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Abstract

Background: Sequencing technologies give access to a precise picture of the molecular mechanisms acting upon
genome regulation. One of the biggest technical challenges with sequencing data is to map millions of reads to a
reference genome. This problem is exacerbated when dealing with repetitive sequences such as transposable
elements that occupy half of the mammalian genome mass. Sequenced reads coming from these regions introduce
ambiguities in the mapping step. Therefore, applying dedicated parameters and algorithms has to be taken into
consideration when transposable elements regulation is investigated with sequencing datasets.

Results: Here, we used simulated reads on the mouse and human genomes to define the best parameters for aligning
transposable element-derived reads on a reference genome. The efficiency of the most commonly used aligners was
compared and we further evaluated how transposable element representation should be estimated using available
methods. The mappability of the different transposon families in the mouse and the human genomes was calculated
giving an overview into their evolution.

Conclusions: Based on simulated data, we provided recommendations on the alignment and the quantification steps
to be performed when transposon expression or regulation is studied, and identified the limits in detecting specific
young transposon families of the mouse and human genomes. These principles may help the community to adopt
standard procedures and raise awareness of the difficulties encountered in the study of transposable elements.
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Background
Transposable elements (TEs) comprise approximately half of
the mammalian genomes [1]. Based on de novo repeat iden-
tification, it has been suggested that two-thirds of the human
genome is in fact composed of repetitive elements [2].TEs
are first classified according to their ability to invade the gen-
ome and their related molecular mechanisms. DNA transpo-
sons use a cut-and-paste mechanism where the element is
excised and inserted into a new locus. Retrotransposons use
an intermediate RNA template to insert into new genomic
locations, in a copy-and-paste manner. These are classified
into Long-Terminal Repeat (LTR) elements that are similar
to retroviruses, and non-LTR elements. Non-LTR elements
are more abundant compared to LTR elements and DNA

transposons in mammalian genomes. The vast majority of
TE insertions are incapable of mobilization, due to invalidat-
ing truncations, internal rearrangements or mutations. How-
ever, based on cell culture assays, it has been estimated that
80–100 L1HS elements are competent for retrotransposition
in the human genome [3] and around 3000 L1 elements
from the Tf, A and Gf subfamilies are potentially capable of
retrotransposition in the mouse genome [4]. De novo inser-
tions of TEs -mainly Alu, L1 and SVA non-LTR families-
have been associated with more than 100 human diseases
[5]. In reaction, cells have developed several restraining
mechanisms against TE activity. At the transcriptional level,
DNA methylation and repressive histone modifications block
TE expression. In the cytoplasm, some restriction factors de-
grade retrotransposon RNAs. Other factors play a role in the
nucleus by interfering with the DNA integration step [6].
The emergence of high-throughput sequencing tech-

nologies has allowed making tremendous progress in
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our understanding of the regulation and functional im-
pact of TEs. However, the characterization of these
elements remains computationally challenging, mainly
due to their repetitiveness [6]. As they are not unique in
the genome, repeated sequences create ambiguities in
the alignment step, which can lead to misleading
biological conclusions if inappropriate parameters are
applied [7, 8]. Different algorithms have been developed
for the purpose of mapping reads according to the se-
quencing application [9]. By default, most of these tools
are parameterized to randomly report one genomic pos-
ition among the set of possible alignments. Additional
parameters or filters are implemented to keep uniquely
mapped reads, to report all possible positions of reads or
to return up to a given number of valid alignments.
Benchmarkings of these methods have also been re-
ported to compare their efficiency. Some of them inves-
tigated specific biological applications, such as Whole-
Genome Bisulfite Sequencing (WGBS) [10] and RNA-
seq [11] or specific sequencing platforms [12]. Schbath
et al. assessed the power of tools to retrieve all the read
occurences. However, their study relied on simulated
short single-end reads of 40 bp without any insertions/
deletions (indels). Hatem et al. investigated the effect
of different mapping parameters such as number of
mismatches, seed and read length, gapped vs
ungapped alignment. Nevertheless, they did not inves-
tigate the power of the different algorithms to align
TE-derived reads.
Some tools were developed to quantify TEs within se-

quencing data. TEtools uses TE annotation to create Bow-
tie2 index and performs mapping by reporting randomly
one position [13, 14]. RepEnrich recommends performing
the mapping with Bowtie to retrieve unique alignments
[15, 16]. It enables quantifying unique reads emanating
from specific families (referred to repEnrich Unique in this
study) and the total number of reads, unique and multiple,
mapped to each TE family (repEnrich Total). The repEn-
rich Fractional method counts reads that map to a single
TE family and assigns multi-mapped reads to correspond-
ing families using a fractional value 1/n, where n is the
number of TE families the read maps to. SQuIRE [17] al-
lows quantifying TE single copies and families performing
the alignment with STAR [18] and using an iterative
method to assign multi-mapped reads (SQuIRE). Finally,
TEtranscripts [19] advises to generate BAM files with the
STAR mapper, and performs TE quantification using only
uniquely-mapped reads (TEtranscripts Unique), or using
multi-mapped reads with an iterative method (TEtran-
scripts Multiple).
In this study, we propose to benchmark at once the ef-

ficiency of the most used aligners and available tools for
TE quantification. Using simulated data with mouse and
human genomes, Bowtie, Bowtie2, STAR, Novoalign

(http://www.novocraft.com), BWA aln [20] and mem
[21] alignment algorithms were compared. We also
assessed the effect of using paired-end library compared
to single-end library with TE-derived reads. Reporting
unique reads, randomly one position and all possible lo-
cations were compared when TE abundance was esti-
mated. In addition, TE quantification was compared to
TE-simulated abundance using the most recent and used
RepeatMasker-based tools, TEtools, repEnrich, SQuIRE
and TEtranscript. Finally, the efficiency to map reads
from each TE subfamily within the mouse and the hu-
man genome was computed and revealed the difficulties
of accessing specific young TE families.

Results
Mapping based on STAR and PE libraries are highly
recommended to align reads coming from transposable
elements
To compare different mapping algorithms and their effi-
ciency to align reads from repeated sequences, we relied on
simulated data (Fig. 1a). Using a reference genome, 2x100bp
paired-end reads were simulated with ART v2.5.8 [22] mim-
icking Illumina HiSeq 2500 technology (mean fragment
size = 200 bp, standard deviation = 20 bp and technology-
specific sequencing errors). Reads overlapping with Repeat-
Masker annotations were kept (Smit, R, & P, 2013–2015).
Three independent datasets were simulated at a 10X cover-
age and aligned using Bowtie1, Bowtie2, BWA aln and mem
algorithms, Novoalign and STAR. Only one end of the simu-
lated fragments (single-end (SE) alignment) or both ends
(paired-end (PE) alignment) were used, allowing us to com-
pare the performance of both library types when TE-derived
reads are aligned. Algorithms were run while enabling
unique, randomly-reported or multi-mapped reads, except
for BWA algorithms that do not give the possibility to return
several hits per read. Reported alignments were compared to
the simulated positions. When congruent, alignments were
flagged as true-positive (TP) and weighted by the number of
reported hits for the corresponding read in the multi-
mapped mode. This approach allowed penalizing algorithms
that report too many positions per read.
In Fig. 1b, TP rate and percentage of mapping were

represented using the chromosome 1 of the mouse gen-
ome as the reference genome for the data simulation
(Additional file 1: Figure S1A for the chromosome 1 of
the human genome). In the top panel, uniquely-reported
reads were considered. Around 92 and 95% of the reads
were aligned in the SE and PE libraries respectively,
highlighting the importance of using PE library to in-
crease the uniqueness of fragments derived from trans-
poson sequences. Conversely, Bowtie1 is the only tool
which does not capitalize on the PE library to improve
the mapping results. Some uniquely-mapped reads with
SE library were not anymore mapped using paired-end
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information because the second read of the pair had dif-
ferent valid alignments.
Bowtie2, BWA mem and aln algorithms do not allow

reporting uniquely mapped reads with defined parame-
ters. Post-mapping filtering is therefore required. In this
case, these mappers had the same performance with
both SE and PE libraries compared to STAR and Novoa-
lign (Fig. 1b and Additional file 1: Figure S1A and Tables
1 and 2).
When randomly-reported and multi-mapped reads

were allowed (middle and bottom panels, Fig 1b and
Additional file 1: Figure S1A), the percentage of map-
ping increased close to 100%, leading to a decrease of
TP rate around 93% for Bowtie1, 93% for the others in
SE and 96% in PE. In addition, we also observed a big
drop in Bowtie2 TP rate in the multi-mapped mode.
Bowtie2 did not guarantee that the reported alignments
are the best possible in terms of alignment score. Conse-
quently, more alignments were reported, leading to a de-
crease of TP rate compared to other algorithms. As in
unique mode, Bowtie1 was less efficient using PE library
than SE library compared to Novoalign and STAR.
Computation time, BAM file size and memory usage

were finally reported (Tables 1 and 2, Fig. 1c for mouse
simulation and Additional file 1: Figure S1B for the hu-
man simulation) for all applied mappers and modes. The
runtime measurement includes post-mapping filtering in
the unique mode for bowtie2, BWA mem and aln algo-
rithms. All algorithms required less than 10GB, except
STAR which required 26GB at most. On the other hand,
STAR was at least 15 times faster compared to Novoalign.
Reporting all possible alignments per read increased at
least four times the output size in PE mode compared to
randomly-reported alignments for the mouse simulation.
Output size of Bowtie2 in multi-mapped mode confirmed
the fact that Bowtie2 reported too many alignments per
read inducing a decrease of TP rate. In conclusion, STAR
gave the best compromise in terms of mapping efficiency
and accuracy, as well as computing time.

Quantification of TE families: random and multiple
counting methods give the best estimations
Regarding its better performance, STAR was used as the
mapping algorithm in subsequent quantification analyses.
One library was simulated at a 10X coverage using the pipe-
line described previously with the human and mouse ge-
nomes as reference. The same mapping parameters than in
previous analyses were applied for the human simulation.

However, mapping parameters were adjusted (see Additional
file 5) for the mouse simulation allowing higher number of
multi-mapped reads, to account for the more complex TE
content in this species. TE-estimated quantification from dif-
ferent developed methods was compared to simulated abun-
dance. TE families were quantified using uniquely-mapped
reads (referred to FeatureCounts Unique alignments),
randomly-reported position (FeatureCounts Random align-
ments) and all valid alignments (FeatureCounts Multiple
alignments). In the FeatureCounts Multiple alignments,
alignments were weighted by the number of corresponding
hits. Quantifications were performed using featureCounts
[23]. In addition, repEnrich, TEtools, SQuIRE and TEtran-
scripts were evaluated using recommended parameters. TE-
simulated abundance and estimated abundance were corre-
lated for the different methods (Fig. 2a for mouse simulation
and Additional file 3: Figure S2A for human simulation).
Methods using only unique reads (FeatureCounts

Unique alignments, repEnrich Unique, TEtranscripts
Unique) underestimated some TE families of all classes
(LTR, LINEs and SINEs), with repEnrich Unique being
the least accurate. In contrast, counting the total number
of reads mapping to each TE family -as it is the case
with repEnrich Total- induced an overestimation. On
the other hand, weighting by the number of hits (Fea-
tureCounts Multiple alignments) or reporting randomly
one position (TEtools and FeatureCounts Random align-
ments) gave the most satisfactory TE estimation with a
correlation close to 1. To test whether coverage could
influence these results, we repeated the simulation with
5X, 10X, 25X, 50X and 100X coverage, focusing on spe-
cific TE families known to be potentially active (B2_
Mm1a, IAPEz-int and L1MdA_I for the mouse genome
and AluYa5, HERVK-int, L1HS and SVA_F for the hu-
man genome). Independently of the coverage depth,
methods using unique reads (FeatureCounts Unique
alignments, repEnrich Unique, TEtranscripts Unique)
consistently underestimated TE families (Additional file
3: Figure S3A and B), while FeatureCounts using random
and multiple alignments and TEtools gave the best esti-
mation, confirming the 10X genome-wide simulation.
By proposing to map reads on TE annotations only,

TEtools contrasts with other mapping methods that align
reads genome-wide and then extract TE-derived reads only.
However, because transposable elements represent only half
of the mammalian genomes, we wanted to estimate whether
TEtools could introduce some biases. New datasets were
then simulated uniformly genome-wide, including non-

(See figure on previous page.)
Fig. 1 Comparison of mapper efficiency with mouse simulated data. a A diagram showing the method for the data simulation. The circles represent used
tools and the rectangles correspond to files. b True Positive (TP) rate versus mapping percentage with chromosome 1 of the mouse genome. The dots are the
average values of three independent simulated libraries. SE and PE refer to single end and paired end, respectively. c Use memory, run time and size of the
BAM file with chromosome 1 of the mouse genome. The error bars correspond to standard deviation from three independent simulated libraries

Teissandier et al. Mobile DNA           (2019) 10:52 Page 4 of 12



repeated sequences, by generating PE libraries with a 10X
coverage from mouse and human genomes. Compared to
the FeatureCounts Random alignments (with STAR
for the mapping), TEtools clearly introduced an over-
estimation of both LINE1 and LTR elements by for-
cing non-derived reads to map to TE sequences
(Fig. 2b and Additional file 2: Figure S2B).

Evolutionarily young families suffer from low percentage
of mapping and low true positive rate
Using PE library simulated on the mouse and human ge-
nomes, we found that 89.8 and 93.4% of the reads were

uniquely mapped, respectively, with a TP rate of 99.9%
(Fig. 3a and Additional file 4: Figure S4A). However, we
noticed that some TE families displayed a lower map-
ping percentage. This was the case for the L1HS family
–a recent human-specific L1 family- whereby 49% of
simulated reads had 88% of TP rate upon unique map-
ping. In the mouse genome, 25 families had less than
50% of mapping when uniquely-reported reads were
allowed, six of them being annotated in the LINE order.
Using estimated evolutionary age of mouse and human
LINE1 families [24, 25], we found that the youngest fam-
ilies were the ones with the lowest percentage of

Table 1 Statistics for the different mappers with mouse chromosome 1 simulation data

Algorithm Library Mode Mapping percentage True Positive rate Memory in gbytes Running Time in minutes Output size in Mbytes

bowtie PE unique 91.87823 99.97913 0.92 3.00 583.36

bowtie SE unique 92.05224 99.92287 0.69 1.33 311.38

bowtie2 PE unique 94.57886 99.93802 1.28 38.00 572.58

bowtie2 SE unique 92.08282 99.84845 1.18 32.67 294.64

Bwa aln PE unique 94.62602 99.88782 2.66 15.67 553.86

Bwa aln SE unique 96.60879 95.82612 1.85 3.00 310.30

Bwa mem PE unique 94.54763 99.95728 8.77 19.33 563.50

Bwa mem SE unique 92.08548 99.89624 8.40 4.67 299.76

novoalign PE unique 95.55760 99.61473 7.62 226.33 609.08

novoalign SE unique 92.08982 99.92307 7.61 31.67 315.96

STAR PE unique 95.37882 99.80753 16.67 2.00 553.24

STAR SE unique 92.23340 99.73004 16.18 2.33 285.06

bowtie PE random 99.95300 93.67212 0.93 3.00 596.75

bowtie SE random 99.99001 93.04126 0.69 2.33 317.67

bowtie2 PE random 99.99991 95.89737 1.28 35.67 607.86

bowtie2 SE random 99.98093 92.97406 1.18 25.67 324.26

Bwa aln PE random 99.99998 95.94218 2.66 17.67 604.39

Bwa aln SE random 99.99801 93.01531 1.85 4.00 322.33

Bwa mem PE random 99.99998 95.94068 9.42 18.33 612.39

Bwa mem SE random 99.99998 93.01096 7.96 6.33 329.82

novoalign PE random 99.99998 95.84899 7.62 272.00 616.78

novoalign SE random 99.99989 93.03697 7.61 30.67 322.72

STAR PE random 99.94380 95.93094 16.67 5.00 583.02

STAR SE random 99.99024 93.01921 16.26 2.00 314.19

bowtie PE multi 99.95300 92.89719 0.98 18.33 7289.52

bowtie SE multi 99.99001 93.01711 0.71 9.67 2747.64

bowtie2 PE multi 99.99998 76.80653 11.53 28658.67 228148.51

bowtie2 SE multi 99.99998 70.81391 8.74 8205.33 161697.48

novoalign PE multi 99.99998 95.85903 7.62 307.67 2627.41

novoalign SE multi 99.99989 93.03718 7.61 99.00 3176.37

STAR PE multi 99.94380 95.93265 23.95 7.00 2575.59

STAR SE multi 99.99024 93.02143 26.64 4.00 2831.57

Values correspond to the average values of three independent simulated libraries with a 10X coverage. SE and PE refer to single end and paired end, respectively.
Post-mapping filtering were applied for Bowtie2, Bwa mem and aln algorithms in order to extract uniquely-mapped reads
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mapping and TP rate (Fig. 3b and Additional file 4: Fig-
ure S4B). These two metrics appear therefore as new
classifiers to rank L1 subfamilies according to their age.
The link between mappability and the age of L1 families
was previously reported by Sexton and Han for the hu-
man genome [26]. The lower the age is, the lower mapp-
ability is as well.
Among the 25 mouse TE families with less than 50%

of mapping, 19 were annotated as LTR retrotransposons,
with representatives of the three different classes of LTR
defined by their similarities to exogenous retroviruses
[27]. In the ERV1 class, MURVY-int, its related LTR

(RLTR5_MM) and RLTR4_MM (LTR flanking Murine
Leukemia virus elements) had less than 25% of mapping.
In the ERVK class, reads corresponding to the IAPEz-int
annotation had 28% of mapping. This annotation repre-
sents the internal portion of IAPLTR1 elements, which
are the young active elements from the IAP subtypes
[28]. Finally, MERVL-int annotations, which represent
active members of the ERVL class, had only 30% of map-
ping [29].
As depicted in Fig. 1b and Additional file 1: Figure

S1A, using PE library improved the mapping step by
producing a higher percentage of uniquely-mapped

Table 2 Statistics for the different mappers with human chromosome 1 simulation data

Algorithm Library Mode Mapping percentage True Positive rate Memory in gbytes Running Time in minutes Output size in Mbytes

bowtie PE unique 96.12725 99.99703 1.07 4.00 717.33

bowtie SE unique 96.26772 99.98760 0.80 1.67 381.52

bowtie2 PE unique 97.58530 99.99163 1.42 36.00 720.57

bowtie2 SE unique 96.25897 99.93671 1.33 25.33 375.46

Bwa aln PE unique 97.58600 99.99135 3.01 13.67 703.84

Bwa aln SE unique 98.40958 98.52603 2.18 6.33 381.22

Bwa mem PE unique 97.57669 99.99745 5.65 8.33 715.38

Bwa mem SE unique 96.28285 99.98096 5.45 4.67 379.88

novoalign PE unique 97.83211 99.99187 8.31 99.67 745.17

novoalign SE unique 96.28793 99.98755 8.31 21.00 385.94

STAR PE unique 97.79129 99.99166 18.12 2.33 693.70

STAR SE unique 96.29801 99.96226 17.71 1.00 363.12

bowtie PE random 99.95306 97.78786 1.07 4.00 722.46

bowtie SE random 99.98993 97.48616 0.80 2.33 383.45

bowtie2 PE random 99.99967 98.68378 1.42 47.00 738.73

bowtie2 SE random 99.97064 97.42861 1.33 35.67 391.06

Bwa aln PE random 99.99998 98.68727 3.01 13.67 733.20

Bwa aln SE random 99.99814 97.47704 2.18 7.33 387.77

Bwa mem PE random 99.99998 98.69222 6.05 9.33 744.88

Bwa mem SE random 99.99998 97.47710 5.26 3.00 397.18

novoalign PE random 99.99998 98.68797 8.31 100.67 748.47

novoalign SE random 99.99998 97.48725 8.31 27.67 388.19

STAR PE random 99.94355 98.68767 18.12 3.33 709.61

STAR SE random 99.99103 97.47578 17.70 2.00 378.46

bowtie PE multi 99.95306 97.41469 1.09 4.33 1032.87

bowtie SE multi 99.98993 97.47888 0.82 2.00 540.64

bowtie2 PE multi 99.99998 85.55682 11.92 71150.67 81772.06

bowtie2 SE multi 99.99998 77.59895 6.34 62006.33 123387.84

novoalign PE multi 99.99998 98.68698 8.31 83.67 800.39

novoalign SE multi 99.99998 97.48601 8.31 24.00 572.07

STAR PE multi 99.94355 98.69066 18.12 4.00 754.66

STAR SE multi 99.99103 97.47921 17.64 2.00 541.40

Values correspond to the average values of three independent simulated libraries with a 10X coverage. SE and PE refer to single end and paired end, respectively.
Post-mapping filtering were applied for Bowtie2, Bwa mem and aln algorithms in order to extract uniquely-mapped reads
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reads: more precisely, 6 and 2% of additional uniquely-
mapped reads were gained in genome-wide mouse and
human simulations, respectively. However, there was a
strong inter-TE family variability in the improvement
(Fig. 3c and Additional file 4: Figure S4C). Mouse
L1MdGf_II, L1MdA_III and L1MdF_I (Fig. 3c) and hu-
man L1PA3 and L1PA2 (Additional file 4: Figure S4C)
showed a 30% mapping gain when a PE library was used.
The gain was slightly less satisfactory for the youngest

LINE1 families compared to the slightly older families
mentioned above, with human L1HS gaining 22% (Add-
itional file 4: Figure S4C) and mouse L1MdTf_I,
L1MdTf_II and L1MdA_I gaining 10% only on average
(Fig. 3c). Similarly, in the human genome, mapping was
improved by 20% or more when using PE over SE librar-
ies for the youngest, hominoid-specific SVA subtypes
(SVA_E and SVA_F) and the youngest subfamilies of the
AluY type (AluYa5 and AluYb9)(Additional file 4: Figure
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S4C) [29–31]. These results demonstrate the importance
of paired-end sequencing libraries, especially for the
study of evolutionarily young TE families, provided that
they are not completely identical in sequence.

Discussion
Because of their repetitive nature, TE-derived sequences are
complex to analyze. The objective of the present study was
to provide objective guidelines for the analysis of transpos-
able elements within high-throughput sequencing datasets.

Sample and library preparation
At the beginning of a project, experimental design and
sample preparation should be conceived in order to re-
trieve as much information as possible. Chhangawala et al
(2015) already showed that single-end reads increased the
number of multi-mapped reads. In contrast, paired-end
reads lower the amount of multi-mapped reads and in-
crease splicing event detection [32]. Our study confirms
the importance of using paired-end library instead of
single-end when analyzing TE-derived reads, especially for
evolutionarily young families such as SVA_F, AluYb9 and
L1HS in the case of human-based analyses. Read length is
another parameter to take into consideration when TE-
derived reads are sequenced. Chhangawala et al (2015)
showed that longer reads increased the uniqueness of se-
quenced fragments. Longer fragment size should also help
during the mapping step, because the chance for the se-
quenced fragment to fall into the boundaries or to cover a
polymorphism will increase with the size of the fragment.
As a result, the mappability of the given fragment should
increase. However, having longer reads is a limitation of
the Illumina technology. It is also a limiting factor in some
applications, such as ChIP-seq, CUT&RUN and WGBS,
where fragment size is determined by obligate fragmenta-
tion steps (sonication, micrococcal nuclease digestion or
bisulfite-induced DNA degradation).

Mapping
After quality control, read alignment against a reference gen-
ome is the first step in NGS analyses. Appropriate parame-
ters and algorithms are needed to align as many TE-derived
reads as possible. BWA algorithms (mem and aln) and bow-
tie2 have no defined parameter for retrieving uniquely
mapped reads. In such case, post-mapping filtering has to be
applied. In contrast, Novoalign, bowtie and STAR have dedi-
cated parameters to report uniquely-mapped reads. However,
bowtie does not capitalize on the information of paired-end
reads. If a 5’end read -R1 read- is uniquely mapped and the
corresponding 3’end read -R2 read- is a multi-mapper, bow-
tie discards the valid alignment from the R1 read. In contrast,
Novoalign and STAR use the information from the R1 read
and increase the percentage of mapping with paired-end
library.

In the multiple-hit mode, Bowtie2 searches for up to k
valid alignments per read, where k is a threshold given
by the user (k was set to 5000 in this study). In Bowtie2’s
reference manual, it is mentioned: “Bowtie 2 does not
guarantee that the k alignments reported are the best
possible in terms of alignment score” (http://bowtie-bio.
sourceforge.net/bowtie2/manual.shtml). Other align-
ments with different alignment scores are reported in
addition to the best alignment, which creates a low true
positive rate and a bigger BAM file compared to STAR
and Novoalign (Tables 1 and 2).
We found that reporting multi-mapped reads or reporting

randomly one position increases the percentage of mapping
close to 100% but at the cost of lower precision, which con-
firms previous results [11, 33]. Discarding multi-mapped
reads is a real cost for evolutionary young families due to
quasi-identical copies. However, these families are the ones
that are mostly regulated in the genome, by repression his-
tone marks and DNA methylation [34, 35]. As a conclusion,
using multi-mapped reads or reporting randomly one pos-
ition has to be done with caution to avoid discarding the
most important information of the TE fraction of the
genome.
As with the uniquely-mapped reads, STAR and Novoalign

were the best compromise to report multi-mapped reads or
a random valid alignment. However, Novoalign had a big dis-
advantage, its computing time, especially using PE reads.
Starting with more than three millions of paired-end reads
simulated from the mouse chromosome 1, Novoalign ran-
domly aligned this set of reads in 4.5 h (Tables 1 and 2),
while STAR completed the same task in 5 min. As the
amount of sequenced reads and the number of projects with
sequencing data are growing, fast algorithms are requested.
This is why we recommend using STAR for the mapping
step. Nevertheless, specific parameters have to be adapted for
the study of transposable elements. This is especially import-
ant for young families that display a low mappability score.
Unadapted parameters can mask relevant results or on the
contrary, create incorrect conclusions. By default, STAR re-
ports up to 10 alignments per read. The ENCODE project
recommends to report up to 20 alignments per reads for
long RNA sequencing pipeline. These guidelines are adapted
for pseudogenes. In the case of TE studies and genomes with
high TE content, these parameters have to be tuned (see
Methods). A previous study based on ChIP-seq data esti-
mated that a threshold of 10,000 positions per read is opti-
mal in term of computing time and storage, without
significant loss of sequence information (0.25% of reads elim-
inated on average) [35].

Quantification of transposable elements
To highlight TE regulation, transposable element quanti-
fication is estimated and compared in different biological
conditions. Dedicated methods have to be applied

Teissandier et al. Mobile DNA           (2019) 10:52 Page 9 of 12

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml


according to the parameters used during the alignment
step. We demonstrated that quantification methods rely-
ing on uniquely-mapped reads underestimated the abun-
dance of the youngest TE families, because of their low
level of sequence diversity and consequently, low map-
ping performance.
When using reads with multiple hits, we found that

reporting randomly one position or weighting multi-
mapped reads with the number of hits give rise to the
same estimation. However, reporting multi-hits is more
consuming in terms of storage and time. In the case of
mouse simulation, the output is five times bigger (500
Mbytes to 2500 Mbytes) when multi-hits are reported in
comparison to the random mode. The increase in the
rate and amount of sequencing data represents a high
storage challenge for the community. Data analyses
within TE studies has to be conducted with taking care
of the amount of processed data. For this reason, we rec-
ommend to report randomly one position per read.
We also studied the specific case of TEtools, which

quantifies TEs using randomly reported reads with Bow-
tie or Bowtie2. However, this tool considers a list of TE
sequences extracted from a genome or manually anno-
tated- as genomic references for the mapping. We
showed that, in the case of available assembled genomes,
performing the mapping onto the reference genome
gives rise to a better estimation of TE quantity in com-
parison to the strategy applied by TEtools. Indeed, using
only a part of the genome assembly introduces a bias in
the alignment by forcing the mapping to this genome
extract, the extent of which results from a combination
of technology-specific sequencing errors and mismatch
allowance in the alignment settings. Consequently, re-
gions represented in this genome extract are overesti-
mated. The method used by TEtools is analogous to a
strategy where TE consensus sequences provided by
RepBase are used for the mapping step [36]. Aligning
reads against consensus sequences should also lead to an
overestimation of the abundance of TEs; it adds more-
over another confounding factor by allowing more mis-
matches. In the case of available assembly genomes, we
therefore recommend to align reads with the reference
genome and extract expression with FeatureCounts.
Then, for RNA-seq analyses, gene quantification can be
performed in the same time taking, advantage of only
one step. Gene and transposon-based differential expres-
sion should be called in the same analysis, as it is done
in SQuIRE and TEtranscripts.

Transposable elements and their evolution
Human and mouse genomes are estimated to contain
48.5 and 41.8% of TEs, respectively. Interestingly, using
genome-wide simulation on these species, we observed a
higher mappability in the human genome compared to

the mouse one. These differences likely reflect a more
recent activity of certain TE families in the mouse gen-
ome, and therefore a higher proportion of sequence
homology among TE copies. The overview we provide
here on the TE-specific mappability rate should help re-
searchers qualifying their conclusions made on specific
families. For instance, in the mouse, using uniquely-
mapped reads on L1 young families, IAPEz and MERVL
families will undoubtedly induce an underestimation of
their abundance in NGS datasets. We demonstrate and
quantify here that significant improvement − 20 to 30%
of mapping gain- can be obtained for these young TE
families by using PE library. This is truly important, par-
ticularly in RNA-seq datasets, as these families are the
ones that have more intact sequences, including at tran-
scription factor binding sites, and therefore the potential
for being transcribed.

Conclusions
By comparing different available algorithms with simu-
lated data generated onto the mouse and human ge-
nomes, we demonstrated the difficulty of analyzing
evolutionarily young TE families. Improvements can
nonetheless be gained if the following recommendations
are followed:

1) paired-end library should be used to increase the
uniqueness of sequenced fragments.

2) During the alignment step, STAR is the best
compromise between efficiency and speed.
Parameters have to be set according to the TE
content.

3) Reporting randomly one position and using
FeatureCounts to quantify TE families gives the
best estimation values.

4) When TE annotation on an assembled genome is
available, mapping and quantification should be
done with the reference genome.

5) Evolutionarily young families suffer from low
mappability rate and are severely underestimated if
uniquely-mapped reads are reported.

Methods
Reconstruction of repeatMasker annotations
Transposon annotations were downloaded from the
RepeatMasker website (Smit, AFA, Hubley, R & Green,
P. RepeatMasker Open-4.0. 2013–2015 <http://www.
repeatmasker.org>). As described in Bailly-Bechet et al.,
2014, a dictionary was constructed for LTR retrotran-
sposons that associated elements corresponding to the
internal sequence and those corresponding to LTR se-
quences. With the latter and the RepeatMasker database,
fragments of transposable elements corresponding to the
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same copy were merged if the distance between them is
less than 1000 bp.

Simulation data pipeline
2x100bp paired-end reads were simulated with ART
v2.5.8 [22] mimicking Illumina HiSeq 2500 technologies
(−m 200 –s 10). Simulated reads overlapping with re-
constructed repeatMasker annotation were kept using
Bedtools intersectBed v2.21.0.

Mapping comparison
The following tools were used: Bowtie v1.0.0, Novoalign
v3.2.11, STAR v2.5.2b, Bowtie2 v2.1.0, BWA aln v0.7.15,
BWA mem v0.7.15. All the mappers were run with four
threads (except for Novoalign that can be run with only
1 thread). Parameters used for the unique, random and
multiple mode are detailed in Additional file 5.

Quantification comparison
The following tools were compared. Command lines and
parameters are detailed in Additional file 5.

repEnrich
as recommended, reads were first mapped with Bowtie
v1.2 reporting unique alignments and retrieving multi-
hits in fastq files (−m1 --max multimap.fastq). TE fam-
ilies were quantified using repEnrich v0.1.

TEtools
repeatMasker annotation was first extended 300 bp upstream
and downstream in order to map reads located in the bound-
aries. TEtools v1.0.0 was used with Bowtie2 v2.2.4.

TEtranscripts
STAR v2.5.2b was used with the recommended parame-
ters (−- outAnchorMultimapNmax 100 --outFilterMulti-
mapNmax 100). TEtranscipts v1.5.1 was run using
unique and multiple modes.

SQuIRE
To compare TE-estimated abundance with other tools,
the same TE annotation was provided to the clean folder
(−c option in SQuIRE count). SQuIRE v0.9.9.92 was run.

FeatureCounts unique, random and multiple alignments
featureCounts v1.5.1 was used with specific options (−s
0 -p). The option -M was used for random and multiple
counting methods. In the multiple counting method,
−-fraction option was also used in order to weight the
counts for multi-mapped reads. Quantification of TE
family was performed by summing all copies from each
family.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13100-019-0192-1.

Additional file 1: Figure S1. Comparison of mapper efficiency with
human simulated data. (A) True Positive (TP) rate versus mapping
percentage with chromosome 1 of the human genome. The dots are the
average values of three independent simulated libraries. SE and PE refer
to single end and paired end, respectively. (B) Use memory, run time and
size of the BAM file with chromosome 1 of the human genome. The
error bars correspond to standard deviation from three independent
simulated libraries.

Additional file 2: Figure S2. Comparison of the methods for the
quantification of human retrotransposon families. (A) Comparison of the
estimated abundance versus the true abundance for different
quantification methods using human simulated TE-derived library. An R-
squared value (R2) was calculated to evaluate the correlation of estimated
values between simulated values (B) Comparison of the estimated abun-
dance versus the true abundance for TEtools and when randomly re-
ported reads are used for the TE quantification with FeatureCounts
(FeatureCounts Random alignments). A PE genome-wide library (10X
coverage) was simulated using the human genome with STAR for the
mapping.

Additional file 3: Figure S3. Impact of read depth in TE families
quantification. (A) Estimated abundance for different quantification
methods and true abundance (Simulated counts) using 5X, 10X, 25X, 50X
and 100X coverage on specific mouse TE families. Only these TE families
were used for the quantification. (B) Same as in A), with specific human
TE families.

Additional file 4: Figure S4. Mappability of the different human
retrotransposon families. (A) True Positive (TP) rate versus mapping
percentage per TE family using STAR and paired126 library and human
simulated TE-derived reads. Black triangle represents the True Positive rate
and percentage of mapping for the entire simulated library (B) Mapping
percentage versus age of L1Md families. Dot colors represent the True
Positive (TP) rate. Ages are obtained from previously published diver-
gence analysis study (25) (C) Gain of True Positive in percentage versus
gain of mapping in percentage when PE library are used in comparison
to SE library.

Additional file 5. Supplementary methods.
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