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Abstract

In the last two decades, great advances have been made studying the immune response to human
tumors. The identification of protein antigens from cancer cells and better techniques for eliciting
antigen specific T cell responses in vitro and in vivo have led to improved understanding of tumor
recognition by T cells. Yet, much remains to be learned about the intricate details of T cell — tumor
cell interactions. Though the strength of interaction between T cell and target is thought to be a
key factor influencing the T cell response, investigations of T cell avidity, T cell receptor (TCR)
affinity for peptide-MHC complex, and the recognition of peptide on antigen presenting targets or
tumor cells reveal complex relationships. Coincident with these investigations, therapeutic
strategies have been developed to enhance tumor recognition using antigens with altered peptide
structures and T cells modified by the introduction of new antigen binding receptor molecules. The
profound effects of these strategies on T cell — tumor interactions and the clinical implications of
these effects are of interest to both scientists and clinicians. In recent years, the focus of much of
our work has been the avidity and effector characteristics of tumor reactive T cells. Here we
review concepts and current results in the field, and the implications of therapeutic strategies using
altered antigens and altered effector T cells.

T cell - tumor antigen interactions TAA can be classified into five groups based on their ori-

Antigens recognized by tumor reactive T cells

One of the key advances in the study of tumor immunol-
ogy has been the identification of specific protein antigens
recognized by tumor reactive T cells. Both MHC class I and
MHC class II-restricted peptides have been identified from
tumor-associated antigens (TAA) on a variety of human
cancers. The identification of TAA has dramatically
improved our ability to study the interactions between
tumor reactive T cells and their targets, and has been the
foundation of new clinical strategies to treat cancer
patients [1-4].

gin, structure, and tissue expression. Several of the earliest
identified TAA were melanoma-melanocyte differentia-
tion antigens [5-7]. These antigens, such as MART-1,
gp100, and tyrosinase, are expressed exclusively by cells of
the melanocyte lineage. They are considered to be shared
TAA because they are expressed by the vast majority of
melanomas tested [5-10]. A second group of antigens
called cancer/testis antigens are expressed by normal testis
and a variety of human tumors including cells from
melanoma, breast, bladder, colon, lung, head and neck,
gastric, ovarian, neuroblastoma, and prostate cancers [11-
14]. These antigens are not universally expressed by
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tumors of a particular histology, but instead are seen in
only a small fraction of any tumor type [15-22]. A third
group of antigens are derived form normal viral proteins,
and are found exclusively on tumors that are induced by
viral infection of human cells [11-13]. This category
includes antigens such as EBNA-3 on Epstein Barr virus-
induced lymphomas and the E6 and E7 proteins on
human papilloma virus-induced cervical cancers [23-25].
The fourth group of antigens is characterized by aberrant
expression in tumors relative to normal tissues [12,13].
Many of these proteins have been implicated in tumori-
genesis or tumor growth and progression. Antigens such
as Her-2/neu and p53, each of which may be highly over-
expressed by tumor cells relative to normal tissues, fall
into this category [26-32]. The final group of antigens is
characterized by protein structures that contain mutations
in the sequence [12,13]. These mutations alter the
processing, presentation, or recognition of the epitope by
the immune system. Such mutations have been described
for the B-catenin and CDK4 genes, as well as others
[25,33,34]. With the wide variety of antigens available for
recognition by the immune system, it is not surprising
that proteins expressed by many common tumors can be
targeted by T cells.

To date, tumor reactive T cells have been identified that
recognize dozens to hundreds of different peptide
epitopes. Epitopes may be presented by MHC class I for
CD8 T cell recognition, or by class II molecules for CD4 T
cell recognition. Epitopes for TAA restricted by HLA A, B,
C, and DR alleles have been identified [11-13]. Epitopes
with the most clinical relevance are those that are
restricted by the most common MHC molecules (HLA-A2,
C7, A1, B44, A3, B7, and DR4). These epitopes can be tar-
geted in treatments for the greatest number of patients
[35].

T cell avidity and tumor cell recognition

Avidity describes the strength of interaction between a T
cell and its target antigen. Avidity is usually measured via
T cell activation by a target cell, and is a sum of several
contributing components, such as T cell receptor (TCR)
expression levels, TCR/peptide/MHC binding affinity, co-
stimulatory molecule expression, and the extracellular
microenvironment. Experimental evidence suggests that
avidity may exert fine control over the response of an acti-
vated T cell by influencing the binding and signaling of
TCR complexes on the T cell surface. Certain T cell
responses are extremely sensitive to activation by antigen.
It has been reported that one TCR/peptide/MHC interac-
tion can lead to activation of a T cell as measured by Ca+2
mobilization, three interactions lead to target cell lysis,
and ten interactions lead to full activation as measured by
T cell proliferation [36]. However, other more commonly
used methods for measuring T cell function, such as
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cytokine secretion or cytolysis, fail to detect T cell
responses unless far more peptide is encountered on the
target. These assays are commonly performed using pep-
tide loaded antigen presenting cells (APC) as targets in co-
culture with T cells. The avidity of a T cell population can
be defined by the concentration of antigen required to
elicit a T cell response after target loading. In these assays,
a high avidity T cell requires less antigen (< 1 nM peptide
loaded on an APC) for activation than a moderate (1-100
nM peptide loaded on an APC) or low (>100 nM peptide
loaded on an APC) avidity T cell [37].

Many investigators have demonstrated a correlation
between T cell avidity and target recognition of T cell pop-
ulations that recognize virally infected targets, murine
tumor models, and human cancers. The first reported rela-
tionship between T cell avidity and target cell recognition
examined interactions between polyclonal T cell popula-
tions and the protein antigen gp160 on HIV infected tar-
get cells [38]. In this study, immunization with high doses
of antigen led to expansion of T cells with low avidity,
whereas immunization with low doses of antigen led to
expansion of T cells with high avidity. In a second report,
it was shown that if high avidity T cells were exposed to
high levels of antigen on targets, activation induced T cell
death resulted [39]. These studies illustrated that T cell
avidity plays an important role in both T cell priming and
T cell response to antigen. Zeh et al. subsequently exam-
ined whether T cell avidity also influenced recognition of
antigens expressed by tumor cells using a murine
melanoma model [4]. In this study, high avidity T cells
were raised to the antigens TRP-2 or p15E by stimulating
T cells with very low amounts of antigenic peptide. In
adoptive therapy experiments, the resultant high avidity T
cells were more effective at eliminating lung metastases
from B16 melanoma than low avidity T cells. Similar
results have been seen with human T cells. Dudley et al.
examined the response of individual T cell clones that rec-
ognized the melanoma TAA gp100:209-217 [40]. In co-
culture with targets, the peptide load required for
response by individual T cell clonotypes varied by several
logs. Furthermore, there was a correlation between the rel-
ative avidity of the T cell clonotypes and their ability to
recognize tumor cells. Taken together, these mouse and
human results suggest that the relative sensitivity of a T
cell to antigen influences its ability to recognize tumors,
and that high avidity T cells are required for efficient anti-
tumor immunity.

Though it is intuitive that high avidity T cells would better
recognize tumors than low avidity T cells, there are reports
of T cell populations which do not follow these avidity
rules. Many T cells have been raised for TAA recognition
through stimulation of naive lymphocytes by peptides
selected according to known MHC binding motifs [41].
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The 369-376 peptide from Her-2/neu has generated con-
flicting reports regarding the relationship between T cell
avidity and tumor target recognition. Several groups have
identified T cells that recognize Her-2/neu:369-376 pep-
tide as well as Her-2/neu* tumor cells [26,27,42-44].
However, others have identified high avidity T cells that
recognize peptide loaded targets but not tumors. Two
clinical trials of immunization with the Her-2/neu:369-
376 peptide resulted in the detection of T cells reactive
with peptide loaded cells but not tumor cells [45,46].
These contrasting results suggest that the relationship
between avidity and target recognition in vivo is complex,
and that it is likely under the influence of other significant
factors. Identifying and controlling these other factors
may be vital if T cells with the genetic capacity and suffi-
cient avidity to recognize TAA are to function as potent
anti-tumor effectors.

Experimental studies of TCR dffinity and T cell avidity
TCR affinity is the strength of the molecular interaction
between the receptor and peptide-MHC complex. TCR
affinity has been proposed by some as the single most
important component of T cell avidity, which is in agree-
ment with current models of T cell activation that are
based on the stability of TCR/peptide/ MHC contact. How-
ever, experimental evidence can be found both supporting
and opposing this point of view. For example, several
groups have reported that bright tetramer staining, and
thus high affinity TCR/peptide/MHC binding, correlates
with high avidity T cell-target interactions [47,48]. On the
other hand, other groups have found no correlation
between tetramer binding and T cell avidity [49,50]. In
several investigations, we have evaluated the avidity and
affinity of T cells and TCR based on 1) recognition of
APC's loaded with low concentrations of peptide, 2) rec-
ognition of tumor targets, or 3) an ability to signal with-
out CD8 coreceptor binding. These studies, the results of
which are detailed below, have shown that T cells with
identical receptors may behave with different avidities in
different circumstances.

T cell clones with identical TCR's may have different rela-
tive avidity for peptide loaded APC targets. T cell clones
that recognize the HLA-A2 restricted TAA epitope
gp100:209-217 were isolated from patients with malig-
nant melanoma. DNA sequence analysis of the TCR subu-
nits was performed on the clones, and several clones with
identical receptors (sister clones) were identified. Assays
measuring cytokine secretion by the sister clones after
stimulation with peptide loaded APC targets or
melanoma tumor targets revealed different relative avidi-
ties and differing abilities to recognize various tumor
lines. These observations are not confined to melanoma
reactive T cells or human TCR. Sister T cell clones recog-
nizing the Her-2/neu:369-377 peptide have been isolated
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with different reactivities against the same Her-2/neu
expressing target cells, and studies in animal models have
also found T cells sharing the same TCR that have mark-
edly different avidities [51].

High avidity T cells may have receptors that bind peptide-
MHC complex with low affinity. A gp100:209-217 reac-
tive T cell clone (R6C12) isolated from a patient with
malignant melanoma was shown to have extremely high
avidity and recognize HLA-A2+gp100 positive tumor cells
[52,53]. Despite the high avidity of the R6C12 cells, they
stained poorly with gp100:209-217 tetramers, suggesting
that they had low affinity receptors. Tetramer staining by
these cells was enhanced using a modified gp100 peptide
that more tightly bound the HLA-A2 molecule [54]. Bind-
ing of modified tetramers was easily inhibited by anti-
CD8 mADb, providing further evidence that despite the
high avidity of CTL clone R6C12, its TCR had relatively
low affinity. We have used gene transfer studies to charac-
terize the R6C12 TCR in more detail [55,56]. The R6C12
receptor was cloned, and the receptor was transferred to
Jurkat cells using a retroviral construct. These cells,
derived from a human T cell lymphoma, do not express
the CD8 coreceptor. Transduced Jurkat cells recognized
peptide antigen on loaded APC targets with high avidity
yet failed to recognize tumor cells, suggesting that the
affinity of the receptor for peptide-MHC was insufficient
for T cell signaling without coreceptor binding. Subse-
quently, the R6C12 TCR was transferred to peripheral
blood T cells from normal donors [57]. These cultures, in
contrast to transduced Jurkat cells, demonstrated the high
avidity of the original R6C12 T cell clone. In sum, these
data showed that the high avidity of the R6C12 T cell was
not due to a high affinity TCR.

Finally, low avidity T cells may have receptors that exhibit
characteristics of high affinity TCR/peptide/MHC bind-
ing. We have described a tyrosinase reactive T cell with
low-moderate avidity characteristics in assays using pep-
tide loaded APC targets, but with the high affinity TCR
characteristic of CD8 independence. Of note, this T cell is
also capable of recognizing tumor cell targets. A T cell
clone recognizing a HLA-A2 restricted epitope from tyro-
sinase was isolated from the CD4+ population of a patient
with malignant melanoma, and the receptor was used for
TCR transfer studies like those described above. Both the
original human T cell clone and transduced murine 580.-
B-cells, which lack human CDS8, were able to recognize
HLA-A2+tyrosinase* tumor cells, even though greater than
100 ng/ml of peptide on targets was required to stimulate
IL-2 secretion in APC co-culture assays. In direct contrast
to the R6C12 TCR described above, this TCR from a low
avidity T cell clone binds and signals in the absence of
CD8 coreceptor. Taken together, our studies suggest to us
that T cell avidity does not necessarily predict the affinity
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of the TCR, and that T cells are likely able to modulate
their avidity independent of TCR affinity.

Other factors influencing T cell recognition of targets

If T cells have the capacity to alter their antigen respon-
siveness by factors independent of their antigen receptor,
molecular mechanisms other than the TCR must be impli-
cated. Investigations by others have described numerous
mechanisms by which T cell function may be altered in
cancer patients. Mizoguchi et al. reported that T cells from
mice bearing MCA 38 colon carcinoma tumors had
reduced expression of CD3{ chain expression on their sur-
face, and that they had reduced levels of the tyrosine
kinases p56/t and p59/" [58]. Given that CD3{ chain,
p56ikand p59/ are required for TCR-mediated signaling
to occur [59], decreased expression of these molecules in
tumor bearing hosts will result in impairment of T cell
immunity. It was recently reported that the levels of L-
arginine in the cell culture medium could regulate CD3{
chain expression [60] and that the enzyme arginase I pro-
duced by macrophages may regulate the levels of L-
arginine in cancer patients [61]. Other investigators have
shown that tumor bearing mice have lower levels of the
transcription factor NFkB [62]. These signaling defects
have been confirmed in several mouse tumor models and
in patients with colorectal carcinoma, renal cell cancer,
head and neck cancers, and other malignancies [63-67].
Other metabolic pathways also appear to regulate T cell
function, such as oxidative stress from hydrogen peroxide
released by cells of the monocyte/macrophage lineage
[68] and the level of tryptophan metabolites resulting
from indoleamine 2,3-dioxygenase expression by macro-
phages [69,70]. Clearly, the influence of tumors on the
physiology of the host may impact the ability to mount an
immune response to malignancy by myriad mechanisms.

The CD8 coreceptor and its influence on the recognition
of T cell targets deserve special emphasis. The CD8 core-
ceptor plays a critical role in the activation of some CD8+*
T cells by binding to the o3 domain of MHC class I and
recruiting the kinase p56/* to the CD3 complex [71]. As
discussed above, the dependence upon CD8 coreceptor
function by a specific T cell clone is greatly influenced by
the TCR/peptide/MHC binding characteristics of the cell.
Classically, CD8 is described as a T cell membrane of het-
erodimer [72,73]. Recently, a CD8 oo. homodimer form
has been described [74]. Transfection studies have shown
that the CD8 af3 heterodimer has higher affinity for MHC
class I and p56/* than the CD8 oo homodimer, and that
the a3 heterodimer more efficiently mediates T cell activa-
tion [74]. The ratio of CD8 o to CD8 oo as well as the
ability for CD8 af to co-localize with the TCR to lipid rafts
can have a profound impact on T cell avidity [51]. Future
investigations will further clarify the role of coreceptor
molecules in T cell tumor recognition, and may lead to
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new immunotherapy strategies based in part on T cell
coreceptor function.

Enhancing tumor recognition with modified
TAA

Enhancing the immunogenicity of TAA by enhancing
MHC-peptide binding

Tumor antigen based clinical trials have led to relatively
few clinical responses [75-80]. In addition, many cancer
vaccine trials show little evidence of anti-tumor immunity
in the peripheral blood of patients following vaccination
[78,81]. In an effort to enhance the immunogenicity of
known tumor antigens, investigators have introduced
modifications into the amino acid sequences of known
epitopes. Amino acid substitutions at MHC anchor posi-
tions in the antigenic peptide can lead to enhanced pep-
tide/MHC binding [82], and can enhance the
immunogenicity of an otherwise weakly immunogenic
peptide both in vitro and in vivo [83-86]. The melanoma
epitope gp100:209-217-2M is a well-studied example of
an anchor residue-substituted peptide. Substituting a
methionine for the native threonine at position 2
enhances binding of this peptide to HLA-A2 9-fold. More
importantly, this M substitution enhances the immuno-
genicity of the peptide in vitro and in vivo with the result-
ing T cells having the capacity to recognize tumor cells
[75,83].

Modifications of weakly immunogenic peptides at MHC
anchor residues can result in other desirable effects, such
as enhancing a peptide's stability in solution. The stability
of the weakly immunogenic HLA-A2 restricted peptide
antigen NY-ESO-1:155-163 is enhanced by an amino
acid substitution at an MHC anchor residue [82]. A substi-
tution of valine for cysteine at position 9 in the peptide
not only enhances binding to HLA-A2, but also prevents
disulfide bridge formation, thus eliminating dimerization
of the peptide in solution [85]. Similarly, a substitution of
a serine or alanine for the cysteine at position 2 of the
HLA-A1 restricted tyrosinase:243-251 decreases the
amount of peptide required to elicit T cell responses in
vitro by two to three logs [87]. This simple approach of
modifying the MHC binding residues of weakly antigenic
peptides represents a powerful strategy for activating T cell
populations that would otherwise be unresponsive to
stimulation by the native antigen.

Enhancing the immunogenicity of TAA by altering TCR
contact residues

It has been shown that immunization with xenogeneic
proteins can lead to enhanced immunity to the native pro-
tein. The genes encoding the human or rodent homologs
of several tumor antigens have been used to vaccinate
mice [41,88-90]. In these studies, the xenogeneic antigens
routinely resulted in greater immune responses, leading to
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improved anti-tumor immunity. It was speculated that
differences in the amino acid sequence between the xeno-
geneic antigen and the target antigen resulted in heteroc-
litic peptides (peptide analogs substituted at positions
other than MHC contact residues) that were capable of
inducing both effector and helper T cell responses. This
hypothesis was directly tested using a peptide from the
murine tumor antigen AH-1 [91]. Substituting an alanine
for a valine at position 5 increased the binding to the TCR
while having no impact on binding to the murine MHC I
molecule. This substitution increased the ability of the
AH-1 peptide to elicit CTL responses that protect mice
from challenges with AH-1 expressing tumors [91]. These
animal studies indicated that modifications to TCR con-
tact residues can enhance the immunogenicity of peptide
antigens.

Several investigations have also examined the response of
human T cells to peptides modified at TCR contact resi-
dues [92-94]. One such study identified a heteroclitic pep-
tide for the immunodominant HLA-A2 restricted epitope
from human carcinoembryonic antigen, CEA:605-613.
Substituting an aspartic acid for the asparagine at position
6, a TCR contact residue, enhances the capacity of this
peptide to elicit CEA reactive T cells that can recognize
CEA antigen on tumor cells [92]. Furthermore, clinical
responses have been reported in colon cancer patients
receiving a tumor vaccine comprised of autologous den-
dritic cells loaded with this heteroclitic CEA peptide [95].
Based on these promising results, other groups have eval-
uated modified peptides and identified heteroclitic pep-
tides from several tumor antigens [82,94,96]. These
modified peptides represent a promising approach for
vaccinating cancer patients with otherwise weakly immu-
nogenic antigens.

Influence of peptide modifications on the T cell repertoire
Despite the ability of modified peptides to elicit strong
anti-tumor immune responses when used for vaccinating
patients, these peptides have generally failed to induce
effective anti-tumor immunity and tumor regression
[75,77]. Among several possible explanations for these
results, one must consider whether modified peptides will
optimally stimulate the TAA reactive T cell repertoire in
vivo. The T cell repertoire has tremendous diversity due in
part to the structure of the TCR molecule. TCR o and
chains consists of a variable (V) segment, a joining (J) seg-
ment, and a constant (C) region with the  chain also con-
taining a diversity (D) region. Germline rearrangements
occurring within the TCR o and B loci during T cell devel-
opment randomly join different V-J or V-D-] regions into
a single transcriptional unit. The majority of the TCR
diversity is the result of the random insertion or deletion
of nucleotides at the junctions between the V and ] seg-
ments for the o chain, and between the V and D and the
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D and ] segments for the B chain. It is these V-] and V-D-]
junctions of the oo and B chains respectively that encode
the putative third complementarity determining region
(CDR3), the structural feature of the TCR critical for anti-
gen recognition [97,98].

Though initial reports suggested that there was a limited
TCR repertoire used by tumor reactive T cells [99-104], we
and others have failed to find evidence of restricted TCR V
gene usage [105-112]. When we performed a detailed
analysis of the TCR V genes used by MART-1:27-35 and
gp100:209-217 reactive T cells, we found that 19 (out of
a possible 46) different TCR V were used by the MART-
1:27-35 reactive T cell clones [105,108,110,113-116],
and 16 different TCR VB were used by gp100:209-217
reactive T cell clones (unpublished). Further, no homol-
ogy was found within the CDR3 regions of the TCR 8
chains of MART-1:27-35 or gp100:209-217 reactive T cell
clones. These observations suggest that there is likely to be
considerable TCR diversity among tumor reactive T cells.

Amino acid substitutions in peptides at the TCR contact
residues can influence TCR binding and alter the TCR rep-
ertoire. This was elegantly demonstrated in a study using
single TCR chain transgenic mice. Animals expressing the
transgene for a single TCR subunit chain on all T cells were
vaccinated with the native moth cytochrome C (MCC)
peptides or peptides containing non-conservative amino
acid substitutions at the TCR contact residues. MCC reac-
tive T cell hybridomas were isolated from the T cell reper-
toire after vaccination. By introducing a positively charged
amino acid residue into the immunizing peptide, the
investigators could induce the presence of negatively
charged amino acids in the non-transgenic TCR chains of
reactive clones [117]. Thus, alterations in the immunizing
peptide influenced the animals' T cell repertoire signifi-
cantly. We have seen similar changes in the TCR repertoire
of patients after vaccination with peptide antigens modi-
fied at MHC anchor residues. We found that after vaccina-
tion with a gpl100:209-217 peptide containing
methionine instead of a threonine at position 2, T cell
clones could be isolated from patients that recognized the
modified peptide but not the native peptide or tumor cells
[118]. One patient was identified from whom gp100:209
specific tumor reactive T cell clones could be isolated prior
to vaccination. After vaccination, none of the peptide reac-
tive T cell clones isolated from his peripheral blood were
able to recognize tumor cells. These results indicate that
even changes in the antigenic peptide which do not face
the TCR can impact on the TCR repertoire. Given these
observations, the potential effects on the T cell repertoire
must be considered when contemplating vaccine strate-
gies using substituted peptides.
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Enhancing tumor recognition by modifying T
cells

Generating tumor reactive T cell populations by TCR
transfer

Generating an effective anti-tumor response in vivo
requires the presence of T cell precursors capable of recog-
nizing TAA. In many cancer patients, TAA reactive precur-
sors can not be expanded from harvested tumor tissue,
lymphoid tissue, or peripheral blood samples. It is not
clear whether this is due to the low frequency of T cells
against self-antigens, which comprise the majority of
shared TAA, or due to an inability to activate or induce
proliferation of reactive cells in vitro. A potential solution
for these patients is to engineer tumor reactive T cells from
naive lymphocytes using gene therapy techniques. The
validity of this approach has been established in pre-clin-
ical studies briefly described above: through the use of
specially designed DNA constructs, gene modification of
effector T cells in vitro has enabled investigators to re-
direct the specificity of T cell populations and T cell clones
toward TAA. The majority of work in this area has used
single chain antibody constructs bound to intracellular T
cell signaling domains, although several investigators
have transferred naturally occurring two-chain TCR mole-
cules with their associated activities.

Redirecting T cell specificity through TCR gene therapy
requires the transfer of naturally occurring TCR o and 3
chains to alternate effectors. TCR gene therapy has poten-
tial advantages over other adoptive immunotherapy strat-
egies, such as the relative uniformity of the therapeutic
agent and the precision with which the transduced T cell
population can be measured before and after treatment.
The feasibility of redirecting T cell specificity by TCR gene
transfer was demonstrated by Dembic et al. in 1986 [119].
With the identification of the first shared tumor antigens
for human melanoma in the early 1990's [120], we set out
to transfer TAA recognition to a naive lymphocyte popu-
lation using this strategy. A TCR recognizing the
melanoma antigenic peptide MART-1:27-35 was chosen
for initial studies, since MART-1 is expressed by most
melanomas and the epitope is restricted by the predomi-
nant MHC allele expressed in the United States, HLA-A2.
The unique TCR o and 3 chain sequences from two HLA-
A2 restricted, MART-1/Melan A reactive T cell clones were
identified [105]. The Jurkat cell line was co-transfected
with plasmids containing the oo and B chain genes, and
transfected cells were cloned in limiting dilution. Expres-
sion of the introduced TCR was confirmed, and the func-
tional capacity of transfected clones with varied levels of
TCR expression was determined by co-culturing the trans-
duced population with peptide loaded target cells. Trans-
fected Jurkat clones secreted IL-2 in response to culture
with MART-1 loaded targets but not targets loaded with an
irrelevant peptide. Furthermore, the functional avidity of
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the transfected clones correlated with the expression level
of the transferred TCR. This was the first demonstration
that a TAA specific TCR could be transferred with its char-
acteristic antigen recognition to alternate T cells. Since
these studies, Jurkat cells have been used to evaluate the
transfer of other TCR's, including an HLA-A1 restricted
TCR specific for MAGE-3 [121,122].

Next, we attempted to transfer the MART-1:27-35 reactive
TCR to primary human T cells from peripheral blood
[123,124]. A retroviral vector, designated A7, was con-
structed for transducing lymphocytes with the MART-1
receptor. To facilitate incorporation of retrovirus into the
target cell genome, peripheral blood lymphocytes (PBL)
were stimulated to proliferate with anti-CD3 antibody
and IL-2 [125]. Transduced primary T cells were able to
recognize peptide loaded targets as well as HLA-A2+
melanoma cells. Clones generated from these cultures had
varied effector functions in response to co-culture with
target cells. Further analysis revealed that only those that
expressed the CD8 coreceptor were capable of recognizing
tumor cells. Clones which expressed only the CD4 core-
ceptor could only recognize targets loaded with an excess
of exogenous peptide, suggesting that the transferred
receptor was dependent upon CD8 for full receptor func-
tion. This study verified that T cells suitable for adoptive
immunotherapy could be re-directed to recognize tumor
cells by TCR gene transfer. TCR's specific for a number of
TAA and viral antigens associated with tumor develop-
ment have been successfully introduced into T cells via
retroviral gene transfer. These include TCR's specific for
melanoma antigens MAGE-3, gpl00, tyrosinase and
CAMEL, the widely expressed oncoprotein MDM?2, and
the Epstein-Barr Virus protein LMP2 expressed by Hodg-
kin's lymphoma [57,121,122,126-130]. Recently, the
transfer of a TCR into T cells with known specificity has
been shown to result in individual cells reactive to both
antigens [131,132]. It is therefore conceivable to engineer
individual T cells with the ability to recognize multiple
TAA.

The two-chain approach to TCR transfer has been modi-
fied by other investigators to address inherent problems
of the approach with TCR subunit expression and pairing.
When full-length TCR genes are introduced into normal T
cells the native TCR o and B chains may pair with the
exogenous TCR B and a chains respectively. This serves to
dilute the number of functionally paired TCR's on the cell
surface [133,134], and it raises the possibility that TCR's
with unknown specificity could be generated, possibly
leading to unexpected autoimmunity. To counter these
problems, chimeric TCR genes have been generated by
fusing the cytoplasmic signaling domain of CD3{ to
MAGE-1 reactive TCR o and 3 genes [135]. The chimeric
TCR gene successfully conferred MAGE-1 reactive func-
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tion to T cells following retroviral transfer. Notably, subu-
nit genes were shown to pair exclusively to each other
following retroviral transfer to T cells, preventing both
dilution of functional transferred TCR and generation of
TCR's with unknown specificity.

Viral vectors for TCR transfer

Several viral vectors have been investigated for human
gene therapy. Adenoviruses were the first viral vectors
used due to their abilities to infect both dividing and non-
dividing cells and to generate very high titer viral stocks.
However, adenoviral vectors lack the ability to provide
long-term transgene expression and are highly immuno-
genic. The viral vector of choice for many gene therapy
studies, particularly in haematopoietic cells, is the retrovi-
rus. Retroviruses infect only dividing cells and incorporate
into the host cell genome, resulting in long-term trans-
gene expression. They have low immunogenicity, provid-
ing a combination of beneficial properties for their use in
gene therapies. Removal of the structural genes (gag), gene
encoding enzymes for nucleic acid metabolism (pol), and
the envelope encoding genes (env) serves to prevent self
replication of the retrovirus following infection of target
cells. The transgene TCR subunits and, commonly, a gene
for cell selection encoding antibiotic resistance or a cell
surface marker are then inserted under the control of the
LTR and internal promoters. Our laboratory now employs
a vector in which segments of the LTR have been replaced
with elements of the cytomegalovirus (CMV) immediate
early gene promoter. This hybrid promoter allows higher
transcription levels in packaging cells leading to higher
retroviral titer. We use both an internal promoter and
IRES to allow for transcription of TCR genes and a selecta-
ble marker [136]. Other retroviruses that have been used
for transfer of genes to human cells include murine stem-
cell viruses and lentiviruses. Lentiviruses are a subset of
retroviruses that are more genetically complex than
MMLV. Their low immunogenic properties coupled with
the capability of infecting non-dividing cells have made
them a candidate for use in gene therapy. Recently, several
groups have demonstrated lentiviral based gene transfer
to primary human T cells [137-140]. While transduction
of non-dividing T cells is possible, it has been repeatedly
shown that T cell activation is still necessary for high level
transfer and expression of the transgene. Furthermore,
while use of retroviral based gene therapy is clinically
established, lentiviral based therapies are not yet
approved for clinical use.

Generating tumor reactive T cell populations with
chimeric antibody-receptors

Chimeric antibody receptors are another single chain
alternative to TCR for redirecting T cell specificity to TAA.
Chimeric immunoglobulin (cIg) receptors are composed
of the heavy and light chain variable regions of an anti-

http://www.translational-medicine.com/content/3/1/35

body fused to the transmembrane/intracellular portion of
a lymphocyte signaling molecule. The most commonly
used transmembrane/intracellular portions are from the
Fc eRI-y chain and the CD3-{ chain. clg receptors,
described shortly after the development of single chain Ab
molecules in the 1980's, are attractive constructs for mod-
ifying T cell specificity because their binding is not MHC-
restricted, and because cIg can recognize intact surface
proteins without the need for antigen processing and pres-
entation by the target cell [141]. TCR transduced T cells,
on the other hand, are more likely to demonstrate normal
antigen binding and signaling behavior, which may be
important for eliciting optimal CTL responses.

In 1993, Stancovski et al. reported anti Her-2/neu activity
by T cell hybridomas transduced with Her-2/neu specific
clg fused to the Fc €RI-y chain [142]. Subsequent studies
by other investigators have demonstrated the efficacy of
clg receptor constructs specific for the breast cancer anti-
gens Her3 and Her4 [143,144]. Ovarian cancer, lung can-
cer, melanoma, prostate cancer, and renal cell carcinoma
are among the tumors that have been targeted with cIg
receptor retroviral constructs by various groups [145-
149]. Several groups have targeted glycoprotein molecules
such as carcinoembryonic antigen (CEA) and GA733-2
that are expressed by a majority of colorectal cancers and
other tumors of gastro-intestinal origin, and their clg
transduced T cells have shown efficacy in vitro and in
murine models [150-154]. A comparison of CEA-directed
cIg fused to the Fc eRI-y chain or the CD3-{ chain found
that despite similar levels of transgene expression, CD3-C-
linked clg were able to better control the growth of CEA-
expressing tumors in murine models [155]. Recently,
these constructs have been further engineered to incorpo-
rate a costimulatory signaling mechanism [156-159].
Constructs containing the heavy and light chain variable
regions of an antibody, the CD28 signaling domain, and
the CD3-{ chain in series were first described by Finney et
al in 1998. T cells transduced with clg containing the
CD28 signaling domain have shown enhanced ability to
control the growth of CEA-expressing tumors in murine
models [158,160].

In summary, techniques for altering T cell-tumor interac-
tions through gene transfer are being widely investigated.
At the present time, several groups of investigators are
addressing the methodologic and regulatory hurdles that
must be overcome in preparing these agents for clinical
use. The first clinical trials of TCR gene therapy have
recently been initiated. If promising, the early scientific
and clinical results of these studies may soon stimulate
broad interest in TCR gene therapy for cancer and associ-
ated areas of investigation.
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Conclusion

Despite the wealth of information that has been acquired
pertaining to T cell recognition of tumors, we are left with
far more questions than answers regarding ways by which
the immune response might be manipulated to improve
cancer treatment. Though the T cell repertoire is expan-
sive, the repertoire of tumor reactive cells in any individ-
ual may be very limited, or may be difficult to activate and
expand either in vitro or in vivo. The relationship between
TCR affinity, T cell avidity, and T cell effector function is
complex. This may account for the disparity between our
success in stimulating antigen reactive precursor T cells
through immunization and generating cells for adoptive
therapy in vitro, and our inability to achieve a high rate of
durable clinical responses. A universal approach to immu-
nization against tumor antigens or adoptive immuno-
therapy may not be possible for any tumor type. Instead,
combined therapeutic approaches or therapy optimized
for the individual may be necessary. Current and future
investigations of specific T cell - tumor interactions and
novel therapeutics will determine whether broadly effec-
tive immune therapies are to be realized.
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