibility could therefore
be disturbed by impaired mitochondrial function in these patients, as described in the literature,
with degraded beta-oxidation [9], but could also be secondary to impaired absorption, transport, and
oxidation of energy-rich substrates in skeletal muscle. These hypotheses could explain our results and
suggest that the substrate-metabolism impairment is at the muscle level. The impact of treatments on
muscle function therefore concerns both the neuromuscular level and the level of the oxidative function.
Multiple chemotherapies can lead to dysfunctional organ systems, particularly musculoskeletal, cardiac
for anthracyclines, and pulmonary for cyclophosphamide [10] and methotrexate [44], which can also
increase the risk of a limitation of physical performance. Studies have also shown that treatment with
vincristine has repercussions on the motor neuron control activity or on the depletion of muscle motor
units, which may lead to decreased motor abilities [11], probably responsible for a weaker development
of their muscle density. Muscle changes in cancer patients include significant deficiencies and loss
of muscle mass that can lead to chronic muscle weakness [45], which seems to be related to physical
deconditioning [46]. This could also explain why exercise power, independently of intensity, was
lower for this population than for controls. This lower power would therefore seem to be related to an
impairment of muscle function, especially in terms of muscle performance, and not in terms of muscle
mass, because there was no significant difference between these two groups in the rest metabolism
(1577.9 ± 579.4 vs. 1553.5 ± 517.3 kcal day−1, p = 0.51, Hedge’s g = −0.04 (−0.66, 0.58)) and body mass
index for age percentile (50.5 ± 28.9 vs. 42.3 ± 27.3 percentile, p = 0.35, Hedge’s g = −0.29 (−0.91, 0.34)).
In addition, Lanfranconi et al. [47] reported an impairment of muscle O2 extraction ability during
exercise in leukemia survivors, probably secondary to impaired skeletal muscle oxidative function.
This limitation in oxidative muscle extraction could be explained by impaired muscle function due to
the catabolic effect of treatments, notably vincristine and corticosteroids, which may lead to a limitation
of the muscle fibers’ ability to consume O2. Hence, the skeletal muscle oxidative system could be
degraded in leukemia survivors, an effect aggravated by a low level of physical activity and sedentary
habits [48], causing impairment of metabolic fitness.
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A larger study would be useful to evaluate muscle mass and function. Data need to be extended
with body composition (absorptiometry), the metabolic status of these patients (dyslipidemia blood
test), and an exploration of their respiratory function (spirometry test). In addition, these children
performed a submaximal test, resulting in a maximum heart rate not reached in the leukemia survivors
when compared with the controls. It would also be useful to assess the patient’s perception after
performing this type of submaximal exercise to determine whether there is lower exercise tolerance in
these patients.

5. Conclusions

The present study showed an impairment in physical fitness (with lower relative and absolute VO2

peak) and also in metabolic fitness (with lower MFO and lower substrate oxidation during submaximal
exercise) in leukemia survivors, although they remained well adapted to exercise, with no difference
in exercise intensities at which MFO was achieved. In our study, the leukemia survivors were not
overweight, a common late effect in this population, and they also had lower levels of physical activity.
In the long term, there is a cumulative effect of treatment-related undesirable effects with an increase
in weight associated with insufficient physical activity that could further damage cardiorespiratory
adaptation and metabolic abilities of these patients. This could result in greater fatigability and poorer
adaptation, even for low intensity exercise. An important point is that the leukemia survivors remained
sensitive to physical activity interventions, and thus the prescription of physical activity adapted to
their cardiorespiratory and muscular fitness could allow greater tolerance to exercise and therein
improve physical and metabolic fitness. Finally, it is manifestly essential to encourage the practice of
regular exercise in this population to reduce physical and metabolic impairments and improve quality
of life by limiting long-term cancer complications.
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BMI body mass index
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IPAQ-Q International Physical Activity Questionnaire for Adolescents
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