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Abstract

Background: DNA Clustering is an important technology to automatically find the inherent relationships on a large
scale of DNA sequences. But the DNA clustering quality can still be improved greatly. The DNA sequences similarity
metric is one of the key points of clustering. The alignment-free methodology is a very popular way to calculate DNA
sequence similarity. It normally converts a sequence into a feature space based on words’ probability distribution
rather than directly matches strings. Existing alignment-free models, e.g. k-tuple, merely employ word frequency
information and ignore many types of useful information contained in the DNA sequence, such as classifications of
nucleotide bases, position and the like. It is believed that the better data mining results can be achieved with
compounded information. Therefore, we present a new alignment-free model that employs compounded
information to improve the DNA clustering quality.

Results: This paper proposes a Category-Position-Frequency (CPF) model, which utilizes the word frequency,
position and classification information of nucleotide bases from DNA sequences. The CPF model converts a DNA
sequence into three sequences according to the categories of nucleotide bases, and then yields a 12-dimension
feature vector. The feature values are computed by an entropy based model that takes both local word frequency and
position information into account. We conduct DNA clustering experiments on several datasets and compare with
some mainstream alignment-free models for evaluation, including k-tuple, DMk, TSM, AMI and CV. The experiments
show that CPF model is superior to other models in terms of the clustering results and optimal settings.

Conclusions: The following conclusions can be drawn from the experiments. (1) The hybrid information model is
better than the model based on word frequency only. (2) For DNA sequences no more than 5000 characters, the
preferred size of sliding windows for CPF is two which provides a great advantage to promote system performance.
(3) The CPF model is able to obtain an efficient stable performance and broad generalization.

Keywords: DNA sequence similarity, Clustering, Alignment-free model, Classifications of nucleotide bases

Background
With the rapid development of bioinformatics, the
collected biologic data has become a giant monster and is
still explosively growing. It is necessary to use data min-
ing methods to analyze this tremendous data and find
useful or interesting information from the data sets. Due
to the extremely huge amount and complex structure of
the data, sequence analysis of DNA and protein is a chal-
lenging issue in the bioinformatics field. There are many
approaches proposed for the sequence analysis on DNA
and protein. Among them, the Clustering approach is
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one of the most popular approaches because it requires
less transcendental knowledge and need not mark the
targets’ category before learning. After clustering, DNA
sequence segments can be automatically divided into
clusters to show their similarity in structure, which
implies their functional similarity [1,2]. Such a treat-
ment has many benefits. For example, it is a powerful
intelligent way to predict a genome’s function and learn
the new world of bioinformatics. When an unknown
genome is assigned to a known cluster, it can be con-
vinced that the new genome may have the very sim-
ilar function with others in the same cluster. But the
DNA clustering quality can still be improved greatly.
Since the DNA sequence similarity metric has a vital
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impact on the clustering result. We present a new DNA
sequence similarity model to improve the DNA clustering
quality.
The similarity of DNA sequence is a fundamental met-

ric in bioinformatics, which is a basis for many applica-
tions including predicting unknown sequences’ functions
or effects, constructing creatures(or species) phyloge-
netic tree, and analyzing homologous. Generally, there
are two categories of DNA sequence similarity measur-
ing approaches. One is alignment-based and the other
is alignment-free. The alignment-based method directly
compares two DNA sequences using string matching
algorithms, such as BLAST [3], FASTA [4], UCLUST [5]
and CD-HIT [6]. Obviously, it is a time-consuming pro-
cess to match strings in a large scale database [7], and the
violent changes of sequence lengths decline the perfor-
mance of clustering.
The alignment-free method converts each piece of DNA

sequence into a feature vector in a new space, in which
the similarity can be quickly computed. Some alignment-
free algorithms exploit probabilistic models to generate
feature vectors, of which the Markov model [8-10] is
extremely important and widely used in bioinformatic
applications. However, there are some arguments on the
Markov model. Deshpande and Karypis [11] reported that
the SVM-based approaches are more effective than many
traditional sequence classification algorithms, especially
Markov model based techniques, in the DNA sequence
comparison. Lu et al. [12] argued that the assumption
of Markov model on the DNA sequences impairs its
capability.
Qi et al. [13] proposed a comparison method based on

the probability of appearance of K-Strings. In order to sup-
press single-sequence noises, Reinert et al. [14] proposed
DS
2 and D∗

2 for sequence comparison based on k-tuple
content. They are two variants of the D2 word count
statistic. The D2 based alignment-free models measure
the difference between two word probability distributions
for sequence comparison. It is a widely used statistics
method for sequence comparison based on the joint k-
tuple content in the two sequences. Bauer et al. [15] con-
firmed the existence of a species specific Average Mutual
Information (AMI) profile and took these profiles to
measure the evolutionary relationships between genomic
sequences.
The k-tuple algorithm [16,17] is a very popular

alignment-free method. It segments a DNA sequence via
a sliding window of length k. A segment of DNA sequence
in the window is a tuple, usually called a word of length k.
The k-tuple algorithm counts the frequency of each tuple,
i.e. word, to build a feature vector based on the frequency
value. Since a DNA sequence is converted into a fixed
length vector, it can be quickly measured by some distance
metric.

It has been proved in many researches that the simple
k-tuple method cannot completely describe all informa-
tion contained in a DNA sequence, since it only contains
the word frequency information. Therefore, many mod-
ified k-tuple algorithms are proposed to contain more
information in models. Liu et al. [18] appended the mean
and variance value of each word’s position distribution
into the feature vector. As a result, the size of the final
feature vector becomes three times of 4k . This method
increases the information contained in a feature vector
at the expense of computing overhead, in terms of larger
processing latency and memory. Wei et al. [19,20] pre-
sented a Distance Measure based k-tuples (DMk) method
for DNA sequence clustering. According to the position
distribution of each word, the DMk method calculates
its entropy value to construct a feature vector. Dai et al.
[21] utilized both the word frequency and overlapping
structure of words to improve the efficiency of sequence
comparison. Li andWang [22] counted the information of
codon positions, and calculated the relative entropy over
12-dimension feature vectors to discriminate protein cod-
ing and non-coding sequences in the yeast genome. Wang
and Zheng [23] presented theWeighted Sequence Entropy
(WSE) based comparison on word frequencies to modify
the classical relative entropy. Zhao et al. [24] transformed
the DNA sequence into the 60-dimension distribution
vectors. Lu et al. [12] summarized the word frequency
information over a serial of sliding windows with their size
varying from 1 to k. Consequently, they have to observe all
k-mer strings’ probability, and the amount of sub-strings
is up to 4k .
The key issue of the alignment-free method is that

various DNA characteristics and features should be inte-
grally considered and carefully composed so as to con-
tain sufficient original DNA information in the converted
feature space. Shi and Huang [25] proposed a Three
Sequence Method (TSM) to build a twelve-component
feature vector. Yu [26] converted a DNA sequence into
three 2-dimension cumulative ratio curves instead of
symbolic sequences. Li and Wang [27] presented a 16-
dimension binary vector based on the group of nucleotide
bases.
A segment of DNA data can be considered as a text writ-

ten by using a four-letters alphabet. So some researchers
apply text clustering methods to DNA data, such as
[2,28-30]. It is confirmed that key words are flocking and
not randomly distributed in DNA sequences [2,28].
In this paper, we present an improved alignment-free

model, named as CPF model, which combines advantages
of other algorithms, such as k-tuple [16,17], DMk [20]
and TSM [25]. The CPF model converts a DNA sequence
into three new sequences according to the classification
of nucleotide bases, takes both frequency and position
distribution information into account, and measures the
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similarity in a 12-dimension space. Thus, the CPF model
contains more information than traditional alignment-
free algorithms and achieves better clustering quality. The
experimental results demonstrate the effectiveness of the
CPF model.

Methods
Motivation
Our direct motivation is to improve the DNA cluster-
ing quality rather than detect homologous sequences. It
is well known that the basic k-tuple method only con-
taining word frequency information is not sufficient to
fully describe a DNA sequence. Unsufficient informa-
tion in a feature vector is the most important reason
that causes poor clustering results. For instance, Dong
and Pei [31] argued that the position inside sequence is
important information for the sequence data clustering or
classification. Thus, many modified algorithms adopt the
position information of nucleotide bases. Among them,
the DMk method [20] considers the occurrence, loca-
tion and order relation of k-tuple in a DNA sequence. It
produces a feature vector based on the Shannon entropy
that reflects the degree of importance of positions in a
sequence, instead of simply adding new statistical infor-
mation. The vector size of DMk is equal to that of k-tuple
under the same sliding window size. However, the DMk
method ignores the classifications of nucleotide bases,
which are very useful information to discriminate DNA
pieces.
Many researches show that the classification over

nucleotide bases improves the efficiency when compar-
ing DNA sequences. TSM [25] converts a DNA sequence
into three symbolic sequences utilizing the classifications
of nucleotide bases and their chemical properties. TSM
benefits from such a treatment. But the improvement of
TSM is limited because it only involves the classifica-
tion and word frequency information, while the position
information is not included.

In this paper, we aim at using the word frequency, posi-
tion and nucleotide bases classification in calculating the
DNA sequence similarity. We integrate them together to
enrich the feature vector but without big dimensions. This
idea inspired us to design a new model, named Category-
Position-Frequencymodel (CPF).

The feature vector space
According to the chemical properties of nucleotide bases,
they can be divided into three categories,

(1) purine group R = {A,G} and pyrimidine group
Y = {C,T};

(2) amino groupM = {A,C} and keto group K = {G,T};
(3) weak hydrogen bond groupW = {A,T} and strong

hydrogen bond group S = {C,G}.
In terms of a specific category, each nucleotide base is
mapped to a group. Hence a DNA sequence is mapped
to a new alphabet space that is shrunk from 4k to 2k . In
this paper, we set the size of sliding window as 2, which
is the preferred value verified by our experiments. Thus,
the length of a word is 2 so that a mapped sequence
contains 22 = 4 words. Consequently, three categories
produce twelve different words, which form our feature
vector space. Namely, each dimension represents a word
as follows.

H = [hRR, hRY , hYY , hYR, hMM, hMK , hKK , hKM, hWW ,
hWS, hSS, hSW ] (1)

The Figure 1 illustrates the construction process of a
DNA sequence feature vector.

The feature value
Instead of the frequency of the word in the mapped
sequence, we set the value of each dimension equal to
the Shannon Entropy of words. The Shannon Entropy can

Figure 1 The construction process of a DNA sequence feature vector.
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expose the importance of the position distribution in the
word [22]. A non-negative sequence X = {x1, x2, . . . , xn}
produces a sequence of its partial sum S, i.e.

S = {s1, s2, . . . , sn}

=
{
x1, x1 + x2, x1 + x2 + x3, . . . ,

n∑
r=1

xr

}
(2)

Let Z denote the sum of the whole sequence S, i.e.

Z =
n∑

u=1
su =

n∑
u=1

u∑
r=1

xr (3)

Obviously, the smaller the position of xr , the more it con-
tributes to Z. Because the element xr at the position r(r =
1, 2, . . . , n) is summed (n − r + 1) times, i.e., the preced-
ing element has a larger weight than xr . It implies that the
partial sum based model prefers the element at a small
position. Then the discrete probability at the position r,
denoted by pr , is defined as follows.

pr = sr
Z
, (r = 1, 2, . . . , n) (4)

The entropy of the sequence X can be calculated as

h = −
n∑

r=1
prlog2pr (5)

This entropy is able to reflect the importance of position
in a sequence. Indeed, the front position tends to have a
larger entropy. The biggest value of entropy is log2n, where
n is the length of the sequence.
Li and Wang [22] make the original sequence from the

word frequency at some positions. The frequency, termed
Global Frequency, is counted over the whole sequence.
Wei et al. [20] propose another frequency, called the

Local Frequency, by counting the distance between two
positions where a word occur twice.

LFw
r = 1

lwr − lwr−1
, (r = 1, 2, . . . , n) (6)

where LFw
r is the local frequency, r is the order of occur-

rence of a word w, lwr denotes the position of the rth
occurrence of the w, and lw0 is defined as 0. LF emphasizes
the position of occurrence and the local density of a word.
A single LF cannot contain the global information of the
word. But a sequence of LFs can show the word’s global
distribution more precisely and clearly than the GF. In this
paper, we exploit the LF to make the original nonnegative
sequence.
The Table 1 illustrates examples to show the differences

between entropy value and LF based entropy value. The
length of the example sequences is eight so that the range
of entropy is [0, 3], where the sequence “10000000” gets
the biggest value, and “00000001” gets the smallest. When
the sequences are regularly shifting from “10000001” to
“11000000”, the LF based entropy values keep a consistent
trend, but the entropy values are fluctuant. It is believed
that the LF based entropy reflects more subtle structural
information than basic entropy.
Finally, a DNA sequence’s feature vector is made from

the LF based entropy according to the Eq. 1. The similarity
between sequences is measured by the Euclidean Distance
of feature vectors, i.e.

E(d1, d2) = ||H(d1) − H(d2)|| (7)

=
√√√√ 12∑

v=1
|hv(d1) − hv(d2)|2

where d1 and d2 are two DNA sequences, H(d1) and
H(d2) denote their feature vectors respectively.

The pseudo code
The following is the pseudo code of the CPF model.

Table 1 The entropy values and LF based entropy values of example sequences

Original Partial sum Entropy Local frequency LF based partial sum LF based entropy
sequence X sequence S, value h sequence LF, sequence SLF , value hLF ,

S ← X h ← S LF ← X SLF ← LF hLF ← SLF
10000000 11111111 3 10000000 11111111 3

00000001 00000001 0 0000000 1
8 0000000 1

8 0

10000001 11111112 2.9477 1000000 1
7 1111111 8

7 2.9985

10000010 11111122 2.9219 100000 1
6 0 111111 7

6
7
6 2.9966

10000100 11111222 2.6186 10000 1
5 00 11111 6

5
6
5
6
5 2.9942

10001000 11112222 2.5546 1000 1
4 000 1111 5

4
5
4
5
4
5
4 2.9911

10010000 11122222 2.5388 100 1
3 0000 111 4

3
4
3
4
3
4
3
4
3 2.9868

10100000 11222222 2.6154 10 1
2 00000 11 3

2
3
2
3
2
3
2
3
2
3
2 2.9808

11000000 12222222 2.9736 11000000 12222222 2.9736
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Algorithm 1 The CPF model
1: procedure CPF(DNA sequence d1, DNA sequence

d2)
2: for all DNA sequence d do
3: for all category C do
4: C(d) ← nucleotide_base(d)

5: for all word w ∈ C do
6: LFw

r (d) ← C(d), by Eq. (6)
7: SwLF(d) ← LFw

r (d), by Eq. (2)
8: pwr (d) ← SwLF(d), by Eq.(3),(4)
9: hw(d) ← pwr (d), by Eq. (5)

10: Hw(d) ← hw(d), by Eq. (1)
11: end for
12: end for
13: H(d) ← Hw(d), by Eq. (1)
14: end for
15: E(d1, d2) ← H(d1),H(d2), by Eq. (7)
16: return E(d1, d2)
17: end procedure

The time and space complexity
The entire clustering process has two stages, first it makes
the feature vectors from the rawDNA sequences, and then
it runs the clustering algorithm. At the first stage, the CPF
time complexity of making a feature vector is O(3 × (n +
2k × 4n̂)), where n is the length of a DNA sequence, k is
the length of a sliding window, n̂ is the average count of
a word in a sequence. It is assumed that the occurrence
probability of each word is equal to each other. Hence, the
average count of a word is n̂ = n/2k . Therefore, the CPF
time complexity of making a feature vector is O(15n), i.e.

O
(
3 ×

(
n + 2k × 4n̂

))
= O

(
3 ×

(
n + 2k × 4 × n

2k

))
= O (3 × (n + 4 × n))

= O(15n) (8)

At the second stage, the CPF model runs a cluster-
ing algorithm in a 12-dimension feature space because
the preferred size of sliding window is two. The time
and space complexity depend on the specific clustering
algorithm. It is well known that the time complexity of
the standard k-means is O(Icdn), where I is the num-
ber of iterations, c is the number of clusters and d is the
dimensions of the feature vector. As a result, when the
CPF model runs the standard k-means clustering algo-
rithm, the total time complexity of the two stages is
O(15n + 12Icn).
The CPF space complexity of making a feature vector is

O(n+ 3× (n+ 2k × n̂)). According to the above assump-
tion, it equals O(7n). When the CPF is implemented by
a serial program without any parallel processing, the first
stage time complexity on the whole dataset is O(15n ×
|D|) where |D| denotes the number of DNA sequences
in the dataset D. And the space complexity is still
O(7n).

Results
Experiment settings
We use the k-means algorithm, which is implemented
by the scipy module in Python, to test our CPF model
and compare it with other five alignment-free models, i.e.
k-tuple, DMk, TSM, AMI [15] and CV [13]. We also com-
pare the CPF based k-means with UCLUST and CD-HIT,
which are two alignment based DNA clustering models.
Seven datasets DS2, DS3, DS4, HOG20, HOG50,

HOG80 and HOG100 are collected from PBIL [32]. The
DS2 dataset is the HOVERGEN from PBIL, which is
a database of homologous vertebrate genes. The DS4
is randomly selected from HOMOLENS, which is a
database of homologous genes from Ensembl organisms
and Ensembl families. The rest are randomly selected
from HOGENOM, which contains homologous gene
families from microbial organisms.
Each DS* dataset, which is also used by Wei et al. [20],

contains six families. Each HOG* dataset contains much
more families that are varying from 20 to 100. The Table 2
lists the details of these datasets.

Table 2 The details of the seven datasets

Dataset
Number of Total number of DNA Average length of a DNA Size of
families sequences in the dataset sequence in the family dataset (KB)

DS2 6 285 1307 396

DS3 6 310 1536 501

DS4 6 251 1075 291

HOG20 20 1542 1492 2488

HOG50 50 3327 1466 5285

HOG80 80 7305 1413 11207

HOG100 100 9648 1484 15501
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The goal of the test is to divide the DNA sequences that
belong to the same family into the same cluster as well
as possible. Though the data origin is clear, no clustering
algorithm can precisely and correctly re-arrange all data
into the correct clusters. As well known, the initial clus-
ter centers, which are randomly selected in the k-means
algorithm, have a great effect on the results. In fact, the
k-means clustering results are varying every time because
of the random initial cluster centers. In order to eliminate
the occasional disturbance, we repeat each experiment 10
times to count its average performance. At last, all models
are evaluated in terms of average purity and F-measure,
which are defined as follows.
Let M denotes the number of families in the dataset,

M̂ denotes the number of clusters in the whole clustering
result, |D| denotes the number of the total DNA sequences
in the dataset, Ni denotes the number of sequences in the
family i, N̂j denotes the number of sequences in the clus-
ter j, Nij denotes the number of sequences that belong to
both family i and cluster j. lbl

(
j
)
denotes the familiy label

of the cluster j, i.e. most members in the cluster j belong
to the familiy lbl

(
j
)
.

The purity of the cluster j is defined as:

purityj =
Mmax
i=1

(
Nij

)
N̂j

(9)

The purity of the whole clustering result is:

purity =
M̂∑
j=1

N̂j

|D|purityj (10)

Usually, the members in a cluster may be from sev-
eral families. But the cluster is labelled by the dominated
members. The familiy label of the cluster j is:

lbl
(
j
) = arg Mmax

i=1

(
Nij

)
(11)

Since a family is often divided into serval clusters. We
count the precision and recall of a family over the clus-
ters that have the same family label. The precision of the
familiy i is:

precisioni =

∑
lbl(j)=i

Nij

∑
lbl(j)=i

N̂j
(12)

The recall of the familiy i is:

recalli = 1
mi

×

∑
lbl(j)=i

Nij

Ni
(13)

where mi dontes the number of clusters whose familiy
labels are equal to i.
The F-measure of the familiy i is:

Fi = 2 × precisioni × recalli
precisioni + recalli

(14)

The F-measure of the whole clustering result is:

F =
M∑
i=1

Ni
|D|Fi (15)

Clustering results
Since the k-means clustering results depend on the num-
ber of initial cluster centers, which is denoted by c value in
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Figure 2 The clustering results measured in purity against the number of initial clusters on the dataset DS4.
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Figure 3 The clustering results measured in F-measure against the number of initial clusters on the dataset DS4.

the following. We vary c value to observe the performance
variation tendency of models.
It is noted that the sliding windows size of CPF and

TSM is 2, the rest is 3. When a feature vector is created
from a DNA sequence, the k value, i.e. the size of the slid-
ing window, has a significant effect on it. It is well known
that a DNA sequence is composed of four letters alphabet
{A, C, G, T}. Hence the size of the feature vector is 4k .
Nevertheless, it is not always true that the bigger k value

the better it is. Wei et al. [20] suggested that k value
should be set 3 because the length of a DNA codon is
3. They believe that this value is helpful to conserve the
inherited information in a DNA sequence. For using the
same token, it is also set 3 in DMk, k-tuple, AMI and
CV. Aita et al. [33] attempted to optimize the k value
according to a mathematical model of mutational events.
Although the CPFmodel transforms a DNA sequence into
three new sequences, the newly generated sequences are
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Figure 4 The clustering results measured in purity against the number of initial clusters on the dataset HOG50.
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Figure 5 The clustering results measured in F-measure against the number of initial clusters on the dataset HOG50.

composed of only two letters. Consequently, we assign
the sliding window size to 2 in CPF and TSM. The
experimental results show that it is suitable for CPF
model.
The Figure 2 illustrates the clustering results measured

in purity against the number of initial clusters on the
dataset DS4. The Figure 3 illustrates the same cluster-
ing results measured in F-measure on the same dataset.
The Figure 4 illustrates the clustering results measured in
purity against the number of initial clusters on the dataset
HOG50. The Figure 5 illustrates the F-measure results on
the dataset HOG50. The variation tendencies of cluster
results on the dataset DS2 and DS3 are similar to the DS4.
The tendencies on the HOG* datasets are similar to that
of HOG50. On the HOG50 dataset, we vary c value from
10 to 280.

All models achieve the peak F-measure value in the
range [50-150] whereas the purity value tends to be flat
when the c value is greater than 50. Obviously, the big-
ger c value, the more cluster numbers, and the smaller a
cluster is. A smaller cluster certainly has a higher purity
(i.e. precision) but a lower recall. A cluster that contains
only one sequence will get the highest purity and the low-
est recall. But it is meaningless to our test because our goal
is to put the similar DNA sequences together and ensure
that they are from the same family. So the F-measure
assesses clustering results more comprehensive than
purity.
In General, the CPF is the best in most cases, and DMk

is slightly worse than CPF, but it is much better than the
rest models. TSM, k-tuple, AMI and CV are about the
same level in most cases. For the F-measure, the CPF

Table 3 The best clustering results in F-measure of CPF and alignment basedmodels on different datasets

Dataset

UCLUST CD-HIT CPF

F-measure Number of F-measure Number of F-measure Number of
cluster cluster cluster

DS2 0.0623 197 0.2429 44 0.9755 6

DS3 0.0414 285 0.0620 189 0.9809 6

DS4 0.0633 183 0.1241 127 0.9761 6

HOG20 0.2590 197 0.2287 246 0.7791 20

HOG50 0.2197 484 0.1652 625 0.5576 50

HOG80 0.1871 897 0.1648 1033 0.5024 80

HOG100 0.1804 1185 0.1533 1433 0.4780 100

Settings 0.75 ≤ T ≤ 1 0.8 ≤ T ≤ 1 k = 2
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Figure 6 The clustering results measured in purity against sliding window size on the dataset DS4.

achieves the best result when c value is equal to or slightly
greater than the number of families in the dataset,
The Table 3 lists the best clustering results in F-measure

of CPF and two alignment based models, i.e. UCLUST
and CD-HIT, on different datasets. The two alignment
based models are far worse than CPF. However, UCLUST
and CD-HIT are designed for finding the most similar
DNA sequences, namely, every sequence in the cluster
must have similarity above a given identity threshold (T).

So these two alignment based models always get plenty
of small clusters, which leads to a high precision (i.e.
purity) score but a very poor recall score. As a result, their
F-measure scores are worse. For example, on the HOG50
dataset, the UCLUST outputs 484 clusters, and the
CD-HIT outputs 625 clusters, though all DNA sequences
are from 50 families.
Based on above evaluation, CPF model performs sta-

bly and consistently with various datasets. It is very easy
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Figure 7 The clustering results measured in F-measure against sliding window size on the dataset DS4.
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Figure 8 The clustering results measured in purity against sliding window size on the dataset HOG50.

to set optimal configurations for CPF, which implies that
the CPF model has a good capability of generalization and
applicability.

The preferred sliding window size
The sliding window size, i.e. k value, determines the
dimension of feature vector. The longer sliding windows
size, the bigger feature vector dimension is. We vary the
size of sliding window from 2 to 6 to observe its influence

on the alignment-free models, while the number of
k-means initial clusters is fixed on the number of families
in the dataset.
The Figure 6 illustrates the clustering results measured

in purity against the size of sliding window on the dataset
DS4. The Figure 7 illustrates the same clustering results
measured in F-measure on the same dataset. The Figure 8
illustrates the clustering results measured in purity against
the size of sliding window on the dataset HOG50. The
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Figure 9 The clustering results measured in F-measure against sliding window size on the dataset HOG50.



Bao et al. BMC Bioinformatics 2014, 15:321 Page 11 of 15
http://www.biomedcentral.com/1471-2105/15/321

Figure 9 illustrates the F-measure results on the dataset
HOG50. The variation tendencies of cluster results on the
DS* datasets are similar to that of DS4. The tendencies
on the HOG* datasets are similar to that of HOG50. The
Tables 4 and 5 list the details on all datasets.
Generally, the CPF performance is very stable and bet-

ter than other models in most cases, the sliding window

size has a few effect on the CPFmodel. Namely, it achieves
the best or near the best clustering result when the slid-
ing window size is 2. That imples a great virtue of the
CPF model. Because the longer sliding window size will
consume much more computing resources including both
time and space. In contrary, the DMk is unstable though it
may be slightly better than the CPF occasionally.

Table 4 The clustering results of six alignment-freemodels against sliding window size on the dataset DS2, DS3 and DS4

Dataset Assessment method Model
Size of sliding window

2 3 4 5 6

DS2 purity

kTuple 0.8842 0.9123 0.8947 0.7789 0.7404

DMk 0.9474 0.9404 0.9474 0.8667 0.5123

AMI 0.5895 0.6035 0.6140 0.5614 0.5965

CV N/A 0.7158 0.7684 0.8421 0.8421

TSM 0.8667 0.8702 0.8772 0.8807 0.9018

CPF 0.9754 0.9439 0.9368 0.9404 0.9123

DS2 F-measure

kTuple 0.8921 0.9184 0.9012 0.6631 0.6381

DMk 0.9487 0.9419 0.9490 0.7477 0.3854

AMI 0.4871 0.4924 0.5009 0.4104 0.4370

CV N/A 0.6126 0.7708 0.8457 0.8419

TSM 0.8749 0.8789 0.8845 0.8878 0.9087

CPF 0.9755 0.9451 0.9379 0.9416 0.9158

DS3 purity

kTuple 0.5935 0.6290 0.6290 0.5452 0.4968

DMk 0.8968 0.8806 0.8774 0.7484 0.5774

AMI 0.5387 0.5484 0.5452 0.5516 0.5581

CV N/A 0.4484 0.5419 0.5935 0.4452

TSM 0.6290 0.6032 0.5774 0.5774 0.6452

CPF 0.9806 0.9419 0.9194 0.9387 0.9226

DS3 F-measure

kTuple 0.4755 0.5158 0.5185 0.3862 0.3952

DMk 0.8972 0.8836 0.8811 0.6336 0.3083

AMI 0.4241 0.4699 0.4871 0.4284 0.4936

CV N/A 0.3473 0.4272 0.4816 0.2307

TSM 0.5046 0.4871 0.4208 0.4224 0.5364

CPF 0.9809 0.9446 0.9222 0.9420 0.9262

DS4 purity

kTuple 0.6215 0.6853 0.7092 0.6853 0.5538

DMk 0.9641 0.9243 0.8367 0.7490 0.3984

AMI 0.5100 0.5618 0.5896 0.6096 0.6494

CV N/A 0.7092 0.6375 0.6414 0.6175

TSM 0.6096 0.6972 0.7131 0.7251 0.6653

CPF 0.9761 0.9801 0.9721 0.9681 0.9641

DS4 F-measure

kTuple 0.5616 0.5146 0.5240 0.5497 0.3469

DMk 0.9644 0.9242 0.7220 0.5476 0.2395

AMI 0.3886 0.4330 0.5062 0.4848 0.5714

CV N/A 0.6790 0.4237 0.4986 0.4610

TSM 0.4722 0.4970 0.5068 0.6516 0.4703

CPF 0.9761 0.9801 0.9721 0.9681 0.9641



Bao et al. BMC Bioinformatics 2014, 15:321 Page 12 of 15
http://www.biomedcentral.com/1471-2105/15/321

Table 5 The clustering results of six alignment-freemodels against sliding window size on the dataset HOG20, HOG50,
HOG80 and HOG100

Dataset Assessment method Model
Size of sliding window

2 3 4 5 6

HOG20 purity

kTuple 0.6401 0.6505 0.6388 0.5986 0.5253

DMk 0.7808 0.7646 0.7639 0.6900 0.5674

AMI 0.5649 0.5765 0.5817 0.5798 0.5798

CV N/A 0.6064 0.5934 0.6206 0.6595

TSM 0.6174 0.6206 0.6329 0.6297 0.6128

CPF 0.8119 0.7970 0.8113 0.7879 0.7737

HOG20 F-measure

kTuple 0.5810 0.5725 0.5364 0.5486 0.5332

DMk 0.7493 0.7526 0.6807 0.6066 0.5455

AMI 0.4521 0.5053 0.4966 0.5334 0.5363

CV N/A 0.4797 0.4795 0.5327 0.5613

TSM 0.5744 0.5839 0.5910 0.5466 0.5339

CPF 0.7677 0.7682 0.7791 0.7720 0.7178

HOG50 purity

kTuple 0.5531 0.5534 0.5621 0.5149 0.4713

DMk 0.6252 0.6117 0.6072 0.5654 0.4614

AMI 0.3953 0.3892 0.4295 0.4448 0.4370

CV N/A 0.4983 0.5377 0.5672 0.5786

TSM 0.5329 0.5206 0.5425 0.5260 0.5347

CPF 0.6453 0.6483 0.6369 0.6351 0.6396

HOG50 F-measure

kTuple 0.4539 0.4273 0.4643 0.4490 0.4458

DMk 0.5170 0.5334 0.4742 0.4647 0.3999

AMI 0.2991 0.2719 0.2901 0.3254 0.3247

CV N/A 0.3809 0.4454 0.4553 0.5083

TSM 0.4229 0.4164 0.4132 0.4304 0.4226

CPF 0.5351 0.5411 0.5544 0.5441 0.5576

HOG80 purity

kTuple 0.5925 0.5841 0.5447 0.5381 0.4982

DMk 0.6501 0.6381 0.6542 0.6452 0.5451

AMI 0.4727 0.4721 0.4830 0.4957 0.4932

CV N/A 0.5655 0.5615 0.5979 0.6163

TSM 0.5714 0.5840 0.5979 0.6053 0.5748

CPF 0.6728 0.6691 0.6508 0.6721 0.6768

HOG80 F-measure

kTuple 0.4102 0.3838 0.4171 0.4570 0.4411

DMk 0.4759 0.4187 0.4892 0.4379 0.4106

AMI 0.2749 0.2792 0.2776 0.3287 0.3249

CV N/A 0.3594 0.3555 0.3941 0.4363

TSM 0.3897 0.4063 0.3819 0.4069 0.4089

CPF 0.5024 0.4624 0.4585 0.4614 0.4751

HOG100 purity

kTuple 0.5001 0.5404 0.5622 0.5320 0.4725

DMk 0.6033 0.6233 0.6330 0.5651 0.4358

AMI 0.4203 0.4437 0.4381 0.4197 0.4473

CV N/A 0.5101 0.4952 0.5646 0.5710

TSM 0.4923 0.5132 0.5450 0.5416 0.5547

CPF 0.6421 0.6359 0.6159 0.6295 0.6331
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Table 5 The clustering results of six alignment-freemodels against sliding window size on the dataset HOG20, HOG50,
HOG80 and HOG100 (Continued)

HOG100 F-measure

kTuple 0.3391 0.3785 0.4051 0.4436 0.4196

DMk 0.4498 0.4582 0.4870 0.4163 0.3280

AMI 0.2900 0.2985 0.2911 0.2801 0.3172

CV N/A 0.3438 0.3447 0.3741 0.4310

TSM 0.3264 0.3329 0.3793 0.3827 0.4310

CPF 0.4780 0.4491 0.4442 0.4509 0.4617

As a result, a larger sliding window may not harvest a
better clustering result. A shorter window size produces
a shorter feature vector, which is greatly helpful in the
large scale DNA processing because a shorter vector can
reduce the computation overhead and speed up running
time exponentially.
It is apparent that the word-frequency-only method

(e.g. k-tuple, TSM, AMI and CV) performs worse than
the other two hybrid methods (DMk and CPF) because
they miss some useful information. In contrast, CPF
considers more useful information and achieves better
results.

The running time
The Table 6 lists the average running time of six models at
two stages against different k value on the dataset HOG80.
Each of them is repeated 200 times to sum the running
time. The running environment is as follows.
CPU: Intel Core i7 (3.40GHz), RAM: 4.00GB, OS:

Windows 7 (64bit professional edition).
At the feature vector building stage, the CPF model

is slower than others except AMI. But at the k-means

clustering stage, the CPF model is faster than others
except AMI. Especially when k value is greater than 3, k-
tuple, DMk and CV are tens times slower than CPF, TSM
and AMI though the former three models are faster at the
feature vector building stage.
It is a disadvantage for the CPF model to spend a

long time on the feature vector building stage. But the
CPF model runns very fast at the k-means clustering
stage, If the feature vectors are not stored, namely, they
are rebuilt in each clustering process, the total running
time of CPF is near to AMI, but bigger than k-tuple,
DMk and TSM. However, the feature vector of a DNA
sequence is its inherent property, which is invariant. It
can be built once and stored for repeated use. The CPF
model is helpful to save time in the repeated clustering
application.

Discussion
There are a variety of features extracted from a raw
DNA sequence, such as word frequency, classifications of
nucleotide bases, position and so on. Different alignment-
free models employ different features to build feature

Table 6 The runing time in seconds of the alignment-freemodels on the dataset HOG80

Stage Model
Size of sliding window

2 3 4 5 6

Building feature vector

kTuple 5.4848 5.9249 7.3474 13.1670 35.6224

DMk 20.9364 22.3314 26.4229 42.6146 135.9681

AMI 92.2859 121.9755 151.5307 181.6293 211.4968

CV N/A 17.8201 22.3311 33.8704 66.6548

TSM 23.5510 23.7551 24.7025 24.2759 25.0376

CPF 68.8990 69.3461 70.3552 72.0977 74.9368

k-means clustering

kTuple 20.7364 24.8182 57.3658 274.7188 1289.9252

DMk 24.7368 58.8896 114.3778 513.7478 1721.9877

AMI 17.0510 22.5570 20.3212 23.0417 19.7904

CV N/A 92.5585 147.1847 517.1461 1841.4720

TSM 25.1845 23.8039 34.6972 48.2633 54.6024

CPF 18.2820 34.2255 29.7729 41.6606 76.1415



Bao et al. BMC Bioinformatics 2014, 15:321 Page 14 of 15
http://www.biomedcentral.com/1471-2105/15/321

space. The dimension of a feature vector depends on the
specific model. Generally, it varies from (k + 1) to 4k .
While k = 6, it may be 46 = 4096.
But, how much is adequate for DNA sequence

comparison?
As far as I know, the theoretical boundary is not pre-

sented by now. But it is a fact that the longer feature vector
may not guarantee the better clustering result. On the
small size datasets, our experiments verified that the 12-
dimension CPF model outperforms the 4096-dimension
k-tuple model. Moreover, the experiments illustrate that
the CPF model gets the best result when the sliding win-
dow is two, i.e. the dimension of a feature vector is 12
(3 ∗ 22 = 12). Namely, the longer CPF vector (i.e. the
longer sliding window) is not always better than the 12-
dimension CPF vector. We have tested the CPF model on
several datasets, the results show that CPF’s performance
is steady. As a result, for not too long DNA sequences, the
best configuration of CPF model is fixed.
However, the length of a DNA sequence is not very

huge in our experiments, which is no more than 5000
characters. It believed that the 12-dimension vector is not
adequate for huge DNA sequences. Obviously, if 10,000
characters size of sequences are compressed into 12-
dimension vectors, too much information are lost so that
they can not be effectively distinguished.
When the dataset grows large, all six models becomes

worse. The best F-measure value declines from near 1.0 to
near 0.5 when the family number of dataset grows from
six to 100. All models’ F-measure value will less than 0.5
on the more larger dataset. Since the larger the dataset is,
the more families may be overlapped eath other. That is
a hard obstacle for alignment-free clustering models. It is
a big challenge to solve the issue on the wild large scale
datasets.
Consequently, it is still an problem for future research

to estimate the optimal size of feature vectors for differ-
ent size of DNA sequences. Our work illustrates that the
12-dimension CPF model can get an excellent clustering
result for DNA sequences no more than 5000 characters.

Conclusions
It is believed that an alignment-free model containing
more useful information can achieve better data min-
ing results. This paper presents the CPF model that
employs the word frequency, position and nucleotide
bases classification information from DNA sequences.
The experimental results show that CPF is superior to
other models, including k-tuple, DMk, TSM, AMI and
CV. The following conclusions can be drawn from the
experiments.

(1) The hybrid information model is better than the
model only based on word frequency.

(2) For DNA sequences no more than 5000 characters,
the preferred size of sliding windows for CPF is two,
which provides a great advantage to promote system
performance.

(3) The CPF model is able to make an efficient stable
performance and broad generalization.

In the future, we will perform the CPF model on a large
scale DNA data to deeply observe DNA sequence simi-
larity and mining relationships among them. And a more
efficient clustering method will be presented to promote
the clustering results on unknown DNA sequences.
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