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Abstract
The thrombotic microangiopathies (TMAs) are a group of diseases
characterised by microangiopathic haemolysis, thrombocytopenia, and
thrombus formation leading to tissue injury. Traditionally, TMAs have been
classified as either thrombotic thrombocytopenic purpura (TTP) or
haemolytic uremic syndrome (HUS) based on the clinical presentation, with
neurological involvement predominating in the former and acute kidney
injury in the latter. However, as our understanding of the pathogenesis of
these conditions has increased, it has become clear that this is an
over-simplification; there is significant overlap in the clinical presentation of
TTP and HUS, there are different forms of HUS, and TMAs can occur in
other, diverse clinical scenarios. This review will discuss recent
developments in the diagnosis of HUS, focusing on the different forms of
HUS and how to diagnose and manage these potentially life-threatening
diseases.
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Introduction
The term thrombotic microangiopathy (TMA) refers to a  
group of diseases characterised by endothelial dysfunction 
and the formation of platelet- and fibrin-rich thrombi in small 
blood vessels. As the thrombus forms, there is consumption of  
platelets and mechanical disruption of erythrocytes, which leads 
to the typical haematological manifestations of TMA, throm-
bocytopenia and microangiopathic haemolytic anaemia (schis-
tocyte [fragment] formation, raised lactate dehydrogenase, 
and reduced haptoglobin). Previously, the TMAs were classi-
fied according to their clinical presentation with neurological 
symptoms predominating in thrombotic thrombocytopenic pur-
pura (TTP) and acute kidney injury (AKI) in haemolytic ure-
mic syndrome (HUS). However, there is significant overlap in 
the clinical features of TTP and HUS and the diseases are now  
classified based on aetiology. TTP is caused by an inherited 
or acquired (inhibitory autoantibody) defect in ADAMTS13  
activity, a circulating protease responsible for the degradation 
of ultra-large von Willebrand factor multimers. In the absence 
of ADAMTS13, these multimers accumulate on the surface of 
endothelial cells, leading to the formation of platelet-rich thrombi.

The classification of HUS is more complex, as a pattern of clini-
cal disease consistent with HUS can occur in a wide range of 
clinical scenarios. Most cases (90%) occur following infection 
with a Shiga toxin-producing bacteria, either enterohaemorrhagic  
Escherichia coli (STEC) or Shigella dysenteriae, and typically 
affect children. The remaining 10% of cases have tradition-
ally been grouped together as atypical HUS. However, as our  
understanding of the pathogenesis of HUS has increased over 
the last 20 years, it has become clear that atypical HUS is not  
one but many different diseases with similar clinical features. 
A TMA with a pattern of disease consistent with HUS can 
occur because of inherited disorders, acquired disease states  
(including malignancy and autoimmune disease), in pregnancy, 
in severe hypertension, and in response to drugs. The situation  
is further complicated by the interaction between inherited  
predisposition to disease and environmental triggers. As a  
consequence, there is still no universally accepted classifica-
tion of HUS. In this review, we will, as far as possible, classify  
HUS according to its aetiology but accept that this may not  
capture the complexity of the disease pathogenesis.

HUS associated with infection
Infections are the most common cause of HUS. In addition,  
infection, for example influenza1, may act indirectly as a trigger  
for the development of a TMA in patients with a genetic  
predisposition to disease.

Shiga toxin-induced HUS
HUS associated with infection with a Shiga toxin-producing 
bacteria (usually STEC HUS) is one of the commonest causes  
of AKI in children but can occur at any age2. Although adap-
tive immune responses can be identified after exposure to enter-
opathogenic E. coli, it is unclear whether these are protective3,  
and the higher rate of infection in children may be due to more 
frequent exposure. The annual incidence of STEC HUS is  
approximately 0.7 cases per 100,000 population, with the high-
est incidence in the summer months. In Europe and North  

America, E. coli O157 is the serotype most commonly associ-
ated with HUS; however, this appears to be changing, with fewer 
cases of O157-associated HUS and increasing numbers of cases  
due to other serotypes reported in some countries4. In parts of  
Asia, S. dysenteriae type 1 infection is the most common  
precipitant.

Clinical features. Abdominal pain, diarrhoea (bloody in  
60%), and vomiting typically occur 3 days after ingestion of 
bacteria. Approximately 10% of patients exposed to bacteria  
will then develop HUS. The development of HUS is influenced 
by both pathogen- (inoculum size, pathogen strain, and type  
of toxin produced) and host-related factors (microbiome5, anti-
motility and antibiotic drug use, inflammatory response, and  
possible genetic factors6). In 5–10% of patients with STEC HUS, 
there will be no preceding history of diarrhoea, highlighting  
the importance of microbiological investigation of all patients  
with a TMA irrespective of history7.

Renal involvement is present in most cases and dialysis is 
required in 50%. Renal recovery after 1–2 weeks is usual, and  
end-stage renal disease (ESRD) after the initial presentation is 
uncommon. Neurological involvement is the most frequently 
reported extra-renal manifestation with seizures and reduced 
consciousness levels reported in up to one-third of cases8,9.  
Other sites that can be affected include the intestinal tract 
and pancreas, eyes, and heart. The mortality rate in the acute  
phase of the disease is approximately 2–5%10 in STEC HUS but 
is higher when HUS follows Shigella infection11. Long-term  
renal sequelae are common, with hypertension and chronic  
kidney disease (CKD) occurring in 25–40% of patients12,13.

Pathogenesis. Shiga toxin-producing E. coli can colonise the 
intestine of healthy animals and can enter the food chain if 
infected meat or other food products are consumed. Pathogenic  
E. coli closely associate with the gastrointestinal mucosa and 
toxin translocates through the epithelium into the circulation  
where it binds to circulating erythrocytes and leukocytes. The 
toxin, which comprises one A and five B subunits, binds to  
globotriaosylceramide (Gb3) on the surface of target cells. It 
is taken up by endocytosis and is then retrogradely transported 
to the endoplasmic reticulum14. The A subunit inhibits protein  
synthesis, disrupting cell function and ultimately leading to 
cell death. The toxin also incites an inflammatory response, the 
net effect being to establish a pro-thrombotic state within the  
microvasculature15. The concentration of cell surface Gb3 is 
particularly high in the kidney, not only on the endothelium but 
also on podocytes and the tubular epithelium. This may explain  
the susceptibility of the kidney to injury, but other factors, such 
as high renal blood flow, may also contribute. Gb3 is also  
found in other tissues, including the central nervous system,  
that are affected by STEC HUS.

Diagnosis and management. Faecal culture should be per-
formed in all patients with a TMA irrespective of whether there is  
a history of colitic illness. Diarrhoea may have settled by the 
time of presentation, but bacteria can still be isolated; therefore,  
stool or rectal swab should still be sent. PCR can be performed 
on these samples to detect the presence of Shiga toxin genes.  
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Positive serology for antibodies against toxin-producing E. coli 
serotypes is supportive of a diagnosis of STEC HUS, although  
it is not routinely used.

Currently, there is no evidence that treatments other than sup-
portive care, including dialysis and ventilator support as required,  
improve the outcome of patients with STEC HUS. Plasma-based 
therapy is no longer recommended for the treatment of STEC  
HUS and may in fact be harmful16.

The role of antibiotics is controversial and their use has tradition-
ally been avoided because of concerns that antibiotic treatment 
leads to more Shiga toxin release, increasing the likelihood and  
severity of STEC HUS17. The effect of antibiotics appears to be 
both antibiotic and E. coli strain dependent. The β lactams and 
trimethoprim/sulfamethoxazole have been reported to increase 
the risk of developing HUS17–19. Although fluoroquinolones  
increase toxin production in vitro, they do not appear to worsen 
disease. Some antibiotics, such as macrolides and fosfomycin,  
reduce toxin synthesis and may reduce the risk of HUS20,21. 
When antibiotics are required, they can be used, but the choice of  
antibiotic should be guided by their potential effect on toxin 
release. In contrast, antibiotic use in patients with HUS due to  
Shigella appears to be safe. Trials of toxin-binding resins have 
failed to show a benefit.

A role for complement in the pathogenesis, and therefore a 
rationale for anti-complement therapies, has been proposed.  
Preclinical studies in rodent models of STEC HUS have sug-
gested that complement activation is involved in disease  
development22–24; however, animal models of STEC HUS have 
limitations, and an effect of complement inhibition was not seen 
in a primate model. In patients with STEC HUS, there is evi-
dence of complement activation25 and C3 levels can be low. In  
addition, there may be some patients with STEC HUS who also 
have a defect in complement regulation, and this combina-
tion is associated with a poor prognosis26–28. These observations  
have led to the use of eculizumab, a humanised monoclonal 
antibody raised against complement protein C5, in patients  
with STEC HUS. There have been reports of patients with STEC 
HUS, particularly in the presence of severe disease, respond-
ing to eculizumab29,30. However, STEC HUS is a self-limiting  
disease and therefore these reports have to be interpreted with 
caution. The use of eculizumab following the outbreak of STEC 
HUS in central Europe due to E. coli O104 yielded conflicting  
reports, with some suggesting benefit31 and others none16. At 
present, there is insufficient evidence to support the use of  
eculizumab in patients with STEC HUS outside of a clinical  
trial32. Randomised trials in France (ECULISHU, NCT02205541) 
and the UK (ECUSTEC, ISRCTN 89553116) are investigating  
the potential benefit of eculizumab in STEC HUS and will  
provide much-needed evidence in this area.

Pneumococcal HUS
This normally affects children with severe pneumococcal  
infection, for example pneumonia or empyema, when it com-
plicates approximately 0.5% of cases33. The exact mechanism 
of TMA is unknown, but the production of neuraminidase by  

Pneumococci appears to be important, although other mecha-
nisms have been proposed34. Neuraminidase strips sialic acid 
from cell surface glycoproteins, exposing the cryptic Thomsen- 
Friedenreich (T) antigen, which is recognised by naturally occur-
ring IgM antibodies35. This leads to the activation of platelets  
and endothelium, which may be responsible for the TMA and  
also explains why these patients have a positive Coombs (DAT) 
test.

Pneumococcal pneumonia is the most common preceding infec-
tion, but TMA can develop in association with meningitis, 
empyema, sinusitis, and otitis media. Because of the underlying  
disease, children are often unwell, with 75% requiring dialysis, 
and extra-renal manifestations occur frequently36. The mortality 
rate is higher than with STEC HUS. Treatment is supportive. The  
role of plasma exchange is uncertain37, and, although a response  
to eculizumab has been reported38,39, evidence for its use is limited.

HUS occurring in association with other infections
A TMA was a relatively common complication of HIV infec-
tion (incidence 2–7%)40 but is seen less frequently following  
the introduction of highly active anti-retroviral therapy (HAART) 
(<1%)41. TMA was associated with high viral load, low CD4  
count, and opportunistic infection41 and may be due to a direct 
effect of the virus on the renal endothelium. Although there 
have been reports of a response to eculizumab, this is started in  
combination with HAART and it is therefore difficult to deter-
mine which intervention is having the major effect42. TMA has  
been associated with a range of other infections (Table 1),  
although for most whether they are a direct cause or a trigger  
for the TMA remains uncertain.

Atypical HUS
Complement-mediated atypical HUS
In the 1990s, excessive activation of complement was identi-
fied as a cause of atypical HUS43. An inherited or acquired  
defect in the control of complement activation can now be 
found in approximately 60% of cases. In addition, a role for  
complement activation has been suggested when a TMA occurs 
in specific clinical scenarios, although the contribution of com-
plement activation in these situations is less clear. In this review,  
we will consider atypical HUS occurring in the presence of 
a defined defect in complement regulation as a distinct entity  
and consider “secondary” TMAs separately.

Clinical features. Complement-mediated atypical HUS pre-
dominantly affects the kidney, but, as with other forms of HUS,  
extra-renal manifestations are also seen in approximately 20% 
of cases, neurological disease being the most common. Older 
reports suggest a poor prognosis, with up to 50–60% of patients  
dying or progressing to ESRD within 1 year of presentation.  
This is influenced by underlying genetic factors, as patients  
carrying mutations in complement Factor H have a worse  
prognosis and those with mutations in CD46 have a milder  
disease.

Pathogenesis. The complement system is a complex network  
of over 40 proteins that constitutes a major part of the innate 
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Table 1. Infections associated with the development of a thrombotic 
microangiopathy.

Shiga toxin-associated diarrhoeal illnesses

Escherichia coli O157:H7, O26, O80, O91, O103, O104, O111, O121, 
O145 

Shigella dysenteriae type 1

Non-Shiga toxin-associated diarrhoeal illnesses

Norovirus 
Clostridium difficile 

Campylobacter upsaliensis

Respiratory tract infections

Streptococcus pneumoniae 

Haemophilus influenzae 

Bordetella pertussis

Other bacterial infections

Fusobacterium necrophorum

Viral infections

HIV 

Cytomegalovirus 

Epstein Barr virus 

Varicella zoster 

Influenza 

Hepatitis A 

Hepatitis C 

Coxsackie B 

Dengue virus 

Human herpes virus 6 

Parvovirus B19

Parasitic infections

Plasmodium falciparum

immune system and contributes to the control of the adaptive 
immune response. Complement is activated through three dis-
tinct pathways (Figure 1). The classical pathway is initiated  
when C1q binds immunoglobulin (IgG and IgM) or other non-
immunoglobulin moieties. The lectin pathway is activated  
when pathogen-associated carbohydrates are recognised by 
mannose-binding lectin, ficolins, or collectins. The alternative 
pathway exists in a continuous state of low-level activation in 
order to respond rapidly to infection but also has an important  
role in the amplification of the classical and lectin pathways. All 
pathways converge with proteolytic cleavage of C3, producing  
C3a and C3b and initiating the terminal complement pathway. 
This leads to the generation of C5a and assembly of the membrane  
attack complex, C5b-9, two of the main effectors of  
complement function. The potential for complement amplification 
means that tight control is essential to prevent excessive activa-
tion, and this is provided by a series of soluble and membrane- 
bound inhibitors.

Complement Factor H (CFH) is a fluid-phase complement inhibi-
tor with both decay-accelerating and cofactor activity. Inherited  
defects in Factor H function were the first complement  

abnormalities associated with atypical HUS43. The gene for 
CFH exists in a gene cluster (Regulators of Complement Activa-
tion cluster) along with five highly homologous genes encoding  
the Factor H-related proteins (CFHR1–5). It is now known that 
mutations, deletions, and genomic rearrangements are common 
in this region and variants in CFH are the most common disease- 
causing variants (20–30%)44–46. Mutations in the serine protease 
Factor I (5–10% of cases)47,48 and Membrane Cofactor Protein  
(MCP, CD46, 10% of cases)49,50 are also associated with disease. 
In addition, an acquired defect in complement control due to  
autoantibodies against Factor H, usually associated with homozy-
gotic deletion of CFHR1–3, can also cause atypical HUS51,52, as 
can gain-of-function mutations in proteins involved in the acti-
vation of complement, including variants in C3 (5% of cases)53 
and rarely Factor B54. Distinguishing disease-causing mutations 
from variants of uncertain significance or benign polymorphisms 
is complex and requires the combination of expert knowledge 
and application of international standards55. Not all patients who  
carry a mutation develop disease, perhaps 50–60%, with commonly 
occurring genetic polymorphisms in CFH and CD4656 modifying  
this risk and an environmental trigger required to precipitate  
disease.
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Figure 1. Activation of the complement cascade. DAF, decay accelerating factor.

Diagnosis and management. Diagnosis is primarily clinical 
and based on the exclusion of other possible causes of TMA,  
particularly TTP and STEC infection. C3 can be low in this patient 
group, but a normal C3 level does not exclude complement- 
mediated atypical HUS. Genetic screening, assessment for 
the presence of autoantibodies, and neutrophil surface CD46 lev-
els should be performed in all patients. However, these results,  
particularly genetic analysis, are not immediately available 
and therefore do not guide initial diagnosis and early treatment 
choices.

Plasma exchange was the standard treatment and is still  
first line until TTP has been excluded (preserved ADAMTS13 
activity). Once TTP has been excluded, eculizumab is cur-
rently the optimal treatment, but because of its high price this is  
not available in all countries and plasma exchange is still used.  
Eculizumab is a highly effective treatment for complement- 
mediated atypical HUS, establishing remission in >85% of  
cases57 with a significant improvement in renal outcomes58. 
The current licence for eculizumab recommends continued  
treatment because of the risk of relapse. However, several series 
have now reported withdrawal of eculizumab in patients with  
complement-mediated disease, with the risk of relapse par-
ticularly low in those patients without a mutation59–61. There is  
a risk of relapse, particularly in patients with Factor H muta-
tions, but re-introduction of eculizumab rapidly re-establishes  
remission. The use of complement inhibition to induce remission 
and intermittently treat relapse may be a future strategy to man-
age disease that would reduce the treatment burden, cost, and  
infection risk associated with continuous treatment. As the 
liver is the main site of complement protein synthesis (with the  
exception of CD46), liver transplantation has been proposed 

as a cure for genetic causes of complement-mediated atypical  
HUS, particularly in those patients who also require a kidney  
transplant62. With the availability of eculizumab, this option is  
used less frequently.

For patients with complement-mediated atypical HUS who  
develop ESRD, there is high risk (80–90%) of recurrent dis-
ease following transplantation63,64. This is true for all genetic and  
acquired causes of aHUS with the exception of patients  
who have a mutation in CD46, which, because it is expressed 
on the renal transplant endothelium, has normal function in the  
transplant kidney. Disease can recur in patients in whom  
no defect in complement regulation is found, although the 
risk is lower (30%)65. Recurrence usually occurs early (within  
3–6 months) and is associated with a high risk of graft loss64.  
With the availability of eculizumab, patients can now be  
successfully transplanted, with options to use eculizumab to  
treat disease recurrence or prophylactically to prevent recurrence66.

Other inherited disorders associated with atypical HUS
Homozygous or compound heterozygous mutations in dia-
cylglycerol kinase ε can lead to atypical HUS67. The mecha-
nism by which this lipid kinase leads to a TMA is unknown, but  
a number of possible mechanisms have been suggested, includ-
ing release of pro-thrombotic factors, platelet activation, and  
changes in vascular tone. Patients usually present in child-
hood, significant proteinuria is common, there may be histologi-
cal features of membranoproliferative glomerulonephritis68, and 
the disease may follow a relapsing–remitting course69. Patients  
commonly progress to CKD and ESRD, at which stage trans-
plant is an option, as disease recurrence has not been reported69.  
There is no effective treatment and, as complement is not  
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involved in disease development70, eculizumab does not control  
disease67,69.

Methylmalonic aciduria and homocystinuria type C protein 
is involved in the metabolism of vitamin B12 (cobalamin).  
Homozygotic or compound heterozygotic mutations in the 
gene encoding this protein, MMACHC (cobalamin C [cblC] 
defect), causes an atypical HUS-like disease71 in addition to a  
wide range of other clinical features including neurological, car-
diac, and pulmonary abnormalities (particularly pulmonary 
hypertension)72. Biochemically, patients have elevated plasma 
homocysteine, low methionine, and methylmalonic aciduria. 
Biochemical and genetic analysis is vital in patients presenting  
with a TMA, particularly if there are other clinical abnormali-
ties. Patients usually present in childhood, and without treatment 
the prognosis is poor, with a 100% mortality reported without  
treatment72. Patients respond to treatment with hydroxocobala-
min (B12) and betaine, and treatment can be initiated before the  
results of biochemical and genetic analyses are available73.  
Complement is unlikely to have a role in this disease, and  
experience suggests that eculizumab is ineffective74.

Genetic variants in thrombomodulin (THBD) have been reported 
in patients with atypical HUS75. Thrombomodulin is part of the 
coagulation pathway and enhances thrombus formation. It may  
also activate complement and possibly links these two path-
ways. New genes associated with atypical HUS are being identi-
fied, for example INF276, which may provide insights into the  
pathophysiology of TMA as well as explain the disease in  
some patients in whom no complement defect is identified.

Atypical HUS occurring in specific clinical scenarios
A TMA can develop in a range of different scenarios and,  
whilst in some cases, as in pregnancy-associated TMA, patients 
may have a defect in complement regulation, in most cases  
no abnormality will be found77.

Pregnancy-associated TMA
There are a number of causes of a TMA either during pregnancy 
or in the post-partum period, including pre-eclampsia, HELLP 
syndrome, TTP, and atypical HUS. Differentiating among these 
can be difficult and is reviewed elsewhere78. Approximately  
20% of cases of atypical HUS occur in association with preg-
nancy, and these most commonly occur in the post-partum period79.  
A significant proportion of women developing atypical HUS in 
association with pregnancy have a genetic defect in a comple-
ment regulator, suggesting pregnancy is the trigger for disease  
in women with a genetic predisposition79,80. These observa-
tions have led to the use of eculizumab in pregnancy-associated  
HUS with reports of good outcomes81, although no trial data  
are available.

TMA associated with severe hypertension
Severe hypertension causing a TMA and atypical HUS due 
to an inherited defect in complement regulation can present  
with identical clinical features. Pre-existing hypertension, par-
ticularly if poorly controlled, and other features of hyperten-
sive end organ damage make a secondary TMA more likely.  
However, if there is no improvement in laboratory parameters  

with control of blood pressure, treatment with eculizumab 
should be considered at least until genetic analysis is available.  
This strategy avoids missing patients with a defect in comple-
ment regulation rather than suggesting that hypertension-mediated  
TMA will respond to complement inhibition82.

Drug-related TMA
The development of a TMA has been reported in association  
with the use of a range of drugs including those used in the  
treatment of cancer83, immunomodulators, and anti-platelet 
drugs (Table 2). For some drugs, this appears to be a direct effect  

Table 2. Drugs implicated in the development 
of a thrombotic microangiopathy.

Chemotherapy drugs

Cisplatin 

Mitomycin 

Gemcitabine 

Vincristine 

Oxaliplatin 

Pentostatin

Anti-platelet drugs

Clopidogrel 

Ticlopidine

Vascular endothelial growth factor inhibitors

Bevacizumab 

Ramucirumab 

Aflibercept

Immunosuppressive drugs

Ciclosporin 

Tacrolimus 

Sirolimus 

Everolimus 

Alemtuzumab (Campath) 

Muromonab-CD3

Interferons

Interferon-α 

Interferon-β
Tyrosine kinase inhibitors

Sunitinib 

Sorafenib 

Cediranib

Antibiotics

Penicillin 

Ciprofloxacin 

Sulfisoxazole

Illicit drugs

Cocaine 

Heroin 

Ecstasy

Miscellaneous drugs

Oral contraceptive pill 

Quetiapine
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on the endothelium, as is the case for interferon-β84 and  
bevacizumab85, whilst in the case of quinine the TMA is due  
to the development of autoantibodies against platelet glycopro-
teins. The TMA induced by clopidogrel86 and ticlopidine87 leads to 
the production of antibodies against ADAMTS13 and a TTP-like  
disease that responds to plasma exchange. In most cases,  
the exact mechanism of TMA development is unknown and  
management is supportive with withdrawal of the causative drug.

Malignancy-related TMA
TMAs can occur in a wide range of malignancies includ-
ing stomach, breast, and bowel cancer and haematological  
malignancy88. The exact mechanism of disease is unknown, 
but microvascular metastases may initiate the TMA. In some 
patients, it may be difficult to differentiate between a TMA caused  
by the malignancy or due to the chemotherapy used in its  
treatment.

Post bone marrow transplant TMA
The development of a TMA has been reported in 10–40% of 
patients following allogeneic bone marrow transplantation. There 
are several factors that could contribute to this, including the  
graft-versus-host response, calcineurin inhibitors, chemo-
therapy, and infection. Defects in complement regulation have 
also been reported89, and there is evidence for complement  
activation (increased soluble C5b-9) in some cases. These obser-
vations have led to the use of eculizumab in this situation90,91,  
although evidence that this should be part of the management  
of this condition is still lacking.

TMA following solid organ transplantation
A TMA can occur after any solid organ transplant, most fre-
quently kidney transplantation, and is due to a number of  
factors including calcineurin inhibitor toxicity, ischaemia reper-
fusion injury, antibody-mediated rejection, and infection. Com-
plement mutations have been reported, in up to 30% from one  
series92, possibly due to recurrence of previously undiagnosed 
atypical HUS. Complement inhibition should be considered,  
particularly if there is uncertainty about primary diagnosis or 
the TMA does not resolve with measures such as calcineurin  
inhibitor withdrawal.

TMA occurring in patients with autoimmune disease
The presence of a TMA has been reported in association with a 
range of primary glomerular diseases, for example, IgA neph-
ropathy, ANCA-associated vasculitis, and FSGS. Patients  
with C3 glomerulopathy, a disease also characterised by com-
plement dysregulation, may also develop a TMA93. A TMA  
can also develop in lupus nephritis and in patients with antiphos-
pholipid syndrome (APS), particularly catastrophic APS.  
Complement is activated in both of these diseases and a role 
for eculizumab has been reported94, but evidence from clinical  
trials is not available. A TMA can also be seen in patients with 
scleroderma renal crisis.

Concluding remarks
HUS can develop in response to a number of different triggers  
and in a variety of clinical situations. Identifying the cause of 
HUS can be difficult but is critical, as the treatment and  
prognosis is dependent on accurate and timely diagnosis.
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