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Abstract

Background

Intestinal microbiota plays an important role in the human health. It is involved in the diges-

tion and protects the host against external pathogens. Examination of the intestinal micro-

biome interactions is required for understanding of the community influence on host health.

Studies of the microbiome can provide insight on methods of improving health, including

specific clinical procedures for individual microbial community composition modification and

microbiota correction by colonizing with new bacterial species or dietary changes.

Methodology/Principal Findings

In this work we report an agent-based model of interactions between two bacterial species

and between species and the gut. The model is based on reactions describing bacterial fer-

mentation of polysaccharides to acetate and propionate and fermentation of acetate to buty-

rate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability

of the system. System recovery after antibiotic treatment was analyzed as dependence on

quantity of feedback interactions inside the community, therapy duration and amount of anti-

biotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The

ability to mutate was considered to be a stochastic process, under this suggestion ratio of

sensitive to resistant bacteria was calculated during antibiotic therapy and recovery.

Conclusion/Significance

The model confirms a hypothesis of feedbacks mechanisms necessity for providing func-

tionality and stability of the system after disturbance. High fraction of bacterial community

was shown to mutate during antibiotic treatment, though sensitive strains could become

dominating after recovery. The recovery of sensitive strains is explained by fitness cost of

the resistance. The model demonstrates not only quantitative dynamics of bacterial spe-

cies, but also gives an ability to observe the emergent spatial structure and its alteration,

depending on various feedback mechanisms. Visual version of the model shows that spatial
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structure is a key factor, which helps bacteria to survive and to adapt to changed environ-

mental conditions.

Introduction
The gut microbiota is a complex system of various microorganisms, e.g. bacteria, archaea,
viruses, which interact to each other and the host. About 100 trillion microbial cells inhabit our
gut, altogether they encode numerous unique enzymes needed for digestion (eupepsy) [1]. The
majority of microbes in a gut are innocuous or beneficial for the host [2]. Intestinal microbiota
protects the host against enteropathogenic microorganism colonization, produces additional
nutrients and promotes normal functionality of immune system [3]. Imbalance of gut micro-
biota is associated with many diseases, such as obesity [4], malnutrition [5], inflammatory
bowel diseases (including Chron's disease, Ulcerative colitis) [6] and colon cancer [7].

There are many studies focused on the investigation of the composition and function of the
gut microbiota [8–9]. Most of them suggest some interactions between some of the microbiota
members [10–11] and their impact on the host [12]. Bacteria communication with the host
through secreted metabolites via variety mechanisms, which include interactions with epithe-
lial-cell and receptor-mediated signaling [13]. As you can see, studies propose a lot of hypothe-
sis about interactions, however it will take long before all types of interactions will be
deciphered.

Various types of microorganisms do not exist independently in the microbial community,
but rather form a complex ecological interaction network [14–15]. Interactions between species
from ecological network can be positive (+), negative (-) or neutral (0) for the community
members [16]. Pairwise relationship are divided into following groups: mutualism (+,+), com-
mensalism (0,+), parasitiam (+,-) and amenalism (0,-) [17]. For example in mutualism, bacte-
ria from different taxonomic groups can interact with each other to create biofilm, which
protects them against antibiotics [18]. Another example is cross-feeding [19], when two species
reciprocate metabolites. Recently it was shown that certain assembly rules are present and part-
ners and excluders of certain species exhibit distinct metabolic interaction levels [20]. Detec-
tion and study of such interaction types in microbial ecosystems is a subject of current
scientific interest [21–22].

Computer modeling is frequently used for testing scientific hypothesis on interactions
between agents [23–24]. It provides a basis for formal testing, evaluation and comparison of
what is currently known about the experimental system. Such models can help to predict the
outcome of the overall changes and the effect of disturbances. Studies in the real world are lim-
ited by features of the devices, to date we can not observe spatial distributions in vivo, whereas
computer models allow to test any hypothesis based on known facts. Theoretical computer
models are used to hypothesize and test major principles and to visualize the processes, which
are impossible to observe.

Some of the most popular models for complex systems are differential equations based and
agent-based models. Differential equations based models are defined by ordinary differential
equations (ODE) and often used in theoretical modeling focused on studying interactions
between bacteria [25–26]. Agent-based modeling approach (ABM) describes dynamic systems
consisting of objects that interact with each other according to specified algorithm [27–28].
The advantage of ABM is that it takes into account each agent separately and models could be
made without much knowledge of the system, rules of the behaviour for agents could be intro-
duced with a high degree of confidence in intrinsic structure of the system [28]. ABM allows a
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real-time simulation of the system behavior caused by internal mechanisms, such as feedback
regulation. Thus, agent-based model is a promising tool to study complexity of systems and
test hypothesis on importance of agent properties. Dynamic modeling was originally used in
sociology science, recently it was shown to describe the complexity of biological systems [29],
and applied in studies of microbial community consisting of several species [30–32].

We have constructed a simplified model of intestinal microbiota using an ABM approach.
The model describes host-bacterial interactions and agents are presented by: two bacterial spe-
cies, metabolites and a gut. A bacterial interaction scheme in presented model was based on
short-chained fatty acids (SCFAs) metabolism as key controlling process. Levels of SCFAs in
the gut are implicitly associated with obesity and overweigh [33]. The hypothesis about role of
SCFA concentration still needs in-depth studies and computer model gives an additional
opportunity to investigate this questions. The main source of SCFAs is carbohydrate, and
mammalian genomes do not encode most of the enzymes required for the degradation of struc-
tural polysaccharides presented in the plant tissues [34]. Instead, there is a complex interdepen-
dent system of interactions between the host and the symbiotic intestinal microorganisms, this
system allows to produce energy from rich sources such as polysaccharides. It is known that
carbohydrate content of the diet has a strong effect on microbiota composition and activity of
microbial communities [35]. Many bacterial species are involved in SCFAs metabolism, we
used a scheme belong to Bacteroidetes and Firmicutes, which are the dominant bacterial spe-
cies in adult human intestine [36] and also Firmicutes/Bacteroidetes ratio is indicator of the
development of obesity and overweight [37].

First step was to produce a stable system. Real biological self-regulating systems include
feedbacks as necessary mechanisms for stability and flexibility [38–39]. We have constructed
the system without feed-backs and after showing its instability started to add known feed backs
to observe resilience. Understanding the role and the functions of feedbacks is one of the cen-
tral questions in systems biology research at any level as even basic feedback patterns can pro-
duce non-linear effects [40]. We have been interested in minimal number of interactions,
which can create a stable system. We included different variants of feedbacks in our model.
The most common example of feedback mechanism is a toxin-antitoxin system. Bacteria pro-
duce toxins (bacteriocins) to suppress competitive species, while the toxin producer itself pro-
duces antitoxins [41–42]. Loss or expression inhibition of the gene encoding antitoxin leads to
death of the producing bacteria. Maintenance of bacterial species balance without the toxin-
antitoxin systems can be reached by other bacteria, which use the toxic substance as nutrient.
Gut controls the number of strains through production of toxins against some bacteria and
nutrients for the other ones as response to metabolites concentrations [43] Our model shows
that discussed feedback mechanisms increase the stability of the system and lead to steady state
at certain parameters.

While it was possible to construct a stable system based on feedbacks, it was even more chal-
lenging to to study how this system woul respond to perturbation. It is known that such self-
regulating systems are resilient to external influence, which can be random, periodic or pro-
grammed (like pregnancy [44] or hibernation [45]). In biological systems perturbation facili-
tates selection, and the fittest species survive. Antibiotics treatment is the most frequent cause
of gut microbial community change [46] and hypothetically one of the major factors, that can
lead to diseases like dysbacteriosis, allergy and inflammatory bowel disease [47–49]. The main
cause of diseases is thought to be alterations of human-microbial co-metabolism, when the
microbial composition is altered [50–51].

Next issue we studied was recovery after antibiotics treatment. Microbiota composition may
dramatically change after antibiotic treatment course and pass into another steady state or
return to the previous [48]. Each bacterial strain has its own recovery dynamics, as they
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differently response to perturbation. Some strains may become extinct, and the new steady
state may be more appropriate for pathogenic strains, like C. difficile [52]. A better understand-
ing of the mechanisms will allow to avoid potentially adverse effects of the antibiotic treatment
for the microbiota and the host as well. The time recovery dynamics is also dependent on type
of antibiotic treatment [53]. We observed different recovery time of the system after “antibiotic
treatment course” and studied its dependence on interaction between species, number of feed-
backs and periods of antibiotic gavage.

The problems of antibiotic treatment also includes the emergence of resistant bacterial
strains [54]. The presence of antibiotic-resistant strains complicates further antibiotic treat-
ments [55] and makes them ineffective. Bacteria possess a number of mechanisms of defending
against antimicrobial drugs. Bacteria adapt to new environment during antibiotic treatment
and mutate, thus obtaining resistance. Mutations in bacteria are presented by both single
nucleotide polymorphism (SNP) and horizontal gene transfer (HGT). SNP and HGT rates and
ratios are species specific and in general it is unknown which mechanism dominates [56]. In
this study we didn't take into account how exactly bacteria became resistant and set mutation
rate as probability function of drug concentration. We also introduced “fitness-cost” for resis-
tance acquisition. Depending on mutation probability different outputs were obtained: domi-
nation of sensitive or resistant strains, oscillations or steady ratios. Presence and absence of
resistant strains after antibiotic treatment in particular are defined by social interactions
between sensitive and resistance strains [57]. Our model demonstrates how segregation of
strains can influence on rates of sensitive and resistant bacteria.

Finally we discuss some valuable implications of the model to the real world data and argue
that such model are good opportunity to study the mechanisms of processes. We believe that
presented thorough description of the model construction would be valuable for research
community.

Results and Discussion

Model structure and parameters
Development of the dynamic model for agent based modeling (ABM) has two stages. The first
stage is a network definition. This step includes choosing objects and specifying interactions
between them. The second stage is describing model dynamics.

In the current study bacteria and metabolites were chosen as objects. In the network (Fig 1)
hubs correspond to chosen biological objects and edges illustrate relationship between them.
Model of the community consists of two bacterial species, which compete with each other for
nutrients and space. Topology selection of co-metabolism is a key factor determining interac-
tions in the network, influencing the bacterial behavior in the model [58]. Basic scheme of
polysaccharides metabolism was chosen (Fig 1). The scheme reflects nutrition intake of Firmi-
cutes (corresponds to type 1) and Bacteroidetes (corresponds to type 2), which are the domi-
nant species in adult human microbiota. The analogous scheme was used in research of model
microbiota consisting of these two phyla10. In the same study kinetic equations corresponding
the scheme were provided, which made possible to calculate reaction velocity and Michaelis
constants (Table 1). Parameters of the model were selected to correspond to current physiolog-
ical and biochemical concepts, however it is possible that some of them may contradict to real
world object. We argue that this shall not influence the validity of the model and its applicabil-
ity to modeling of processes in the gut, as we manage to demonstrate several effects observed
according to real world data: such as bistability and biofilm formation.

Interactions described in the scheme were used to develop a dynamic model of microbial
community. In the model the following main classes were created: bacteria (type 1, type 2),
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nutritional metabolites (polysaccharides, acetate, propionate, butyrate), toxins and an immobi-
lized object gut (object container). Each member of any class is the "agent" and has its own
behavior pattern. Agents of class Bacteria, are active and have an ability to choose next action.
Agents of class Metabolite are passive, move along the gut and, in the end, are excreted or
absorbed by gut wall. The gut interacts with active agents by excreting metabolites (toxins and
polysaccharides) thus controlling their abundance and directly influences the metabolites’ flux.

Life cycle and development of bacteria in the gut is affected by many parameters of the envi-
ronment, including microbiota composition. In the model bacterium behavior depends on sub-
stances conversion reaction rate constants, the rate of nutrients uptake by intestine, the rate of
metabolites flux, and the amount of given objects (metabolites and bacteria). Also, bacteria are
characterized by a set of parameters, which define their movement and survival (Table 1).

A scheme describing behavior of the bacteria was developed. Bacteria searches for food,
moves, converts substrate into appropriate metabolites, divides and dies. Action of the bacte-
rium at the next moment is determined by its current state, local environment and random
processes. Each action requires certain amount of time (Fig 2, shown as ticks), and all actions
are performed sequentially.

Fig 1. Flow chart of SCFAmetabolism by bacterial species. Solid lines are links between metabholites and producers/consumers, dashed lines show
transformation of metabolites.

doi:10.1371/journal.pone.0148386.g001
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Basic behavior of the model
The system containing bacteria, metabolites and gut was created. The constructed model
shows development of the system in the course of time. At initial moment starting conditions
(number and coordinates) are set for all object types (bacteria, metabolites). Every bacterium
begins the cycle from one of the states in lifecycle, i.e. they can be producing metabolites,
searching nutrients, dividing or dying.

The initial parameters are described in Table 1, parameters are chosen to fit biologically
meaningful ranges and nutrition scheme (Fig 1).

In the basic version of the model combination of initial parameters and behavior rules did
not lead to finding the "steady state" of the system. System was set to run multiple times with
various intial conditions. Here by "steady state" we mean a state of the system, characterized by
maintaining constant and not zero average number of bacterial agents of each type over the
prolonged course of time. The initial set up of the model does not have regulating mechanisms,
so it can not support balance in the system. Therefore this step became a validation of correct-
ness of the model.

Table 1. Set of external parameters describing model.

Constant Value Description

Bacterial type
1

Bacterial type
2

k Ps ! Acetate 0.16 0.16 reaction rate constants of the conversion of polysaccharides to acetate (mmol/hour)

k PsGut ! Acetate k Ps ! Acetate 0.0 reaction rate constants of the conversion of polysaccharides produced by gut to acetate (mmol/
hour)

k Ps ! Propionate 0.0 0.26 reaction rate constants of the conversion of polysaccharides to propionate (mmol/hour)

k Acetate ! Butyrate 0.31 0.0 reaction rate constants of the conversion of acetate to butyrate (mmol/hour)

k Toxin1 * * reaction rate constants of theconversion of substrate (depend on interaction network) to toxin of
type 1 (mmol/hour)

k Antitoxin1 * * reaction rate constants of the toxin type 1 degradation (mmol/hour)

k Antitoxin2 * * reaction rate constant of the toxin type 2 degradation (mmol/hour)

Sensitive Toxin1 0–4 * 0–4 * Sensitivity to toxin of type 1 **

Sensitive Toxin2 0–4 * 0–4 * Sensitivity to toxin of type 2 **

Sensitive Antibiotic 0–4 * 0–4 * Sensitivity to antibiotic **

k gut_out 0.02 clearance rate constant (1/hour)

k Intake 40 reaction rate constant of the polysaccharides intake (mmol/hour)

k ps_mucus 1 reaction rate constant of host polysaccharides production (mmol/hour)

k transMCT 8.3 reaction rate constant of substrate binding with MCT (mmol/hour)

R 3500 radius of “food” search (mkm)

Speed 7000 bacterial speed (mkm/hours)

EatPeriod 8 food intake time lapse (hours)

Eat_range Random(n*EatPeriod) possible bacteria lifetime without nutrients (hours); random number from range (n*EatPeriod),
where n > 0

Bacteria_1_count 400 initial number of bacteria type 1

Bacteria_2_count 400 initial number of bacteria type 2

Ps_count 1200 initial number of polysaccharides

Acetate_count 200 initial number of acetate

Propionate_count 200 initial number of propionate

Butyrate_count 200 initial number of butyrate

*—value of variable depends on chosen interaction network

**—lethal dose of substrate for bacteria.

doi:10.1371/journal.pone.0148386.t001
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It is well known that feedbacks are required mechanisms for self-regulating systems. The
feedbacks provide the systems’ sensitivity to signals (noise filtering), optimal performance
(use of resources), stability/multistability and resistance to environmental changes. Driven
by the presence/absence of feedbacks and their types, positive or negative, different types of
interactions emerge in the system: mutualism, commensalism, competition, amensalism and
parasitism [59–60]. The basic model contains links leading to competition (use of only one
substrate—polysaccharides) and exploitation (type 2 bacteria consume the waste products of
the bacteria type 1—acetate).

Following modification of the initial system have been considered (bellow we define “feed-
back” as “FB”):

Fig 2. Flow chart of bacterial behavior algorithm.

doi:10.1371/journal.pone.0148386.g002
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1. Bacterial interactions:

a. FB1: Bacteria of type 2 produce toxins which lead to bacteria type 2 death later on, bacte-
ria of type 1 consume these toxins (Fig 3A) therefore detoxifying media. Toxicity level of
produced substrate and degree of cross-feeding dependency has a strong impact on the
system behavior.

b. FB2: Bacteria of type 2 produces toxins inhibiting growth of type 1, thus controlling its
abundance, i.e. if bacteria of type 1 is dominant, type 2 produces toxins (Fig 3B). These
two bacterial types are segregated in the gut, because location near toxin is not favorable
for sensitive bacteria.

2. Abundance of bacterial colony is regulated by toxins/nutrient production of the gut mucus
as response to absorption of SCFAs (Propionate, Butyrate), bacterial abundance or total
SCFA concentration in the gut:

a. FB3: Toxins are of the same type as in the toxin-antitoxin system. The amount of pro-
duced toxins corresponds to a difference between abundances of two bacterial types
(Fig 3C).

b. FB4: Toxins are of the same type as in the toxin-antitoxin system. The amount of the
produced toxins depends on difference of SCFA concentrations. This type of feedback
increases response time of the system to the bacterial abundance variation compared to
FB3.

c. FB5, FB6: Gut produces toxins of a different type, which are harmful to one bacterial
type. Amount of toxins corresponds to number (concentration) of absorbed SCFA pro-
duced by this bacterial type: that is propionate for bacteria of type 1, butyrate for bacteria
of type 2 (Fig 3D).

d. FB7: Gut produces polysaccharides degraded only by bacterial type 1, depending on
butyrate concentration (Fig 3E). There is no point to examine production of polysaccha-
rides for bacteria type 2, because they already have more nutrient sources.

Fig 3. Feedbacks’mechanisms. (A) Toxin-antitoxin system: bacterium produces toxins, which are harmful to itself and digestible to the other bacterial type.
(B) Bacteria of one type control abundance of the other bacterial type. (A) and (B) situations have been also examined in inversed edge directions. (C) Gut
produces toxins, which are harmful to one bacterial type and digestible to the other one (toxin’s type is the same as in A case). (D) Gut controls abundance of
bacterial species by producing toxins against one bacterial type (1 or 2). (E) Gut produces digestible substrates for bacteria of type 2.

doi:10.1371/journal.pone.0148386.g003
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Further systems containing single feedbacks from the above list were constructed. The gen-
eral behavior of the system is determined not only by the presence of specific communication
mechanisms, but also by sensitivity and by the time it takes system to respond. We observe fol-
lowing dependencies:

• The average number of bacteria depends on reaction constants

• The period and amplitude of the oscillations depend on the sensitivity of feedbacks.

The model parameters were selected for the model in the following way:

1. The dominant links remained to be from SCFA metabolism pathway

2. All the other links (feedbacks) could cause a noticeable change in the quantitative dynamics
of bacteria.

Each feedback type is defined by set of parameters: reaction constant or threshold of sensi-
tivity (Methods). The program was run 3 times for each feedback type for each hypothetical
value, in total 210 times. Using above described criterion parameters for each additional mech-
anism were chosen. We have also taken into account the average number of bacteria and period
and amplitude of oscillation. These three parameters do not influence general trends in the sys-
tem behavior however alter the calculation time. Chosen parameters presented in S1 Table.

The results of the experiments with feedbacks were compared with those of basic model and
classified according to their impact on the system (Table 2). In the basic model bacteria of type
2 are dominant, because they have more energy sources (acetate and polysaccharides), and as a
consequence, a higher division rate. In order to stabilize the system the feedbacks should pro-
mote growth of bacteria type 1 and restrict that of the type 2. Onwards only those variants of
feedbacks were considered which stabilized the system. Additionally systems containing all
possible combinations of 2 and 3 stabilizing feedbacks were studied.

During the system behavior research, for each combination the model was run 588 times
(14�14�43): three replicates for each set of initial quantities of bacteria (from 200 to 3000 with
increment of 200). The overall number of tests was 16464, which took around 24 hours of com-
putation on a 6 node cluster. The system with a single feedback can have only one stable state.
When the system has multiple feedbacks, their combination may lead to the existence of two
stable states (S2 Table). For example, we observe one stable state of the system taking into
account FB1 only (Fig 4A), while the combination of FB1 and FB7 results in two stable states
(Fig 4B). In order to understand this bistability dependence of the steady state on initial bacte-
rial quantity was analyzed, but no relationship was found (S1 Fig).

Interestingly, visualized version of the model showed that feedbacks also affect the spatial
distribution of bacteria. For example, addition of mutualistic bacterial interactions leads to a

Table 2. Feedbacks classification.

Feedback type Impact on: Interactions Stability

Bacteria of type 1 Bacteria of type 2

FB1 + + mutualism yes

FB2 - + parasitism no

FB3 + 0 commensalism yes

FB4 + 0 commensalism yes

FB5 - 0 amenalism no

FB6 + - parasitism yes

FB7 + - parasitism yes

doi:10.1371/journal.pone.0148386.t002
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strong mixing of the two species (Fig 4C). In case of bacteria feeding from the gut–the separa-
tion of bacterial layers is observed (Fig 4D and 4E). To estimate the ratio of bacterial mixing
rate we used segregation index (see Methods). It was calculated for each case in different parts
of the gut (mucin layer, gut lumen). The presence of two stable states of the system is also asso-
ciated with the degree of intermixing of bacteria within the virtual intestine. We discovered
that two steady states are observed if there are several FB mechanisms in the model with differ-
ent effects on the spatial distribution of bacteria. Two spatial configurations in the model are
separation of the bacterial layers and intermixing, the most pronounced bistability (i.e. separa-
tion of the two stable states) is observed in the combination of toxin-antitoxin system (FB1)
and intestinal production of polysaccharides (FB7), consumed by only bacterial type 1. FB1
supports intermixing and FB7 supports segregation. If intermixing dominates (Fig 4D), then
the average number of bacteria is higher than in case of separation (Fig 4E). The state of inter-
mixing promotes active metabolic exchange and the number of bacteria increases, while sepa-
ration leads to overall decline in metabolism and therefore the number of bacteria falls.

In general, the force of FB mechanisms determines distance between peaks of stable states.
The program was run several times with same initial parameters (numbers of bacteria and
feedback parameters) and different results were acquired. The basic spatial distribution of bac-
teria at initial time is random and we suggest that the final system state depends on initial spa-
tial distribution of bacteria.

Perturbation: antibiotic treatment
Antibiotics are one of the most powerful agents of perturbations in gut microbial ecology to
date [61]. An effect of the antibiotic therapy on the model was examined. Several variants of
antibiotic treatment were analyzed: 1 or 3 times a day gavage, for period 3, 5, 10 and 30 days.

Fig 4. System stability. (A) Multiple simulations with different initial bacteria numbers (axis 1—number of bacterial type 1, axis 2—number of bacterial type
2, axis 3—frequency of position). Basic schema with toxin-antitoxin systems FB1. One steady state is observed. (B) Multiple simulations with different initial
bacteria numbers (axis 1—number of bacterial type 1, axis 2—number of bacterial type 2, axis 3—frequency of position). Basic schema with toxin-antitoxin
systems (FB1) and mechanism of "feeding" bacterial type 1 as feedbacks (FB7). Two steady states are observed. (C) Part of artificial gut with FB1
(segregation index by bacterial type 1 0.55). (D) Part of artificial gut with FB1 and FB7 (segregation index by bacterial type 1: in mucin layer nearby gut wall
0.89, in mucin layer nearby gut lumen 0.62; segregation index by bacterial type 2: in mucin layer nearby gut lumen 0.38; in gut lumen 0.96). (E) Part of
artificial gut with FB1 and FB7 (segregation index by bacterial type 1 in mucin layer nearby gut wall 0.82, in mucin layer nearby gut lumen 0.54; segregation
index by bacterial type 2: in mucin layer nearby gut lumen 0.46; in gut lumen 0.96)

doi:10.1371/journal.pone.0148386.g004
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Antibiotic treatment course in our model is defined by following parameters: antibiotic dose
(k_ant_intake [mmol/hours]), frequency (per day) and period (AntibiticPeriod [days]) of
intake. The model output is almost the same for different values of antibiotic dose, which is
quite expected. The most part of antibiotics is moving along the gut lumen while the large part
of bacteria end to occupy place near gut wall during treatment. Thus, small change (from 2% to
1.8% of predicted value) of antibiotic dose do not lead to significant change of bacterial abun-
dance during treatment (S2 Fig). Comparison of antibiotic intake frequency, when antibiotic
dose is the same for single gavage, (1 and 3 times a day) shows that this parameter influences
on average number of bacteria. If the antibiotic dose is the same for course, frequency of intake
influences the amplitude and period of oscillation of average number of bacteria during antibi-
otics treatment. The 1 time a day course was used for the further study.

It is known that bacteria can be sensitive or resistant to the antibiotics. We added new
parameter for bacterial sensitivity in the model. The bacterial sensitivity was defined by a cer-
tain threshold, which equals to a quantity of the drug lethal for the bacterium. According to the
model, antibiotic molecules get into a bacterium by diffusion and after its death of antibiotics
dissolve into the gut. Thus, there are four cases:

1. Both bacterial type are sensitive

2. Bacterial type 1 is more sensitive than bacterial type 2 (bacterial type 2 may be also
resistant)

3. Bacterial type 2 is more sensitive than bacterial type 1 (bacterial type 1 may be also resistant)

4. Both bacterial types are resistant.

We examined system behavior and stability in first three cases while the fourth obviously
will not show any influence of antibiotic treatment.

Here and further stability is defined as an ability of the system to keep the functional proper-
ties after an impact of an external perturbation.

As follows from the previous point, relationship between components regulates not only
density of the community, but also forms its spatial structure. Interestingly, model shows spa-
tial factor influence on stability: in a dense population structure sensitive species could be hid-
den from drug access by resistant (case 2 and 3: bacterial type have different sensitivity to
antibiotics), this situation is only possible when bacteria have tight feedback connection. Anti-
biotics mostly affect the bacteria in an intestinal lumen and only a small dose of "drug" reaches
bacterial layer near gut epithelium. There are no differences in system behavior between cases
2 and 3 when bacterial spatial organization is intermixed. If bacteria are separated into layers,
in case 3 this spatial structure didn't change, but in case 2 bacteria of type 2 suffer from antibi-
otics and are forced to live mixed up with bacterial type 1.

The most interesting situations are when both bacterial species are sensitive to the antibiot-
ics, then the differences in a "steady state" recovery processes are observed. Also new steady
states can be established after recovery. These processes are dependent on different mecha-
nisms of interactions and different sensitivity to the antibiotic. We clearly observed two cases:

1. During antibiotic treatment the numbers for both species decrease to the similar level (Fig
5A). Bacterial species are intermixed before the treatment; bacteria have the same distribu-
tions near gut wall and in lumen (Fig 5B). In general bacteria in mucin layer survive.

2. Bacteria are separated into bacterial layers and Type 1 is less affected by antibiotics, than
type 2 (Fig 5C). Spatial distribution allows for protection from antibiotics: bacteria of type 1
are located near the gut wall and bacteria of type 2 in the lumen (Fig 5D).
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System recovery
Model was run 3 times for each schema of bacterial interactions. The recovery time was defined
as difference between the end of antibiotic course and the time, then number of bacteria equals
80% of these before treatment. After that, recovery time was averaged over all runs with the
same number of feedbacks (Fig 6A). To estimate the resilience of the system with different
parameters we calculated the time it takes system to reach a critical number of 100 for any of
two bacterial species. In this case continuous gavage was used once a day with the same dose
for all parameters. After number of any bacterial type reaches 100 it is improbable that the sys-
tem will rebound, therefore the longer it takes to reach the critical threshold the more resilient
is the system. Time was calculated for each run for each run and also averaged over all runs
with the same number of feedbacks (Fig 6B). These values were used, as measurement of sys-
tem resilience.

Demand of bacteria in each other was found to depend on quantity and types of feedbacks.
Strong coherence of bacterial types helps system to keep a steady state. An initial state recovery

Fig 5. Dynamics of the system during antibiotic treatment. (A) Change of bacterial quantity over time during antibiotic treatment. Bacteria are mixed. 2
feed backs. (periods of antibiotic gavage are highlighted on a graph). (B) Distribution of density of each bacterial type throughout the artificial gut width (axis
y: density of bacterial type, axis x: 0mkm–bottom gut wall; 30000mkm–center of the gut). Bacteria are mixed. (C) Change of bacterial quantity over time
during antibiotic treatment. Bacteria are separated into bacterial layers. (D) Distribution of density of each bacterial type throughout the artificial gut width
(axis y: density of bacterial type, axis x: 0mkm–bottom gut wall; 30000mkm–center of the gut). Bacteria are separated into bacterial layers.

doi:10.1371/journal.pone.0148386.g005
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occurs simultaneous for both bacterial types because their interactions promote maintenance
of their population. Steady state recovery time in system decreases (Fig 6A) for system with 3
feedbacks with increase of treatment duration. This observation is counterintuitive, however
the point is that the system with higher number of feedbacks adjusts to new conditions faster
and finds a new possible steady state faster, while system with lower number of feedbacks con-
tinues to degrade. Further we observe that recovery from steady state to previous state is faster.
State of balance between number of bacteria killed by antibiotics and born is a new "steady
state" appearing during treatment. Observed decrease in number of bacteria die results from
increase in bacterial density. Bacteria band together in community in mucin layer and protect
each other from antibiotics. Bacteria on the upper layer detain antibiotics and after same time
die, whereas bacteria inside have enough time to divide.

Systems with weak feedback interconnectivity between species show different pattern: the
fast-growing type recovers faster and promotes recovery of the other. After continuous antibi-
otics treatment the community becomes almost completely extinct with only a small part of
the bacterial population left in a mucin layer, where access of drugs is restricted.

Mutations leading to antibiotic resistance
Existence of antibiotics in an organism creates the conditions contributing to selection of bac-
teria with mutations leading to antibiotic resistance. Bacteria possessing antibiotic resistance
have both advantages and disadvantages. They are protected from drug influence, yet, for
example, they have to spend energy on production of proteins protecting against drugs like
efflux pumps–this type of bacterial expenditures are called fitness cost [62].

To introduce the antibiotic resistance mutation in the model the following assumptions
were made:

1. Since intracellular mechanisms are not defined in the model, retardation of substances
transformation processes was chosen as fitness cost: bacteria has to distribute energy

Fig 6. Dependence of the system resistance on number of feedbacks. (A) Recovery time of "a steady state" dependence on duration of an antibiotic
treatment course (once a day). (B) Resilience of the system with different numbers of feedbacks. Resilience is measured as time it takes system to reach
critical threshold of 100 for any of bacterial types in case of continuous antibiotic treatment.

doi:10.1371/journal.pone.0148386.g006
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between a production of proteins, necessary for resistance, and proteins, necessary for nutri-
ent interconversion, consequently, if the bacterium spends more time for food, it divides
less often. We introduce the retardation constant Rc and divide the rate of nutrients trans-
formation by Rc.

2. We introduce the probability of resistance mutation as function depending on antibiotic
concentration in the intestine and Rc.

Depending on a ratio of the parameters connected with advantages and disadvantages of
resistance we obtained three structural variants of the bacterial community after recovery:

1. Class 1.High mutation probability, low fitness-cost (Fig 7A)—resistant strains are dominat-
ing (>70%) in the community, even after a single short treatment course. After treatment
sensitive strains do not recover.

2. Class 3. Low mutation probability, moderate fitness cost (Fig 7B)—the initial structure was
restored after the treatment, i.e. sensitive strains recover and resistant strains disappear.

Fig 7. Classification of the community structure after treatment. Changes of proportion of resistant bacteria (R/(R+S)) over time: (A) resistant strains
dominate after treatment; (B) sensitive strains dominate after treatment (periods of antibiotic gavage are highlighted on a graph); (C) constant fluctuations in
the ratio of resistant and sensitive strains. (D) Histogram of outcome distributions between 3 classes in percentage. (E) Classification results for the relevant
parameters. Class 1 (red)—resistant strains dominate. Class 2 (green)—fluctuations in the ratio of resistant and sensitive strains. Class 3 (blue)—sensitive
strains dominate.

doi:10.1371/journal.pone.0148386.g007
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3. Class 2. Intermediate values of mutation probability and fitness cost (Fig 7C)–fluctuations
in ratios of resistant and sensitive strains are observed. The more the period of antibiotic
gavage the more the probability is for resistant strains to dominate after drug
administration.

The modeling of antibiotic resistance spread using the parameters chosen demonstrated
that over 50 per cent of models ended up with at least one of two bacterial types being domi-
nated by resistant microbes (Fig 7D). The space of system parameters RC and k_ant_intake
determines the most probable outcome (Fig 7E). The areas are overlapping as we consider dif-
ferent variants of feedbacks (similar to previous sections), nevertheless it is shown that ratio of
these parameters play crucial role in the outcome of the treatment. In practice, RC can be cal-
culated from experiment, as difference between growth of sensitive and resistant strains, and
after that, we can choose appropriate dose of antibiotics according to graph Fig 7E. These
could be potentially used to adopt the proper antibiotic treatment, dosage and gavage regimen
to refrain completely resistant microbiome.

In the community the ratio of bacterial strains is influenced not only by probability of a
mutation, but also by a spatial arrangement of bacteria in the artificial intestine. Strains com-
pete for nutrition, and thus sensitive strains divide faster. Consequently, sensitive strains domi-
nate after the treatment in well-mixed communities, forcing out the resistant ones. To reduce
the competition after the treatment, different strains inhabit different areas of the intestine and
thus, can coexist (Fig 8A). During the treatment course sensitive strains need protection, which
is possible when both types are mixed or when sensitive strains are surrounded or stay behind
the resistant ones. Fig 8B and 8C demonstrate sensitive strains tend to stay closer to the gut
wall and to occupy the space in the lower part of the gut. Since the bacteria in this virtual intes-
tine can move freely, in particular, under the influence of random processes, the final ration
between strains for the same initial parameters was observed.

Proportion of resistant bacteria depends on amount of nutrients for this bacterial type (a lot
of nutrients reduces competition) and bacterial spatial distribution (there are more resistant
bacteria in the gut lumen, than sensitive one). These two parameters are defined by interactions
network.

Fig 8. Bacterial density along and across the artificial gut. (A) Coexistence of sensitive and resistant strains after treatment (density along the gut length).
(B) Coexistence of sensitive and resistant strains during antibiotic treatment. (C) Coexistence of sensitive and resistant strains during antibiotic treatment.
Density distribution across gut (0 mkm–gut wall; 30000 mkm–center of the gut lumen).

doi:10.1371/journal.pone.0148386.g008
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For example, base interactions network with FB№7 is set. The most of the type 2 bacteria
are located in the gut lumen and top layer of mucin, whereas the most of the type 1 bacteria are
located in mucin layer. Both bacterial types have two nutrient sources. In this case proportion
of resistant is higher in bacterial type 1.

Real world observations
To compare our observations with real world data we have used profiles of microbiota compo-
sitions in from four major studies of nation wide microbiota, these data sets were recalculated
by same approach in study of Russian micorbiome [63], additionally we used metabolic com-
plementarity index [11] for each pair of bacterial species. We have observed in our model cal-
culations that the more complimentarity there is in the system the more stable it is to anitbiotic
treatment. The hypothsis was that we could find similar links in real world.

We presented each sample as a graph containing all complimentary relationships between
all members of community (S3 Fig). Such a graph represents a crude estimate of metabolic
feedbacks in a system, additionally graph parameters such as number of authorities, hubs,
edges and vertices was calculated (Fig 9). We further speculate that the graphs rich in authori-
ties and hubs are more stable. Interestingly that microbiomes from China are known to have
more resistance [64], which is caused by much heavier antibiotic load on the gut. This coin-
cides with our observation of their stability and we observe the same features in our model.
One could say that microbiome adopts to constant perturbation by antibiotic by selecting
those species which are more metabolically comlimentary to each other. We also know that
microbiome in Russia has a resistance in between European and Chinese (data unpublished).

Fig 9. Comparison of the graph properties between the microbiomes of the major studies.

doi:10.1371/journal.pone.0148386.g009
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Discussion
The issue of modeling complex biological systems requires a balance between the simplicity of
the model and its ability to demonstrate non-linear effects. The object of the study–micro-
biome–was represented by minimal number of agents: gut wall, metabolites and bacteria.
Using only two bacterial types allowed to keep the model simple and build complex interac-
tions inside the community. The basic interaction in the microbiome is metabolic interconver-
sion and one of the essential processes of SCFA biosynthesis was incorporated in the model.
While the model itself does not pretend to simulate physiology of the gut and digestion, the
physical and chemical parameters were chosen according to real world data.

Agent based modeling was selected to keep the model as simple as possible on the stage of
model description. The algorithm of decision making itself was built upon rational thinking
and according to general observations in microbiology, the parameters of the algorithm could
be varied in a wide range.

The robustness of the system is supported by number of feedback loops discussed in litera-
ture. To our knowledge this is the first attempt to model the gut microbiota using the ABM.
The aim of the ABMmodeling is to capture emergent properties of the system built with simple
components and simple properties.

We have shown the emergent properties of the system in three different domains:

1. steady state and bimodal distribution in the normal gut.

2. recovery processes after antibiotic usage and shifts of community composition.

3. antibiotic resistance spread and fixation inside the community.

The robustness of the system is acquired through feedback loops and even in the case of bac-
teria with profound capabilities of metabolizing the energy rich nutrients the bacteria has no
chance for robustness unless it has a set up of numerous feedback loops. This observation is
connected with two intriguing facts in intestinal microbiota studies–transient flora and inflam-
mation induced bacterial pathogenesis. Observation in our model could be applied to both.

The transience of probiotic components is well known [65–66] and in part could be attrib-
uted to absence of feedback loops between gut and probiotic component. On the other hand
there are examples of pathogens creating the feedback loops themselves–and therefore promot-
ing novel steady states in the gut, where they become persistent. Diarrhea causing Salmonella
was shown to induce inflammation and use the respiratory electrons emerging from inflamma-
tion to promote its own growth [67]. Such a feedback formation by pathogens is often called
vicious circle.

The other aspect of robustness shown in the model is a bistable distribution—this aspect
has not been predicted by initial setup and is indeed an emergent property of the model pro-
posed. Interestingly the bistability that is shown in the two stable ratios between bacterial types.
This could be interpreted as a variety of stable compositions in real world microbiota and
could have a direct connection to observed enterotypes [68]. In the model bistability is reached
by spatial distribution or segregation. The bacteria in the gut are well known to segregate
between the gut wall and the lumen [69], however the real mechanism is much more complex
and includes the difference in functional states of the luminal and wall mucosal flora [70]. The
view proposed in the model could be generalized for the case of the real gut as a succession of
steady states providing robustness through existence of stable configurations, whereas each
level (segregation state) could be used by host organism as a stable marker of undergoing
changes in the gut. We show in our model that each level is characterized by constant produc-
tion rate of metabolites–which are know to be used by gut as a signal. There always exists one
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of the states with minimal entropy and other states could be used to dissipate energy–thereby
providing means to damp the excessive stress.

The model for system perturbation was antibiotic treatment. There are numerous reports
on the effects of antibiotic treatment and animal experimental models. Most reports show dis-
tinct diversity drop after antibiotic treatment [3]. In the model proposed several parameters
were used to simulate real world situation. The effect of the antibiotic on the particular bacte-
rial type was different, and the sensitivity was chosen as a parameter. It is well known that in
vitro model show different MICs (minimal inhibitory concentrations) for different bacterial
species. Obvious effect of the perturbation in the model was extinction of the more sensitive
bacterial type in the course of antibiotic treatment. However interesting was the idea of feed-
back connectivity protecting the bacterial types. It was shown that the more feedbacks there
were in the system the less prone system was to continuous antibiotic course. Interestingly the
number of sensitive species was diminishing slower in a tightly connected system than in the
decoupled model, while the number of resistant species was decreasing faster in the model with
maximal number of feedbacks. The situation could be comprehensively described as tighter
coupling through feedbacks allowing for damping antibiotic treatment through the total com-
munity response, while uncoupled species are easier to eliminate. Application of this fact could
be individual introduction or support of some key bacterial species in the gut before antibiotic
gavage–this would allow to secure gut microbiome while antibiotics would kill the pathogens.
This emergent effect of community sensitivity and could be used in collateral damage reduc-
tion approaches widely discussed [71]. The modeling so far could predict the viability of the
current community and the approaches to make the system more stable and prone to the dis-
turbing interference.

Peculiar is the result on dynamics and spatial distribution acquired in the series of experi-
ments. It was possible to model the spatial inhomogenity caused by antibiotic treatment (Fig
6D), this inhomogenity was produced by layering of bacterial types. It was shown that even in
the case of both sensitive bacteria they can be structured into two layers. In the case of the
model studied the innermost layer was taken by bacteria having a feedback loop with the gut
and the outer layer was taken by bacteria without any connection to gut. Therefore the gut was
providing antibiotic protecting environment and the bacteria having less (or no) connection to
the gut were shown to be more prone to influence of the outer factors.

Modeling the whole amount of microbial interactions could lead to explanation of the
results acquired by next-generation sequencing profiling–it is clearly shown that some of the
bacteria are more probable to be extinct after course of antibiotic treatment while others are
prone to antibiotics [71]. It is shown that antibiotic resistance genes are responsible for sur-
vival, however it is known that some of the bacteria can survive without genes specializing in
resistance18. We hypothesize that this could be an emergent effect of the community where
population dynamics could be dependent on the number of feedbacks and as the model shows
the population can be organized into spatial structures. The crude calculation of community
graph properties also support the idea that antibiotic resistance could be supported by more
interconnected community, i.e. that microbiomes in China and Russia could be depleted from
species with low feedback connectivity with others.

Antibiotic resistance acquisition modeling allowed us to speculate on the resistance rise and
clearance. While most of the results were predictable and proportion of the resistant bacteria
was the function of the treatment period. Antibiotic resistance was observed after the end of
administration. Interestingly in the longer administration periods persistent antibiotic resis-
tance appeared, resistant strains were observed long after the end of the administration. The
modeled situation of persistent resistance, however the fitness cost, is explained by spatial fac-
tors. Resistant strains occupy the distinct areas of the gut and do not let more faster growing
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bacteria without resistance displace them. In part this could be due to the constant flow rate in the
model, however this also allows to hypothesize the niche explanation. Although the fitness cost
should lead to diminishing the number of resistant bacteria, niches could exist where resistant
bacteria take over during the treatment and hinder sensitive bacteria from taking over no matter
the fitness advantage. This is a good point to be experimentally tested, so far antibiotic resistance
is averaged for the whole gut, but technologies will emerge to scan multiple niches at ease.

To conclude the study presents a simple model with a simple metabolic circuit. All the param-
eters of the model have a certain relation to realty. The system effect of layering and bistability
after introduction of feedback loops is observed and antibiotic treatment is studied as a perturba-
tion. System stability is shown to depend on spatial factors and community structure. Finally
problem of resistance was modeled, the model parameters allow for observations connected to in
vivo observations on resistance spread and provides insights on the niche hypothesis.

Methods
The model is constructed by means of object-oriented programming in the Java language. Mul-
tiple start of the program for receiving data files was made on a high-performance computing
(HPC) clusters (12 nodes, single run– 10 min = 105 ticks). For observation over system behav-
ior the program was started on the personal computer. Statistical processing of the output data
was carried out with using a software environment "R" (https://www.r-project.org/).

Kinetic equations describing the scheme metabolism of polysaccharides
(Fig 1)
Change in the concentration of substances:

dPS
dt

¼ Vintake � Vout � VPS!Acetate � VPS!Propionate ð1Þ

dAcetate
dt

¼ VPS!Acetate � VAcetate!Butyrate � Vout � Vflux ð2Þ

dButyrate
dt

¼ VAcetate!Butyrate � Vout � Vflux ð3Þ

dPropinate
dt

¼ VPS!Propionate � Vout � Vflux ð4Þ

Speed of substances absorption in intestines:

Vflux ¼ ktrans MCT � ð ½C�
Kmc

Þ=DMCT1; ð5Þ

where [C]–substance concentration,
Kmc−the Michaelis constant corresponding to a given substance.

DMCT1 ¼ 1þ ½Acetate�
KmAcetate MCT

þ ½Butyrate�
KmButyrate MCT

þ ½Propionate�
KmPropionate MCT

ð6Þ

The production rate of substances:

Vintake ¼ kintake þ kpsMucus ð7Þ
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VPS!Acetate ¼
100 � kPS!Acetate � ½PS�

KmAceyaye þ ½PS� ð8Þ

VPS!Propionate ¼
100 � kPS!Propionate � ½PS�

KmPropionate þ ½PS� ð9Þ

VAcetate!Butyrate ¼
100 � kAcetate!Butyrate � ½Acetate�

KmButyrate þ ½Acetate� ð10Þ

The rate of excretion from the intestine:

Vout ¼ kgut out � ½C�; ð11Þ

where [C]–substance concentration.

The movement of nutrient through the intestines
On the basis of kinetic equations for the concentrations (5,11), we calculate the absorption
rates of nutrients in the intestines and speed along it for each "piece" of nutrient in the gut.
From Eqs (5 and 11), we find the amount of material which must be inferred from the intestine
and which must be absorbed in the intestine. We believe that the substance is distributed evenly
through the intestines. Then find a distance dl, that the food, located at that distance from the
exit/intestinal wall, in a time dt should be excreted /absorbed, i.e. most extreme piece of food
must travel a distance dl. Thus, all the substance can be divided into n portions: n = [C] / d[C].
Therefore, if the length of the intestine L, then the desired distance dl is given by: dl = L / n = L
� d [C] / [C]. This yields the general form of the equation for the velocity of food in the intes-
tines: Speed = dl / dt = d [C] / dt � L � [C] = k � L.

From Eq (5), we find the absorption rate of substances in the intestine (velocity along the
axis y):

Vflux ¼
ktrans MCT

Kmc � DMCT1

� D; ð12Þ

where D–diameter of intestine.
From Eq (11) we find the excretion rate of substances from the gut (velocity along the x axis):

Vout ¼ kgut out � L: ð13Þ

The nutrients enters the intestine periodically some portions.
We do the assumption that the components passing near intestines walls cling to them and

has speed smaller in comparison with food speed in the intestinal lumen. Thus, components of
intestines move with a speed corresponding to some power law depending on location con-
cerning the center of a gut.

Vout ¼ kgut out � L � 1� jgetY � D
2
j � 2

D

� �2

; ð14Þ

where getY–current axial coordinate of object (location in the perpendicular section of a gut)
D–diameter of intestine
L–length of intestine
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Eq (14) is true for all components of the intestine, not only for nutrients.

System parameters
External parameters of system are described in Table 1. The value of these parameters were
chosen based on the effects observed in our system (e.g. radius, lifetime) and literature data
(e.g. speed, reaction rate constant) and program calculation time (long lifetime leads to a large
number of bacteria and increase the amount of information processed, in such event general
trends in the behavior of the system do not change). Variation of parameters for studying their
influence on the system carried out in the range of from 1% to 1000% with steps of 1% of the
estimated value of the quantity.

The parameters are read from an external file when the program starts, as a result of the pro-
gram creates a file with the values of the number of bacteria and metabolites in each run of the
program.

Facts taken into account for model construction:

1. Given physiological value of colonic transition time (CTT) approximately 30–40 hours,
the parameter of substrate transition through colon is ~ = 0,08 1/h. CCT though can sig-
nificantly vary between healthy individuals: from 12 to 80 hours [72].

2. The most probable SCFA transport system was considered to be bicorbanate-dependent
antiporter (MCT-1) [73]. Parameters Km for the SCFA transport were estimated from
previously published in vitro experiments results [74] Particularly, for acetate and propio-
nate Km = 15,0 mM and Km = 21,3 mM for butyrate.

3. Normal level of SCFA absorption by colonocytes per day was estimated to be 400–600
mM/day [75]. It corresponds to value 24 mM/h in all the system. Transport parameter
was fixed at value 8.3 mM/h for enterocyte transporter system. So, the overall sum SCFA
adsorption rate does not exceed 33.2 mM/h

3. Even though the most part of the substrate comes with food, a smaller part is secreted by
enterocytes (mucin). Suggesting almost all the substrate to be metabolized, the constant
input of it is 40 mM/h and endogenic substrate input rate is 1 mM/h. However, substrate
input rate can vary significantly depending on diet.

4. SCFA excretion with feces is 10–30 mM/day [76].

Algorithms of feedbacks mechanisms
In order introduce feedback mechanisms into model following pseudo codes and suggestions
were used:
FB1: if (bacterium of type 2 get acetate) {

if (random(100) < percentage of toxins) {bacterium produces toxin
killing themselves}
else {bacterium produces butyrate}

FB2: if (abundance of bacterial type 2—abundance of bacterial type 1 >
threshold) {

bacteria of type 1 produce toxins inhibiting growth of type 2}
Notice: toxins and other metabolite conversed from polysaccharides pro-
duced together by bacterial type 1
FB3: if (abundance of bacterial type 2—abundance of bacterial type 1 >
threshold) {

gut produce toxins inhibiting growth of type 2}
FB4: if (amount of butyrate—amount of propionate > 100) {
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gut produce toxins inhibiting growth of type 2}
FB5/6: if (amount of butyrate/propionate > threshold) {

gut produce toxins inhibiting growth of type 2/1}
FB7: if (amount of butyrate < threshold) {

gut produce polysaccharides for baterial type 1}

In most cases we used concentration as observed parameter rather than agent interaction
rules in order to reduce calculating time of program.

Segregation index calculation
Artificial gut was divided into 3 areas:

• mucin layer: (0 –D/5) and (4D/5 –D) mkm

• lumen: (D/5 – 4D/5) mkm

• border between mucin layer and lumen: (2D/15 – 4D/15) and (11D/15 – 13D/15)

where D–gut width, 0 –coordinates if the top wall, D–coordinated of the bottom wall.
Segregation index was calculated for each part of gut using methodology of Mitri et al. [68].

Thirst, the segregation index of each bacterium (bi) is defined as:

segðbiÞ ¼
1

Nr

XNr

j¼1
sðbi; bjÞ ð15Þ

where σ(bi, bj) = 0 if bi and bj belong to different bacterial type, or, σ(bi, bj) = 1 if bi and bj
belong to the same bacterial type, and Nr is the number of neighborhood bacteria falling within
distance of r = R = 30000 mkm.

Second, the segregation index seg1 (seg2) of bacterial type 1 (2) for each part of gut is defined
using following equation:

seg1ð2Þ ¼
1

N1ð2Þ

XN1ð2Þ
i¼1

segðaiÞ ; ð16Þ

where N1(2) is the number of bacteria of corresponding type.

Graphs of metabolic complementarity
Metabolic complementarity graphs for each gut metagenome were constructed using its spe-
cies-level taxonomic composition and metabolic complementarity index [11] (MCI) for each
pair of the bacterial species. The taxonomic composition was calculated by mapping to a refer-
ence genomes catalog as described previously [63]. The table of pair wise MCI between the spe-
cies was obtained from [11]. In the graph, each vertex corresponds to a species highly present
in the metagenome (relative abundance>1%) whereas a directed edge directing from species
A to species B corresponds a high MCI value between A and B (that is, A provides many nutri-
ents to B; only the pairs with> 0.35 were plotted).

Code availability
Code for the model is available at https://github.com/dreamlab13/abmbiota
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S1 Fig. Distribution of runs leading to different steady states in case presence of two steady
states.
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S2 Fig. Bacterial abundance during antibiotic treatment. Axis x: percentage of bacteria sur-
vival during treatment; Axis y: antibiotic dose. A–bacterial type 1, B–bacterial type 2.
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S3 Fig. Graph of metabolic complementarity.
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S1 Table. Set of parameters describing feedbacks.
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S2 Table. Classification of feedbacks combination (at least with 1 stable state).
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