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Since the pioneering work of Fatt and Katz at the neuromuscular junction (NMJ), spontaneous synaptic release (minis), that is,
the quantal discharge of neurotransmitter molecules which occurs in the absence of action potentials, has been unanimously
considered a memoryless random Poisson process where each quantum is discharged with a very low release probability
independently from other quanta. When this model was thoroughly tested, for both population and single-synapse recordings,
some clear evidence in favor of a more complex scenario emerged. This included short- and long-range correlation in mini
occurrences and divergence from mono-exponential inter-mini-interval distributions, both unexpected for a homogeneous
Poisson process, that is, with a rate parameter that does not change over time. Since we are interested in accurately quantifying the
fractal exponent α of the spontaneous neurotransmitter release process at central synaptic sites, this work was aimed at evaluating
the sensitivity of the most established methods available, such as the periodogram, the Allan, factor and the detrended fluctuation
analysis. For this analysis we matched spontaneous release series recorded at individual hippocampal synapses (single-synapse
recordings) to generate large collections of simulated quantal events by means of a custom algorithm combining Monte Carlo
sampling methods with spectral methods for the generation of 1/ f series. These tests were performed by varying separately: (i) the
fractal exponent α of the rate driving the release process; (ii) the distribution of intervals between successive releases, mimicking
those encountered in single-synapse experimental series; (iii) the number of samples. The aims were to provide a methodological
framework for approaching the fractal analysis of single-unit spontaneous release series recorded at central synapses.

1. Introduction

Based on classical work at the neuromuscular junction
(NMJ) and at other peripheral terminals [1], individual
synaptic release sites have been always assumed to behave
independently and to discharge quanta at a very low and
stable rate. Regrettably, based on the large number of
contrasting evidence which has accumulated since then, this
memory-less description of the spontaneous release process
might not always apply to CNS synapses [2–4]. For example,
it has been shown that the occurrence of minis does exhibit
long-term correlations [2], a synaptic memory that might be
expressed, for example, by a correlating phenomenon such
as a local changes in intracellular calcium at the active zone,
where release sites are located.

The most popular mean to study the statistics of sponta-
neous release is to analyze the distributions of inter-quanta
intervals from large data sets [1]. These are almost invari-
ably obtained by recording from a population of synapses
or active zones (population recordings). Although for a
homogeneous Poisson process, characterized by a single and
stable Poisson rate, the predicted frequency distribution of
intervals should display a mono-exponential profile, some
clear divergences have been reported [2–4].

Could the reported divergence from the mono-exponen-
tial case arise because of temporal averaging of the activity
of many different synapses, each one discharging quanta
with its characteristic Poisson rate? Clearly, if we consider
that each synapse generates spontaneous events around its
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specific Poisson rate, if this rate is constant and the synaptic
units all independent, then the compound process for the
population activity will also be Poisson [3].

Can a set of different synapses be considered as an inde-
pendent source of quanta? In some experimental conditions,
this is likely to happen, for example, when the generation of
action potentials is prevented by tetrodotoxin and/or when a
spontaneous or evoked calcium raise is prevented by calcium
buffers or by specific compounds.

The divergence from mono-exponential interval distri-
butions [2–4] and the finding of short- and long-range
correlations in mini occurrences [2, 5] might then arise from
a nonindependent behavior of quantal discharges because of
some forms of molecular or physical correlations between
quanta at the active zone or because of some unknown
mechanism of correlation between neighboring presynaptic
terminals when impinging upon the same postsynaptic
neuron.

To address this critical issue, the most important require-
ment would then be to study the dynamics of spontaneous
quantal discharges at individual central synapses. Indeed,
single-synapse recordings from hippocampal synapses were
previously used to analyze the statistics of the discharge
process [4–6]. Quantal discharges gathered by single-bouton
recordings, despite the small sample size, were always
characterized by multiexponential distributions of mini-
intervals [4]. This behavior could not be accounted by
random coincidences and was found to be related to the
occurrence of short epochs of multiple quanta releases.
This release modality could also be clearly detected in
population whole-cell recordings [3, 4]. Using the latter type
of electrophysiological recordings, sampling the activity of
the very many synapses, it was also found that the quantal
release rate spectrum displayed a 1/ f power law [2, 5]. A
scaling exponent close to 1, in the rate spectrum of quantal
releases detected by population recordings, indicates that the
long-memory process or 1/ f behavior presumably reflects
either a time-dependent activity correlation among different
terminals or a general synaptic behavior where at each
individual synaptic active zone quanta do indeed correlate.

Lowen and colleagues modeled quantal release by
a fractal-lognormal noise-driven Poisson point process
(FLNP), that is, a stochastic-rate Poisson process (DSPP)
driven by a fractal-lognormal noise [2]. Interestingly, on the
basis of biophysical considerations, they suggested that the
rate process triggering quantal releases can be modulated by
1/ f oscillations of membrane voltage through a logarithmic
transform [2]. Subthreshold membrane voltage oscillations
might spread far away along dendrites and axonal networks,
hence they might represent an effective mechanism of
activity correlation for neighboring terminals. In this respect,
it is worth considering that population release activity not
only cannot be used to distinguish between one-synapse and
multisynapse correlation mechanisms, but also, because of
the temporal superimposition of a large number of release
series, might obscure the real temporal characteristics of
these correlations.

To better address this specific issue, we therefore have
begun the analysis of the frequency characteristics of quantal

releases seen with single-bouton recordings. In these exper-
iments, characterized by interevent intervals distributions
which were always best-fitted by sums of exponential func-
tions, the frequency analysis revealed a clear 1/ f power law
in the rate spectrum which was resistant to intervals shuffling
[5]. In the present paper, as further validation, we have tested
for the application of a few standard methods for fractal
analysis, that is the periodogram, the Allan factor, and the
DFA method.

The goal was to characterize the sensitivity of these
methods when applied to spontaneous release series gathered
from single synapses, usually characterized by a small sample
size and a non-Poisson interval distribution. We generated
simulated series of release events by combining Monte Carlo
sampling methods with an integrate-and-fire model. The
idea was to mimic the rate and the behavior of interevent
intervals seen in single synapse recordings. Based on this
input, we have determined the ability of the above methods
in searching and accurately quantifying the 1/ f behavior.

2. Methods

2.1. Interevent Interval Distributions and Histograms Gener-
ation. As previously reported [4], single-synapse recordings
strongly indicate that the distribution of intervals between
successive releases of quanta diverges from the exponential
form. The sum of two or even three exponential functions
is actually needed in order to fit interevent interval his-
tograms. This kind of interval distribution can be referred
to as hyperexponential. For sake of simplicity we limited
our computational survey to the “biexponential” case: the
probability density function of the interevent interval was
taken as

pdf(T ≥ t) = a f λ f e
−λ f t + asλse

−λst , (1)

where a f , as are the fast and slow relative areas, respectively,
and λ f , λs are the fast and slow rate constants of the two
decaying exponentials, respectively.

This form of pdf was used for the simulation of
intervals by means of Monte Carlo (MC) sampling. Although
we know the analytical form of the pdf, we choose to
generate interevent interval histograms of the simulated
data according to the log binned representation [7, 8].
This let us maintain a straightforward comparison of our
simulated data with both the real and simulated data of
single-synapse recordings previously reported by our group
[3, 4]. For such a representation, intervals between successive
simulated quanta (taken as peak-to-peak distances) were
binned according to the logarithm of their durations. This
produces an increase in bin width (bwi) as interval duration
increases. The number of intervals ni falling in each bin
(bin content) was divided by bin width in order to obtain
a normalized bin content Ni = ni/bwi.

Histograms plot Ni as a function of bin center ci (the
center of the ith bin) on doubly-logarithmic scale. This
representation has the twice advantage of improving visual
perception and providing better fitting of hyperexponential
distributions when distribution tails contain very few events,
as it will be shown in Section 4 (see [7, 8]).
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2.2. Simulated Series of Quantal Releases following a Power-

Law Rate and a Biexponential Distribution of Intervals

Our computational aim was to generate a wide set of sim-
ulated release series matching two experimentally evidenced
features which are of great interest for us.

(i) A power-law spectrum of the release rate.

(ii) A distribution of intervals assuming the hyperexpo-
nential form.

Furthermore, since the formulation of a new and com-
plete model based on physiological knowledge falls outside
the scope of this work, these simulations should maintain
assumptions about the process generation model as limited
as possible. As previously discussed, several lines of evidence
exist for refusing the standard homogeneous Poisson model
for describing the release process in the case of both single-
synapse and population-of-synapses recordings. A general
Doubly Stochastic Poisson Point Process (DSPP) could be
assumed, with an instantaneous stochastic rate characterized
by power-law spectrum, as experimentally observed [2, 5].
Since a biexponential distribution of the interevent interval
was taken here as a satisfying model for fitting the histograms
generated with experimental data, the main question is if
such a DSPP model would be able to generate this interval
distribution. We faced this problem by adopting a black-
box approach, thus overcoming computational bottlenecks.
Indeed, the coefficient of variation (CV) of the DSPP driving
rate is generally kept low in order to maintain it nonnegative
for most of the simulation length. Furthermore, this rate
should be stationary for analytical purposes.

For all these reasons, we opted for developing a custom
simulation algorithm which is able to convert, my means of
a nonlinear transform, a 1/ f α rate signal into a point process
whose interval distribution matches the biexponential form.

The rate process λ(t) is the first source of randomness
for the simulated process and can be obtained by generating
a fractal Gaussian process (fGp) with power-law spectrum
of the form 1/ f α. To get good approximations of the fGp,
a modified version of the spectral synthesis method (SSM)
proposed by Saupe was implemented [9]. The SSM is the
purest interpretation of the concept of fractal Brownian
motion (fBm) and fractal Gaussian noise (fGn). SSM per-
fectly outlines their spectral features by imposing a power-
law random-phases spectrum with the desired value of the
scaling exponent α. To the generated power spectrum, the
inverse fast Fourier transform was applied to get the fGp time
series and unwanted periodicities were avoided by discarding
15/16 of the samples.

For obtaining a discrete sequence of releases t(n), we
implemented an “integrate-and-fire” approach: the rate
process λ(t) was integrated over time until the integrated
series ϕ(t) reached the unit (occurrence of a release event),
then ϕ(t) was reset to zero. Some modifications of λ(t) were
performed for assuring the method worked properly. The
steps were as follows.

(i) λ(t) was normalized so that its standard deviation
was equal to 0.6.

(ii) λ(t) was then transformed into a fractal-lognormal
noise by means of an exponential transform. As
previously reported in [10], this transformation
maintains the spectral features of the signal only for
small values of the variance. This is the reason why
we fixed std equal to 0.6, in accordance with literature
and after experimental validation.

(iii) The amplitude of λ(t) was normalized again for
obtaining an integral value equal to the expected
number of events N .

After this first simulation stage, the temporal locations
of the events precisely reflect the fractal features of the
underlying rate. Nevertheless, the intervals between the
events are not expected to assume the whished biexponential
distribution. This second source of randomness was then
achieved by replacing the “fractal” set of intervals generated
by the “integrate-and-fire” approach with a different set of
intervals which are separately generated by Monte Carlo
(MC) sampling of the biexponential probability density
functions. These pdfs were chosen according to different sets
of parameters.

This second stage implemented by our algorithm
requires the replacement of the “fractal” intervals with a set
of intervals generated by MC sampling. Since MC sampling
introduces some error in sampling the ideal pdf due to
limited sample size, we avoided any further increase of
this error. Nevertheless, for achieving a fractal rate, the
sequential order of the MC intervals was chosen to follow the
relative order of the “fractal” intervals. As a perfect match is
impossible since the intervals of the two sets are very different
in their distribution, the algorithm allows for a “tolerance
window” of about 10 s. In other words, we choose as a good
match the first interval of the MC set, randomly extracted,
which was 5 s longer or shorter than the original “fractal”
interval. Although this “tolerance window” may appear as
very large, it let us maintain the fractal features of the rate
for time scales longer than 10 s. This is a valuable tradeoff for
our analysis purposes.

The resulting simulated series is a point process whose
generation model is not known actually, still it is able to
reflect the two features of interest: (i) a power-law spectrum
of the releases rate for time-scales higher than 10 s c.ca; (ii)
an interevent interval distribution given by the biexponential
model whose parameters are known a priori. As for the
latter, only one parameter of the biexponential probability
density function was varied: the area of the fast exponential
component a f . According to the available experimental data,
the following parameters were set: λ f = 10 ms, λs = 1 s,
a f = 2, 15, 50, 85%, as = 1 − a f and α = 0, 0.5, 1, 1.5, 2. For
each pair of independent parameters (a f , α), 20 sequences
of N = 104 simulated releases were generated. These values
of α were selected for their physical importance, since they
can be related to uncorrelated white noise, flicker noise, and
Brownian behavior.
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3. Methods for the Quantification of
Fractal Behavior

3.1. Periodogram. A method of choice for assessing fractal
behavior is the estimation of the power spectral density
(PSD) of the point process. PSD is obtained by computing
the periodogram (PG) of the point process by means
of the so-called count-based PG. As previously reported
[9], the count-based PG outclasses interval-based PG for
estimation errors (the error bias in particular) and is the only
spectral choice that preserves the physical significance of the
frequency axis.

For obtaining this PG, we implemented the algorithm
proposed in [10]. The length of the series (the time of the last
release, tmax) is divided in contiguous windows of length T . A
count series {Wi} is then obtained by further dividing each
window in M segments of 0.1 s (taken as fixed resolution)
and counting the number of events falling in each segment.

The PG is then obtained for each window as Sw( f ) =
1/M|˜W( f )|2, where ˜W( f ) is the discrete Fourier transform
of the count series {Wi}. Then, an single PG, S( f ), is
obtained my averaging all the windows-related PGs, Sw( f ).
This PG is an accurate estimate of the PSD of the point
process in the range: 1/T ÷M/2T Hz.

The count-based PG follows a power-law of the form
1/ f α in the low and medium frequency range for fractal-rate
point processes. PG introduces a bias at higher frequencies,
since the fine time resolution information is lost due to the
finite counting window size (0.1 s in our case). However, this
bias is negligible as the α estimation is usually performed on
the low frequencies.

To estimate the fractal exponent using the PSD on
simulated point process (20 realizations, parameters a f and
α), we proceeded as follows: (i) we computed the PG on
each realization with a common tmax equal to the maximum
release time among all the realizations (the variance of this
value among the realizations is small, since each set of
intervals is generated with same pdf and N = 104); (ii) we
divided the PGs by the DC value ( f = 0) for comparability;
(iii) we computed the logarithm (basis 10) of the single PGs
and then averaged them to obtain an average logarithmic PG
(we will call it logPG) relative to the whole set of realizations;
(iv) excluding the DC value for convention and imposing a
cutoff frequency manually, we obtained an accurate estimate
for the fractal exponent α̂ relative to a simulated process
by linear least mean square regression of the logPG versus
log10( f ) curve, limiting the fitting to the frequency range
manually selected.

3.2. Allan Factor (AF). The Allan factor (AF) is a normalized
form of Allan variance. For a point processes, it is computed
as A(T) = E[(Zk+1 − Zk)2]/2E[Zk], where Zk is the count
series obtained with counting window length T [11]. The
AF for a fractal point process assumes the power-law form
A(T) = 1 + (T/T0)α, where T0 is the fractal onset time. On a
doubly-logarithmic scale, this function can be fitted by linear
regression from T0 on. As in the PG case, we decided to
perform the estimation of A(T) for each realization of the
simulated process, then averaging the logarithm of the AFs

so that an average estimation of α is obtained when we apply
the linear regression.

3.3. Detrended Fluctuations Analysis (DFA). Detrended fluc-
tuation analysis (DFA) was originally proposed as a tech-
nique for quantifying long-range correlations [11]. For our
purposes, this method is applied to the sequence of intervals,
as proposed in [9]. After mean value subtraction, the
intervals sequence {Ii} = (ti+1−ti) of lengthN is transformed
by running summation. The resulting sequence is divided
into M nonoverlapping blocks of K samples (M = N/K).
A linear trend is computed for each block by means of linear
least-squares fit and removed from the samples in the block.

The variance of the detrended series is computed for
each block and the average of these variances is the DFA
measure F(K) relative to block size K . For fractal series,
F(K) varies as a power-law: F(K) = K2−α, where α is the
same fractal coefficient obtained with the other methods we
have previously discussed. As for the implementation, we
exploited a modified version of the algorithm presented in
[12].

As in the previous cases, we performed the estimation of
F(K) for each realization of the simulated process, then we
average the logarithm of the fluctuations in order to obtain
an average estimate of α by linear regression with K ≥ K0

(where K0 is manually selected for maximizing the linearity
of the fluctuation increase).

4. Results

As described in the method section, a large set of simulations
of interevent intervals was generated by means of Monte
Carlo (MC) sampling from biexponential pdfs (generated
accordingly to single-synapse data) [4, 6]. In these MC trials
we varied the area of the fast exponential component a f

using four values for this free parameter: 2%, 15%, 50%, and
85% [4].

Figure 1 shows the log-binned histograms for these
data sets. As the free parameter a f increases, the intervals
distributions show two clear humps, where the hump on the
left side of the x axis reflects a larger number of clustered
high frequency intervals. It is worth noting that, since the
histograms are log-binned, the bins which lie far from the
y axis are broader than the one on the lie near to it, so in
this representation the slow frequency component is over-
stressed, altering the visual perception of the contribution of
the fast and slow components in these graphs.

Starting from these sets of random intervals, different
families of fractal-rate point processes were generated as
described in detail in Methods section. To generate these
simulated events we used an α value equal to 0, 0.5, 1,
1.5, and 2. Using these simulated data-sets, three analysis
methods were tested: the periodogram (PG), the Allan factor
(AF), and the detrended fluctuation analysis (DFA). The goal
was to evaluate possible variation in the accuracy of our
estimates according to the input parameters: the α itself,
which represents the fractal feature of the point process,
and the a f , which modifies the degree of “bumpiness” of
the interval distribution. Another important parameter is N ,
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Figure 1: Log-binned histograms of interevent intervals from simulated quantal release series (see Section 2). Each bin-content has been
normalized for the corresponding bin-width. The sets of intervals were generated by means of Monte Carlo sampling methods from
biexponential probability density distributions with a f = 2, 15, 50 and 85%.

the sample size. When the simulations mimicked the most
probable physiological condition, the one found with single-
synapse recordings (a f = 15%; α ≈ 1), all methods provided
high accuracy in estimating the fractal exponent chosen at
simulation time. The sample size N of these sequences was
kept constant and equal to 10.000 samples.

This result is illustrated in Figure 2, where the three
methods are graphically compared. For each method, the
measures PSD, A(T), and F(K) are shown for each realiza-
tion of the simulated process (pale-blue lines). Over these
sets of measures, it is also graphed the average (computed
after logarithmic transform) on which the ultimate fractal
exponent estimated ∝̂ is performed (blue line). Red dashed
lines in the plots indicate linear fitting on doubly logarithmic
scale of the relative average measures.

To test for the influence of the fast exponential compo-
nent of the interval distributions on the detection and correct
quantification of the power-law behavior, release series were
generated with parameter a f between 2% and 85% (2%,
15%, 50%, and 85% values), and parameter α between 0 to 2
(0, 0.5, 1, 1.5, and 2). For these general tests the sample size
was kept constant (N = 104). Table 1 shows the numerical
results of this performance evaluation.

For achieving a more direct comparison between the
different methods evaluated here, some summary graphs
were generated as shown in Figure 3. The values for the
parameters are the same as those presented in Table 1. As
already evident at first glance (Figure 3), all methods here
used are sensitive to variation in the parameter a f and have
different errors estimate when α increases from 0 to 2.

Considering the whole range of α values, AF seems to be
the most reliable method for precisely quantifying the fractal
exponent of these release series. DFA performance is strictly
non-linear as α increases, albeit it gives the most reproducible
result for α = 1 over different areas of the fast exponential
component. The count-based PG has great sensitivity to the
interval distribution, providing the worst performance with
a f = 85%.

We then evaluated the influence of the sample size N on
the output estimates. This was done in consideration of the
fact that in most cases single-synapse recordings data sets
are characterized by a limited sample size [4, 6]. Figure 4
illustrates how the error decreases when the sample size is
increased from 500 to 104 samples. This analysis was limited
to a single combination of parameters (α = 1 and a f = 15%),
the most probable case based on our electrophysiological



6 Computational Intelligence and Neuroscience

Periodogram

Frequency (Hz)

P
SD

(f
)

αPG = 0.89799

10−3 10−2 10−1 100
10−3

10−2

10−1

100

101

102

103

(a)

αAF = 0.9182

Allan factor

T (s)

A
F(
T

)

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

(b)

Detrended fluctuation analysis

L (samples)

F
(L

)

αDFA = 0.88004

101 102 103
10−3

10−2

10−1

100

101

102

103

(c)

Figure 2: The three methods used for the quantification of the fractal exponent α on simulated release series (simulations with α = 1 and
a f = 15%). (a) Periodogram (PG), (b) Allan factor (AF), and (d) detrended fluctuation analysis (DFA). Pale-blue lines represent single
realizations (n = 20); thick blue lines represent the average of measures; red dashed lines are fittings in the selected range. Notice how the
variation between different trials is quite limited.

results. The error was computed as the difference between
the estimated fractal exponent value and its expected value,
taken as absolute value (Figure 4, results for PG, AF, and DFA
in different colors).

Our results showed that the PG method seems much
more sensible to a reduction in the sample size than the
AF and DFA. While the DFA is the least affected of the
three methods, with a rather stable error over a range of N
comprised between 500 to 10.000 samples, the estimates of
the fractal exponents obtained using the PG and AF methods
become less reliable for N below 5000 and 1000 events,
respectively. This poor performance of the PG, when the
sample size N is small, is probably ascribable to the fact that,
at odd with the other methods, the DFA uses a sequence of
intervals rather than a counting sequence.

5. Discussion

In the present paper we have used the gold standard methods
for the study of fractal processes, that is, the periodogram,

the Allan factor, and the DFA method, to test their sensitivity
and reliability in detecting the 1/ f power law behavior in the
rate spectrum of spontaneous synaptic quantal releases series
[2, 5, 9].

Since our goal was to apply these tests to single synapse
data, which are characterized by small a sample size,
multi-exponential interevent interval distributions and large
intersynaptic rate variability, we generated large collections
of simulated series of release events characterized by features
which were designed to match those found experimentally
[4].

To this aim, we combined Monte Carlo sampling meth-
ods from biexponential probability density functions, with
characteristics mimicking the observed experimentally (a f =
2–85%; N = 500–10.000), with an integrate-and-fire model
to generate different fractal-rate processes (parameter α was
set between 0 to 2). In the evaluation of the input parameters,
the periodogram was always used as a reference.

Besides its ability to represent the 1/ f behavior, in the
presence of a stationary signal, PG also provides a complete



Computational Intelligence and Neuroscience 7

0 0.5 1 1.5 2

0

0.5

1

1.5

2

α

α̂
P
G

−0.5

−1

α̂ = α

2%
15%

50%
85%

(a)

0 0.5 1 1.5 2

0

0.5

1

1.5

2

α

α̂
A
F

−0.5

−1

α̂ = α

2%
15%

50%
85%

(b)

0 0.5 1 1.5 2

0

0.5

1

1.5

2

α

α̂
D

F
A

α̂ = α

2%
15%

50%
85%

(c)

Figure 3: Graphical comparison of the performance of PG, AF, and DFA methods (same numerical results of Table 1). Colored lines, with
different marker shapes, refer to values of parameter a f (as explained in the legends). Gray, dashed line shows the intercept of the graph, that
is, the ideal estimated result. AF provides the most reliable method for quantifying the fractal exponent, given its low sensibility to variations
of the a f parameter and to an almost linear behavior as a function of the expected value of α. Notice how DFA estimates diverged from the
input value when the fractal coefficient is increased above α = 1.

representation in the frequency domain. Our results show
that the periodogram, despite its reduced sensitivity for
small sample sizes N , provides a good estimate of the input
alpha parameter. Based on the analysis presented here, in the
presence of hyperexponential distributions, the most reliable
and sensitive method to extract the fractal coefficient α is
the Allan factor. The AF was clearly the best of the three

tested methods, capable of extracting with high degree of
precision the input fractal coefficient α. For this reason, it
would be the method of choice for the analyses of single-
synapse data, which are characterized by small and very small
N , and to make comparisons between different experiments.
On the contrary, the DFA method was found to be less
reliable, essentially because it showed a sort of saturation of
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Table 1: Numerical results of fractal exponent estimations with PG,
AF, and DFA methods. Simulated release series are characterized by
parameters: N = 104, a f = 2%, 15%, 50%, 85%, and α = 0, 0.5, 1,
1.5, 2.

α PG AF DFA
a f = 2%

0 −0.288 0.160 0.263
0.5 0.347 0.721 0.633
1 0.869 1.001 0.868
1.5 1.287 1.433 1.053
2 1.580 1.856 1.248

a f = 15%
0 −0.201 −0.034 0.291
0.5 0.324 0.656 0.640
1 0.898 0.918 0.880
1.5 1.236 1.388 1.025
2 1.414 1.838 1.199

a f = 50%
0 −0.929 −0.281 0.232
0.5 0.176 0.678 0.609
1 0.723 0.898 0.872
1.5 1.074 1.408 1.049
2 1.374 1.818 1.166

a f = 85%
0 −0.582 −0.532 0.210
0.5 −0.265 0.367 0.481
1 0.348 0.979 0.883
1.5 0.219 1.488 0.919
2 0.326 1.681 0.900

the output values for increasing input α values above 1
(Figure 3). This might limit its application to real data,
since synaptic populations are composed of synapses whose
developmental profile, morphology, and activity are very
heterogeneous. Because of this, the fractal coefficient alpha is
expected to display large variation among different synapses
which the DFA method cannot clearly capture. On the other
hand, DFA is apparently less sensitive to variation in the
sample size. This presumably depends upon the fact that this
method uses a sequence of intervals rather than a counting
sequence. This suggests that the length of time epochs
becomes less important, therefore even a small number of
intervals might be sufficient to estimate properly α with the
DFA method.

In summary, based on these considerations, the AF
method is the method of choice for the quantitative analysis
of fractal behavior at single-synapses, a conclusion which is
perfectly in line with the DFA description and its applications
to a large number of conditions [9].

In relation to future goals, the results of this work will be
used to further evaluate the reliability of the assertion that
data from single-bouton recordings [4] indeed follow a 1/ f
behavior [5]. Fractal behavior at individual neuromuscular
junctions have been previously reported and thoroughly
demonstrated [2]. Unfortunately, the neuromuscular junc-
tion is a very large compartment, composed of a multitude
of active zones and millions of available vesicles, filled
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Figure 4: Estimates of the fractal exponent using PG, AF, and
DFA methods, evaluated as a function of sample size. Error in the
estimate is expressed as the difference between the estimated value
and the expected value, taken as absolute value. This test is limited
to the simulations with parameters α = 1 and a f = 15%, the
case assumed as most physiological. Sample size is varied as follows:
N = 500, 1000, 2000, 5000, 10000.

with neurotransmitter molecules [13]. In these conditions
voltage and ionic fluctuations occurring inside the synapse
might affect many quanta simultaneously and the related
diffusional processes might shape and correlate in complex
ways spontaneous release sequences. The story is clearly very
different at central synapses, which in most cases are small,
self-contained compartments with a single active-zone and
a small number of readily available quanta data (for the fine
morphology of hippocampal synapses from which the data
used here were derived see [4]). Therefore, the nature of
possible correlation events might be very different at central
synapses. In this respect, standard whole-cell recordings
from post-synaptic neurons, which sample many synapses
simultaneously [2–4], are not enough and single-bouton
recordings, which sample from just one synapse, from one
active zone at the time, would be preferable [4, 6]. The
possibility that the release process at one synapse follows
the 1/ f power law [5] clearly indicates that this behavior is
synapse-autonomous and involves just one active zone [4, 6].

Although the underlying mechanism is far from clear,
such synaptic memory might relate to some specific struc-
tural or functional features of the active zone of central
synapses. At the present time, despite the lack of a better
knowledge about the molecular and functional organization
of the synaptic release sites precluding any deeper mecha-
nistic understanding [14, 15], the analytical methods might
soon provide novel insight into these processes.
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