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Abstract: SOG1 (Suppressor of the Gamma response 1) is the master-regulator of plant DNA damage
response (DDR), a highly coordinated network of DNA damage sensors, transducers, mediators,
and effectors, with highly coordinated activities. SOG1 transcription factor belongs to the NAC/NAM
protein family, containing the well-conserved NAC domain and five serine-glutamine (SQ) motifs,
preferential targets for phosphorylation by ATM and ATR. So far, the information gathered for
the SOG1 function comes from studies on the model plant Arabidopsis thaliana. To expand the
knowledge on plant-specific DDR, it is opportune to gather information on other SOG1 orthologues.
The current study identified plants where multiple SOG1 homologues are present and evaluated their
functions by leveraging the information contained in publicly available transcriptomics databases.
This analysis revealed the presence of multiple SOG1 sequences in thirteen plant species, and four
(Medicago truncatula, Glycine max, Kalankoe fedtschenkoi, Populus trichocarpa) were selected for gene
expression data mining based on database availability. Additionally, M. truncatula seeds and seedlings
exposed to treatments known to activate DDR pathways were used to evaluate the expression
profiles of MtSOG1a and MtSOG1b. The experimental workflow confirmed the data retrieved from
transcriptomics datasets, suggesting that the SOG1 homologues have redundant functions in different
plant species.

Keywords: DNA damage response (DDR); Suppressor of Gamma response 1 (SOG1); gene expression;
seed development; seed germination

1. Introduction

The conservation of genome integrity is a key component for the perpetuation of life.
To maintain genome integrity and detect and repair DNA lesions, all living organisms
activate sophisticated and interconnected mechanisms, collectively gathered under the um-
brella of the DNA damage response (DDR). From an evolutionary point of view, the DDR
pathway is highly conserved in eukaryotes [1,2]. The intricated DDR network is composed
of DNA damage sensors, transducers, mediators, and effectors, with highly coordinated
activities that can either lead to DNA repair and cell survival or trigger cell death if the
damage cannot be effectively repaired [1,3]. DDR sensors are proteins able to recognize
DNA damage, and this, in turn, activates a series of events (e.g., phosphorylation cascades)
that lead to the regulation of downstream processes (e.g., cell cycle checkpoint, DNA repair,
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programmed cell death) [4]. In both animals and plants, the MRN (MRE11/RAD51/NBS1)
complex is required for the recognition of strand breaks in pathways involving the main sig-
nal transducers ATM (ataxia telangiectasia mutated) and ATR (Rad3-related) kinases [1,5].
ATM and ATR are responsible for the phosphorylation of proteins, such as the histone-
variant H2AX [6,7] which, in the phosphorylated form (γH2AX), acts as a DNA damage
signal and recruiter of several proteins to the double-strand break (DSB) site [4,8,9]. Fol-
lowing damage recognition, plant cells activate DNA repair genes [8] concomitantly to
blocking the progression of the cell cycle [10] to allow the damage to be repaired, or it
activates the programmed cell death pathways [11] to remove the damaged cells.

As revealed by bibliometric analysis, studies on plant DDR lag far behind mammalian
research, covering only 10% of the total number of published articles on DDR [12]. This
is startling because many mutations that are lethal in animals are viable in plants [13–15].
Although DDR is highly conserved in eukaryotes, peculiar plant-specific features are also
present [1–3]. For instance, SOG1 (Suppressor of gamma response 1) is considered to be the
functional homolog of the mammalian p53 (the main DDR effector), and hence, the master-
regulator of plant DDR [16–18]. SOG1 is a transcription factor (TF) belonging to the NAC
(originally characterized from consensus sequences from petunia NAM and Arabidopsis
ATAF1, ATAF2, and CUC2) family. In the model plant Arabidopsis thaliana, more than
100 genes belonging to this family of TFs have been identified and divided into ten major
groups, making this protein family one of the largest in plants [19–21]. Although it was
demonstrated that NAC TFs play critical roles in different processes such as environmental
stress responses, xylem cell specification, lateral root formation, or the establishment of
the shoot apical meristem, the function of many NAC proteins is still uncertain [19,22,23].
The SOG1 function was first identified as a sog1 allele able to suppress the growth arrest
induced by γ-ray in the A. thaliana UV-hypersensitive (uvh)1 mutant [16,24]. Aside from the
well-conserved NAC domain, the C-terminus of AtSOG1 is characterized by the presence
of five serine-glutamine (SQ) motifs, which are preferential targets for phosphorylation by
ATM and ATR [9,25]. The DNA damage-dependent SOG1 hyperphosphorylation detected
in wild-type plants disappeared in transgenic plants bearing a mutated SOG1 showing
serine-to-alanine substitutions at all five SQ motifs, suggesting that one or more of the SQ
motifs are effective targets for the hyperphosphorylation [25]. Considering that these motifs
are conserved in eudicots, monocots, an ancient flowering plant (Amborella trichopoda), and
gymnosperms, Yoshiyama et al. [17] proposed that SOG1 had already been acquired starting
from gymnosperms. However, more recent studies also reported the presence of SOG1
orthologues in lower plants such as Physcomitrella patens [26], thus placing its origin in
nonvascular plants [27]. SOG1 is the first TF whose function was associated with DDR in
plants. Nonetheless, more recently, other TFs from the NAC family (e.g., NAC044, NAC085)
have been associated with DDR functions and hypothesized to be involved in the control of
mitotic genes [28,29]. Among these, NAC044 (a DDR mediator) is considered to be a close
homolog of SOG1, as nac044 mutants showed reduced sensitivity to treatments that induce
DSBs [29]. When DSBs occur, SOG1 is activated through ATM-mediated phosphorylation,
similarly to animal p53. As a master regulator, it drives the cell fate towards cell cycle arrest,
DNA repair, apoptosis or senescence, and endoreduplication. Despite its similar function to
the mammal p53, these transcription factors lack significant amino acid sequence similarity
and are examples of divergent proteins. Similar to mammals where p53-independent
pathways are present [30], SOG1-independent pathways were also reported in plants [28].
These include the E2Fs–RBR1 (RETINOBLASTOMA-RELATED1) complex, which can
interact with DREAM complexes (considered as master regulators of the cell cycle) to
repress gene expression in G1 [3,31]. On the other hand, RBR1 interacts also with NAC044,
and the disruption of this interaction can impair cell death [32].

So far, most studies on the SOG1 function in plants were conducted in
Arabidopsis [1,16,25,28,33–36]. To expand the knowledge on plant-specific DDR, it is neces-
sary to investigate other SOG1 orthologues, considering that other plants can also possess
multiple homologues [27]. Moreover, SOG1 functions may differ in different species, also
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considering that in Arabidopsis, distinct sets of target genes can be differentially regulated
by SOG1 in different cell types [17,37]. Hence, in this study, we aimed to identify plants
where multiple SOG1 homologues are present, along with evaluating the function of these
genes, taking advantage of RNA-seq and microarray databases. In addition to in silico data
mining, an experimental system was specifically set using Medicago truncatula seeds and
seedlings exposed to stimulating or damaging treatments, and the expression profiles of
the two SOG1 genes (MtSOG1a, MtSOG1b) were evaluated.

2. Materials and Methods
2.1. Phylogenetic Analysis

A total of 72 SOG1 putative orthologue sequences from 49 species were retrieved from
Phytozome (vs. 12.1, http://www.phytozome.net/, accessed on 19 March 2022) using
BLASTp (with default parameters) starting from the A. thaliana SOG1 peptide sequence
(AT1G25580). The sequences with an expected value lower than 100 were kept and aligned
with MAFFT (Multiple Alignment Fast Fourier) using the FFT-NS-i algorithm [38]. Only
sequences containing the NAC domain and the SQ motives were retained, resulting in a
total of 68 sequences from 47 species.

The phylogenetic analysis was computed with IQ-Tree with 1000 Ultrafast boot-
strap [39] using the JTT model as the substitution model [40] with invariant sites (+I)
and gamma distributed rates with four categories (+G4) as found by ModelFinder [41].
The tree was rooted with midpoint rooting. The NAC domain was annotated through the
HMMER web server [42] over the Pfam database with default parameters and the SQ motifs
were searched with a regex search. Tree annotation and visualization were performed using
the ETE3 python package [43].

2.2. Gene Expression Data Mining

Data for gene expression profiles were retrieved from the BAR Toronto eFP browser
(http://bar.utoronto.ca/, accessed on 19 March 2022, [44]), a visual analytic tool used to
explore multiple levels of expression data in plants. Specifically, data were retrieved for
the following species: M. truncatula [45], Glycine max [46], Kalanchoë fedtschenkoi [47], and
Populus trichocarpa [48]. This choice was based on data availability for species containing
multiple SOG1 homologues and represented in the BAR Toronto eFP browser. The “abso-
lute” mode was used, indicating the expression levels directly associated with the most
intense signal recorded for each gene. The intensities obtained through eFP (electronic fluo-
rescent pictography) were normalized using the MAS5 algorithm, which isolates individual
signals by removing the background noise [49]. For all species, the data are presented
as FPKM (fragments per kilobase of exon model per million reads mapped)-normalized.
For M. truncatula, additional data on gene expression were collected from the Phytozome
Gene Atlas [50] to cover aspects related to gene expression during symbiotic conditions.
In all the studies, samples were analyzed in triplicate while only the mean values are
available in this database, and hence were retrieved and used to represent the data as
heatmap models generated using Shinyheatmap (http://shinyheatmap.com/, accessed
on 19 March 2022, [51]). The expression values are represented as Z-scores, a numerical
measure that describes the relationship of a value to the mean of a group of values. The
following parameters were set for all the generated heatmaps: Blue for low values, white
for mid-values, red for high values, no clustering, no trace, a Euclidean distance metric,
a complete linkage algorithm, and row scaling.

2.3. In Silico Analyses of SOG1 Homologues in M. truncatula

The genomic, transcript, coding, and peptide sequences of M. truncatula SOG1 homo-
logues were retrieved from Phytozome. The PhytoMine (https://phytozome.jgi.doe.gov/
phytomine/begin.do, accessed on 19 March 2022) tool was used to find the precise positions
of the exons on genomic sequences, average length, and distribution. Pfam (http://www.
pfam.xfam.org, accessed on 19 March 2022) and InterPro (http://www.ebi.ac.uk/interpro/,

http://www.phytozome.net/
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accessed on 19 March 2022) were used to confirm and locate the NAM/NAC characteristic
domain. Alignment of the MtSOG1a (Phytozome accession No. Medtr5g053430) and
MtSOG1b (Phytozome accession No. Medtr1g093680) was performed using CLUSTALW
(https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 19 March 2022).

The STRING (https://string-db.org/, accessed on 19 March 2022) online database
(vs.11.0) was used to identify the AtSOG1, MtSOG1, GmSOG1, and the PtSOG1 putative
protein–protein interactors. The polypeptide sequence was used as a query and the default
STRING settings were applied, displaying all the predicted interactors with a score higher
than 0.4 with confidence-based links and including results from all the available evidence
sources. Accession numbers were retrieved from the list of interactors (STRING codes)
displayed as the output of the STRING query (one per species since the different SOG1
genes in the same species have almost perfectly overlapping interactomes). Starting from
the list of interactors in A. thaliana, homologues in M. truncatula, G. max, and P. trichocarpa
have been retrieved on Phytozome BioMart.

Promoter analysis was carried out for the MtSOG1a and MtSOG1b genes to identify
putative cis-acting regulatory elements. The sequences of the promoter regions were
retrieved from NCBI Gene (https://www.ncbi.nlm.nih.gov/gene/?term=, accessed on
19 March 2022), displaying the region within 1000 bp upstream of the transcription start
site. Using the retrieved sequences as queries, the putative cis-acting regulatory elements
were identified and described using the New PLACE database (https://www.dna.affrc.go.
jp/PLACE/?action=newplace, accessed on 19 March 2022).

2.4. Plant Materials and Treatments

M. truncatula commercial seeds (Jemalong cultivar) were provided by Fertiprado
L.d.a., Vaiamonte (Monforte, Portugal). For imbibition, seeds were placed in Petri dishes
(30 seeds per dish) on a layer of filter paper moistened with 2.5 mL H2O and imbibed
for 24 h. Samples were collected at 0, 2, 4, 6, 8, 12, 16, and 24 h of imbibition. Dry-back
treatments were carried out on two subpopulations of 24h-imbibed seeds: (i) Primed seeds
(P) not displaying radicle protrusion and (ii) over-primed seeds (OP) displaying radicle
protrusion (2 mm in length). A total of 30 seeds were distributed into Petri dishes and
covered with a layer of absorbing paper and a layer (~20 g) of silica beads (Disidry® Orange
Silica Gel, The Aerodyne, Florence, Italy). Petri dishes were sealed with parafilm. P and
OP samples were collected after 0, 2, 4, and 6 h of dehydration. Sample collection during
imbibition and dry-back was carried out by excising the embryo axis along with the radicle
protrusion, when present.

The relative water content (RWC) was calculated during imbibition (0, 2, 4, 6, 8, 12,
16, and 24 h) and dry-back of P and OP seeds (0, 2, 4, and 6 h), according to the formula
RWC [%] = [(Fw − Dw)/Fw] × 100. For each sample (3 replicates of 20 seeds each), fresh
weight (Fw) was measured at the indicated timepoints. Dry weight (Dw) was measured
after overnight dehydration at 80 ◦C [52].

Additional treatments were carried out on M. truncatula seeds using 25 µM camptothecin
(CPT, Sigma-Aldrich, Milan, Italy) and 25µM NSC120686 (NSC, 2-chloro-6-fluorobenzaldehyde
9H-fluoren-9-ylidenehydrazone) provided by the National Cancer Institute (Bethesda, United
States), following the experimental design reported by Gualtieri et al. [53]. Because these
compounds are dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Milan, Italy),
specific controls, corresponding to each concentration (0.17%, 0.23%, and 0.29%) used in
the indicated treatments, were set up. The treatments were applied to seeds placed in
Petri dishes (30 seeds per dish) containing a filter of blotting paper moistened with 2.5 mL
H2O (non-treated control) or indicated solutions (CPT, NSC, CPT+NSC, DMSO controls).
Seedlings were harvested after 7 days and frozen in liquid nitrogen.

All Petri dishes (for seed imbibition and CPT/NSC treatments) were kept in a growth
chamber at 22 ◦C under light conditions with a photon flux density of 150 µmol m−2 s−1,
a photoperiod of 16/8 h, and 70–80% relative humidity.

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://string-db.org/
https://www.ncbi.nlm.nih.gov/gene/?term
https://www.dna.affrc.go.jp/PLACE/?action=newplace
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2.5. Quantitative RealTime-PCR Profiling

Total RNA was isolated from M. truncatula seeds and seedlings as previously de-
scribed [53,54]. Samples were ground in liquid nitrogen, mixed with 550 µL Extraction
Buffer (0.4 M LiCl, 0.2 M Tris pH 8.0, 25 mM EDTA, 1% SDS), and 550 µL chloroform.
Samples were centrifuged at 10,000 rpm for 3 min at 4 ◦C, followed by the addition of
phenol-chloroform to the supernatant and centrifuged again. LiCl (1/3 volume, 8 M)
was added to the supernatant, incubated at 4 ◦C for 1 h, and centrifuged. The pellet
was washed with 70% ethanol, air-dried, and suspended in DEPC (diethylpyrocarbonate)
water. A DNase (ThermoFisher Scientific, Monza, Italy) was performed, as indicated by the
manufacturer. RNA was quantified using NanoDrop (Biowave DNA, WPA, ThermoFisher
Scientific). Subsequently, cDNAs were obtained using the RevertAid First Strand cDNA
Synthesis Kit (ThermoFisher Scientific) according to the manufacturer’s suggestions.

Quantitative RealTime-PCR reactions were performed with the Maxima SYBR Green
qPCR Master Mix (ThermoFisher Scientific) according to the supplier’s indications, us-
ing a Rotor-Gene 6000 PCR apparatus (Corbett Robotics Pty Ltd., Brisbane, Queens-
land Australia). Amplification conditions were as follows: Denaturation at 95 ◦C for
10 min, and 45 cycles of 95 ◦C for 15 s and 60 ◦C for 60 s. Oligonucleotide sequences
(MtSOG1a-fw: TGGTGCGAAGGGACAGATAA, MtSOG1a-rev: TCACACCGGACAAT-
GCGTC, MtSOG1b-fw: GGAAGCCGAAAGCGTAGAAA, MtSOG1b-rev: TTCTGAAGCC-
CFTTCAAGAG) were designed using Primer3Plus1 (https://primer3plus.com/, accessed
on 19 March 2022) and verified with Oligo Analyzer.2 (https://eu.idtdna.com/pages/
tools/oligoanalyzer, accessed on 19 March 2022). Relative quantification was carried out
using actin-related protein 4A (Act, Phytozome accession No. Medtr3g095530; FW: TCAAT-
GTGCCTGCCATGTATG, REV: ACTCACACCGTCACCAGAATC) and elongation factor
1α (ELF1α, Phytozome accession No. Medtr6g021805; FW: GACAAGCGTGTGATCGAG,
REV: TTTCACGCTCAGCCTTAA) as reference genes [53]. Raw fluorescence data were
used to estimate PCR efficiency (E) and threshold cycle number (Ct) for each transcript
quantification, while the Pfaffl method [55] was applied to calculate the transcript’s relative
quantification. All reactions were performed in triplicate. For CPT/NSC data, the results
are also presented as the fold change (FC), where values for each treatment were normalized
to the corresponding DMSO control.

2.6. Statistical Analyses

Data were subjected to an Analysis of Variance (ANOVA), and the statistical signifi-
cance of mean differences was determined. For the CPT/NSC stress treatments, Student’s
t-test was applied (*, p < 0.05) to compare the treatments with the non-treated control. For
the seed imbibition experiments, data were analyzed by a two-way ANOVA and the Tukey-
Kramer test, using the R package ‘Shiny’, a web-based program freely available online
(https://houssein-assaad.shinyapps.io/TwoWayANOVA/, accessed on 19 March 2022),
developed by Assaad et al. [56].

Correlation analysis was carried out using Microsoft Excel Spreadsheet Software |
Microsoft 365 to generate scatter plots. The correlation (r) measures the amount of linear
association between two variables, where r is always between −1 and 1 inclusive. The
R2 values were interpreted as follows: Negligible correlation (0–0.1), weak correlation
(0.1–0.39), moderate correlation (0.4–0.69), strong correlation (0.7–0.89), and very strong
correlation (0.9–1.0) [57].

3. Results and Discussion
3.1. Distribution of Multiple SOG1 Homologues within the Plant Kingdom

Phylogenetic analysis was performed using the 68 SOG1 homologous sequences
retrieved as explained in the material and methods section (Figure 1). The NAM (NAC)
domain was found in all species of the analyzed dataset and the phylogenetic tree revealed
two main groups in which Monocots and Eudicots species fall, respectively.

https://primer3plus.com/
https://eu.idtdna.com/pages/tools/oligoanalyzer
https://eu.idtdna.com/pages/tools/oligoanalyzer
https://houssein-assaad.shinyapps.io/TwoWayANOVA/
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Figure 1. Phylogenetic Maximum Likelihood tree of the SOG1 gene family with the corresponding
multiple sequence alignment. Bootstrap values are shown in red. The NAM domain is annotated in
light blue and the SQ motifs are highlighted in red. The Order of each species is written in color-coded
text on the right.

The first group contains mainly Poales that are characterized by an overall high
number of SQ motives. All the relationships in the Monocots species are resolved and
agree with the known species’ phylogeny as Alismatales is the sister group to the Zin-
giberales and Poales clades [58]. Interestingly, a duplication event may have occurred
in the ancestor of Poaceae (the node comprising Zea mays, Panicum hallii, P. virgatum,
Sorghum bicolor, and Oropetium thomaeum) and may have been lost in non-Panicoideae lin-
eages (Brachypodium distachyon and B. stacei). Indeed, all these orthologues miss the last SQ
motif otherwise perfectly conserved in other Poaceae sequences. This may be in line with
previous reports where direct comparison of Poaceae paralogous gene pairs simultaneously
duplicated indicates great variation in their evolutionary rates among whole genomes [59].

Differently, the Eudicots topology is not clearly resolved. Specifically, relationships
within the same family are generally clear, whereas relationships across different families
show low bootstrap support and sometimes do not overlap with the species’ phylogeny.
There are lineage- and species-specific duplications events characterizing, for example,
Brassicales species or the apple. Four of the SQ motifs are almost perfectly conserved
in all sequences, being absent only in specific clades such as Aquilegia coerula and Cit-
rus species or in sequences arising from a duplication event such as the Saxifragales,
Brassica rapa, and Manihot esculenta sequences, perhaps suggesting subfunctionalization of
the homologue genes.

The phylogenetic structure among the Fabids in our dataset is well resolved, with
the Fabales species being a sister group of the Rosales. In particular, the two homologue
sequences in M. truncatula (MtSOG1a and MtSOG1b) are placed as an outgroup in both the
sub-clades of the Fabales groups, which are mainly represented by paralog sequences of soy-
beans (G. max). The placement of M. truncatula (MtSOG1a, Accession no. Medtr5g053430)
is in line with known species’ phylogenies, being an outgroup of both Phaseoleae species
(G. max and Phaseolus vulgaris). On the other hand, the second gene (MtSOG1b, Accession
no. Medtr1g093680) presented five more SQ domain duplications than the one found in the
majority of the species in our dataset and one of them was found within the NAM domain.

For the majority of the analyzed species, it is possible to observe the presence of only a
single SOG1, except for B. rapa, G. max, K. fedtschenkoi, K. laxiflora, Linum usitatissimum, Malus
domestica, M. esculenta, M. truncatula, P. thricocarpa, P. virgatum, Setaria italica, S. viridis, and



Genes 2022, 13, 667 7 of 18

Salix purpurea, which presented multiple homologues. Among these, G. max, K. laxiflora,
and P. virgatum are the species with the highest number of putative SOG1 sequences
(four genes). Other reports have identified SOG1-like proteins in different plants belonging
to eudicot, monocot, and gymnosperms [17,18], while a more recent report identified two
SOG1 orthologues in the moss P. patens, thus placing the origin of this gene family in
nonvascular plants [27].

3.2. Expression Profiles of SOG1 Genes Retrieved from Transcriptomics Repositories

Considering that we identified several species presenting multiple SOG1 genes, we
then wanted to investigate the expression of these genes in different backgrounds. For this
purpose, we leveraged the transcriptomics datasets deposited in the Bio-Analytic Resource
for Plant Biology (BAR). Among the different species with multiple SOG1 homologues,
M. truncatula, G. max, K. fedtschenkoi, and P. trichocarpa are the only ones available in BAR.
Hence, gene expression data were mined for these species, spanning different tissues and
growth conditions (relative to the specific references to studies in which the data were
generated), and heatmaps were built to compare the expression of the different homologues.
The gene nomenclature was decided based on sequence similarity with the AtSOG1 gene
(Figure S1, Table S1).

For M. truncatula, data on the effect of stress during seed maturation and pod abscis-
sion (ABS) as well as data on dry seeds (DS) were recovered from Righetti et al. [45]. The
following treatments were taken into consideration: Standard conditions (20/18 ◦C), low
temperature (14/11 ◦C), high temperature (26/24 ◦C), osmotic stress (20/18 ◦C; −0.1 MPa),
and greenhouse conditions (variable temperature and light). The generated heatmap
(Figure 2a) shows that both MtSOG1a (Medtr5g053430) and MtSOG1b (Medtr1g093680)
genes are generally highly expressed during the early seed developmental stages, indepen-
dent of the temperature conditions. Similarly, the expression of both genes decreases while
approaching seed maturation, with the lowest values registered in DS and ABS. The same
expression pattern is also maintained during osmotic stress and greenhouse experiments
(including the expression of genes in leaves, nodules, and roots of four sufficiently old
plants, Figure 2b), in line with the moderately positive (R2 = 0.59) correlation observed
(Figure 2c). An interesting fact is related to the high expression of the two genes in nodules,
suggesting enhanced activity under symbiosis. However, under different circumstances,
a study on A. thaliana evidenced that SOG1 regulates the crosstalk between DDR and
the immune response [60], so it may be that this crosstalk could also be activated during
symbiotic relations. During seed maturation, water is progressively lost to prepare the
seed to become desiccation-tolerant, a characteristic that allows prolonged survival in the
dry state until conditions become optimal for germination. This process is accompanied
by extensive transcriptomic changes and is highly regulated through the activity of differ-
ent phytohormones [61,62]. Specifically, an optimal balance between cell-cycle regulation
and DNA repair is necessary to limit, as much as possible, the accumulation of DNA
damage, known to occur during the desiccation phase [63,64]. A transcriptome profiling
study carried out on M. truncatula seeds during the transition from desiccation-sensitive to
desiccation-tolerant stages evidenced massive repression of genes belonging to cell cycle
and DNA processing, indicating a general downregulation of metabolic processes and
cellular activity at late seed maturation stages [61]. This is in line with a more recent study
where E2Fs (transcription factors acting as regulators of cell proliferation) were shown
to be involved in cell differentiation during seed and embryo development by restricting
the seed maturation program until the cell proliferation phase is completed [65]. Hence,
the pattern of expression of MtSOG1a/b is in agreement with a more active DDR during
the initial phases of seed maturation while, when the water content is diminished at later
phases, DDR is less required, and will subsequently be reactivated during seed imbibition
and germination.
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Figure 2. (a) Expression profiles of the MtSOG1a (Medtr5g053430) and MtSOG1b (Medtr1g093680)
genes in M. truncatula. Data were collected from http://bar.utoronto.ca/, accessed on 19 March 2022
and heatmaps were generated using the Shinyheatmap (http://shinyheatmap.com, accessed
on 19 March 2022). (b) Expression profiles in roots, leaves, and nodules of 4-week-old plants
grown under greenhouse conditions. (c) Correlation analysis of MtSOG1a and MtSOG1b gene
expression values.

In the case of soybean, four GmSOG1 homologues were identified: GmSOG1a
(Glyma.02G100200), GmSOG1b (Glyma.20G185800), GmSOG1c (Glyma.10G204700), and
GmSOG1d (Glyma.01G088200). Data available on different plant tissues (roots, nodules,
leaves, flowers, pods, SAM) and seed maturation stages (given as days after flowering,
DAF) were retrieved from the G. max RNA-seq atlas [46]. The gene expression data-mining
approach showed that all four genes were highly expressed in the shoot apical meristems
(SAM), whereas in seeds, the expression patterns were similar to what was observed in
M. truncatula, with all genes having a decreasing expression with an increase in stages of
seed maturation (Figure 3a). Furthermore, in this case, moderate (R2 = 0.59) and strong
(R2 = 0.79) positive correlations between each two gene copies were evidenced (Figure 3b),
indicating co-expression of the homologues in different tissues. The same expression
pattern of GmSOG1s and MtSOG1s during seed development ascertain, once more, the
implication of DDR in this process. As for the observed upregulation of GmSOG1s in SAM,
this is in agreement with studies from Arabidopsis indicating that the high SOG1 expres-
sion detected in meristematic cells is associated with immediate transcriptomic changes
occurring in response to DNA damage [33,34].

Genes 2022, 13, x FOR PEER REVIEW 9 of 19 
 

 

DAF) were retrieved from the G. max RNA-seq atlas [46]. The gene expression data-min-

ing approach showed that all four genes were highly expressed in the shoot apical meri-

stems (SAM), whereas in seeds, the expression patterns were similar to what was ob-

served in M. truncatula, with all genes having a decreasing expression with an increase in 

stages of seed maturation (Figure 3a). Furthermore, in this case, moderate (R2 = 0.59) and 

strong (R2 = 0.79) positive correlations between each two gene copies were evidenced (Fig-

ure 3b), indicating co-expression of the homologues in different tissues. The same expres-

sion pattern of GmSOG1s and MtSOG1s during seed development ascertain, once more, 

the implication of DDR in this process. As for the observed upregulation of GmSOG1s in 

SAM, this is in agreement with studies from Arabidopsis indicating that the high SOG1 

expression detected in meristematic cells is associated with immediate transcriptomic 

changes occurring in response to DNA damage [33,34].  

 

Figure 3. (a) Expression profiles of the GmSOG1a (Glyma.02G100200), GmSOG1b 

(Glyma.20G185800), GmSOG1c (Glyma.10G204700), and GmSOG1d (Glyma.01G088200) genes in G. 

max. Data were collected from http://bar.utoronto.ca/, accessed on 19 March 2022 and heatmaps 

were generated using the Shinyheatmap (http://shinyheatmap.com, accessed on 19 March 2022). (b) 

Correlation analysis between GmSOG1a, GmSOG1b, GmSOG1c, and GmSOG1d gene expression val-

ues. 

Data from K. fedtschenkoi were retrieved from a light-responsive expression atlas, 

where light quality and intensity were evaluated [47]. Plants were grown under different 

conditions: Control (WL), blue light (BL), red light (RL), far-red light (FRL), dark-grown 

(DG), low light (LL), and high light (HL), and samples were collected at two-time points, 

dawn (2 h before light period) and dusk (2 h before dark period). The generated heatmap 

(Figure 4a) indicates that, at dusk, both KfSOG1a (Kaladp0062s0046) and KfSOG1b 

(Kaladp0073s0030) were highly expressed in LL and HL while low expressions were reg-

istered for RL, DG, and FRL. Different profiles are observed at dawn when HL induced 

higher expression of KfSOG1b while KfSOG1a was more expressed at LL. These slight dif-

ferences also impacted the correlation analysis, where only a weak (R2 = 0.25) positive 

correlation was observed between the expression profiles of the two homologues (Figure 

4c). It is well-known that the photosynthetic apparatus generates reactive oxygen species 

(ROS), especially when plants are exposed to excessive light [66,67]. In turn, ROS may 

activate DDR players to protect the cells from oxidative damage [3]. For instance, the SI-

AMESE-RELATED cyclin-dependent kinase inhibitors SMR5 and SMR7 were shown to 

be specifically activated in an ROS-dependent manner after high-light treatment [68]. 

Hence, the changes in the KfSOG1a/b gene expression hereby observed in response to light 

treatment may follow a similar pathway of activation by ROS.  

As for poplar (P. trichocarpa), data from greenhouse-grown plants, in terms of differ-

ent tissues and drought treatments, were made public by Wilkins et al. [48]. For the 

drought experiments, plantlets were grown under 16 h light/ 8 h dark conditions and fully 

Figure 3. (a) Expression profiles of the GmSOG1a (Glyma.02G100200), GmSOG1b (Glyma.20G185800),
GmSOG1c (Glyma.10G204700), and GmSOG1d (Glyma.01G088200) genes in G. max. Data were
collected from http://bar.utoronto.ca/, accessed on 19 March 2022 and heatmaps were generated
using the Shinyheatmap (http://shinyheatmap.com, accessed on 19 March 2022). (b) Correlation
analysis between GmSOG1a, GmSOG1b, GmSOG1c, and GmSOG1d gene expression values.
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Data from K. fedtschenkoi were retrieved from a light-responsive expression atlas, where
light quality and intensity were evaluated [47]. Plants were grown under different condi-
tions: Control (WL), blue light (BL), red light (RL), far-red light (FRL), dark-grown (DG), low
light (LL), and high light (HL), and samples were collected at two-time points, dawn (2 h
before light period) and dusk (2 h before dark period). The generated heatmap (Figure 4a)
indicates that, at dusk, both KfSOG1a (Kaladp0062s0046) and KfSOG1b (Kaladp0073s0030)
were highly expressed in LL and HL while low expressions were registered for RL, DG,
and FRL. Different profiles are observed at dawn when HL induced higher expression of
KfSOG1b while KfSOG1a was more expressed at LL. These slight differences also impacted
the correlation analysis, where only a weak (R2 = 0.25) positive correlation was observed
between the expression profiles of the two homologues (Figure 4c). It is well-known that
the photosynthetic apparatus generates reactive oxygen species (ROS), especially when
plants are exposed to excessive light [66,67]. In turn, ROS may activate DDR players to
protect the cells from oxidative damage [3]. For instance, the SIAMESE-RELATED cyclin-
dependent kinase inhibitors SMR5 and SMR7 were shown to be specifically activated
in an ROS-dependent manner after high-light treatment [68]. Hence, the changes in the
KfSOG1a/b gene expression hereby observed in response to light treatment may follow a
similar pathway of activation by ROS.
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genes in K. fedtschenkoi. (b) Expression profiles of the PtSOG1a (Potri.008G116600) and PtSOG1b
(Potri.010G129700) genes in P. trichocarpa. Data were collected from http://bar.utoronto.ca/, accessed
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accessed on 19 March 2022). (c) Correlation analysis between KfSOG1a and KfSOG1b gene expression
values. (d) Correlation analysis between PtSOG1a and PtSOG1b gene expression values.

As for poplar (P. trichocarpa), data from greenhouse-grown plants, in terms of different
tissues and drought treatments, were made public by Wilkins et al. [48]. For the drought
experiments, plantlets were grown under 16 h light/8 h dark conditions and fully expanded
leaves were sampled at midday, late day, midnight, and predawn, from stressed (D) and
control (WW) clones of DN34 and NM6 poplar saplings. When considering plant tissues,
both PtSOG1a (Potri.008G116600) and PtSOG1b (Potri.010G129700) are highly expressed
only in xylem and roots, while PtSOG1a is more expressed than PtSOG1b in male catkins
and mature leaves (Figure 4b). A very similar expression of the two genes is observed
during the drought treatments, specifically for the NM6 clones, where both genes are highly
expressed at late day D and midnight WW timepoints while they are downregulated in
the remaining samples. The correlation analysis indicates a moderate positive correlation
(R2 = 0.42) between the expression patterns of the two genes (Figure 4d). Among DDR
downstream pathways, cell cycle regulation is a key player to modulate plant growth

http://bar.utoronto.ca/
http://shinyheatmap.com
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and development when plants have to cope with multiple stresses, including drought.
This specific type of stress can be accompanied by the downregulation of the cell cycle
regulators [69,70]. Moreover, specific studies with DDR mutants, such as the Arabidopsis
uvh6-1, showed that the homologous recombination frequency is impaired in mutants
mildly affected by drought [71].

Overall, the correlation analyses of the transcriptomic data retrieved for M. truncatula,
G. max, P. trichocarpa, and K. fedtschenkoi indicate that the SOG1 homologues identified in a
given species tend to have similar expression patterns. Based on the data gathered from
RNA-seq repositories, among the various conditions and physiological processes in which
the genes are highly active, we can cite early seed development, highly proliferative tissues
(e.g., SAM), light, and drought stresses.

3.3. In Silico Characterization of M. truncatula MtSOG1a and MtSOG1b Homologues

To further consider the SOG1 homologues, a more detailed investigation was carried
out in the model legume M. truncatula, namely MtSOG1a (Medtr5g053430, 60.1% similarity
to AtSOG1) and MtSOG1b (Medtr1g093680, 53.46% similarity to AtSOG1) (Table S1). From
a genomic point of view, MtSOG1a is localized on chromosome 5 while MtSOG1b is on
chromosome 1. The MtSOG1a genomic sequence is 4743 bp long while the length of its
transcript, coding, and peptide sequence is 1744 bp, 1329 bp, and 442 aa, respectively.
Concerning MtSOG1b, its genomic sequence is 5664 bp long whereas the length of its
transcript sequence is 1889 bp, and its coding and peptide sequences are 1446 and 481 aa
long. Figure 5a shows the transcript organization and chromosome location of the two
MtSOG1 genes. It is thus possible to observe that both genes have five functional exons
(orange boxes). Moreover, to integrate the analysis of the expression profiles retrieved
from BAR, an analysis of the MtSOG1a and MtSOG1b promoter regions was carried out to
identify putative cis-acting regulatory elements. This analysis identified a total number of
265 and 259 putative cis-acting regulatory elements, respectively (Table S2). Among them,
69 and 64 types of elements were identified, respectively, with 43 (65%) of them identified
in the promoter regions of both genes. These included the most recurrent ones (with more
than 10 occurrences in either promoter), such as CAAT promoter consensus sequences
(CAATBOX1), CACT tetranucleotides (CACTFTPPCA1), GATA boxes (GATABOX), Dof
protein core binding sites (DOFCOREZM), and ARR1-binding elements (ARR1AT). The
most represented putative cis-acting elements are associated with light responses in shoot
and leaves (GATABOX, GT1CONSENSUS, IBOXCORE, etc.) and seed metabolism (DOF-
COREZM, EBOXBNNAPA, MYCCONSENSUSAT, etc.) (Table S2). Given the relevance
of cis-acting elements for the regulation of gene expression, this level of analysis needs
to be considered to contextualize possible differences in the tissue- and condition-related
expression patterns of the SOG1 homologues. Consistently with the overall results obtained
by transcriptome data mining, various putative cis-acting elements in the promoters of
both genes are reported to be associated with the shoot and seed tissues and with response
to light and drought stress.

A further level of analysis was dedicated to investigating the protein organization and
putative interactors. The alignment between MtSOG1a and MtSOG1b amino acid sequences
shows that the two sequences have a high percentage of similarity (69.7%). A schematic
representation of the alignment between the two sequences is shown in Figure 5b, along
with evidencing the presence of conserved protein domains. The NAM domain and the
serine-glutamine (SQ) motifs on the C-terminal region are shown in green and orange boxes,
respectively. In the MtSOG1A (445 aa) and MtSOG1B (481 aa) sequences, the NAM domain
is located starting from aa 59 to aa 197, whereas the SQ motifs are located at positions 342,
348, 364, 425, and 431 at the C-terminal region of MtSOG1a.
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in the Phytozome (https://phytozome.jgi.doe.gov/, accessed on 19 March 2022) genome browser.
Exons are presented as orange boxes. (b) Alignment of MtSOG1a and MtSOG1b protein sequences
performed using ClustalW. The presence of NAM (No Apical Meristem) and SQ (Serine, Glutamine)
motifs is evidenced in green and orange boxes, respectively. Putative protein–protein interaction
networks generated by STRING for (c) MtSOG1a and (d) MtSOG1b proteins.

An extensive in silico protein interactome analysis was then carried out using STRING,
a database that collects, scores, and integrates publicly available sources of information
regarding protein–protein interactions, complemented with bioinformatics predictions [72].
This analysis was first focused on M. truncatula, compared to Arabidopsis, but was subse-
quently also extended to other species for which data were available (soybean, poplar). The
interactomes of MtSOG1a (Figure 5c) and MtSOG1b (Figure 5d) are identical, evidencing
32 putative protein interactors with scores between 0.7 and 0.4 (Table S3). Most of the
predicted interactors are involved in DDR, e.g., WEE1 (AES82115), ATR (AES62927), ATM
(AES71516), RAD51 (AES92134), ERCC1 (AES61326), UVH1 (AES94349), KU80 (AES87269),
and NBS1 (AES99064), to cite just a few. When comparing the MtSOG1a/b with the At-
SOG1 interactome, it was possible to observe that many of the predicted interactors are also
common to Arabidopsis; although, for the latter, the list is substantially richer mostly due
to the more abundant data available for A. thaliana. Concerning soybean SOG1 homologues,
STRING predicted 82 putative interactors for GmSOG1a, 83 for GmSOG1d, and 85 for
GmSOG1b and GmSOG1c. In addition, in the case of soybean, the interactomes of the SOG1
homologues were largely overlapping in terms of interactors and scores. Similar numbers
were also predicted in the case of poplar (81 and 83 putative interactors for PtSOG1a and
PtSOG1b, respectively, with largely overlapping lists). When comparing the predicted
interactors of all four analyzed species, we were able to pinpoint some accessions common
to all species (e.g., ATM, ATR, WEE1, DER1, RAD51, SMG7, ERCC1, GTF2H2, RAD4,
DDB2, UVH1, KU70, KU80, SUV2, RAD17, POLH, NBS1) while others (e.g., CDC45, REV1,
CYCA3;3, E2F1, NAC103, NAC065, found only in Arabidopsis) turned out to be species-
specific (Table S3). The obtained results are in agreement with extensive transcriptomic data
gathered using a DREM (Dynamic Regulatory Events Miner) model reporting that SOG1
is the major activator of DDR, directly targeting the most strongly up-regulated genes,
including transcription factors, DNA repair factors, and early cell cycle regulators [28].
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Overall, the retrieved data indicate that many of the predicted SOG1 interactors can
be found across species, and a large majority have ascertained functions in DDR and DDR-
downstream pathways (e.g., DNA repair, cell-cycle checkpoint). It is also important to note
that the interactomes of different SOG1 genes in the same species are largely overlapping
and to underline that many high-score interactors recur in all the retrieved interactomes,
indicating the reliability of STRING analysis for literature data mining.

3.4. MtSOG1a and MtSOG1b Genes Are Upregulated during Seed Imbibition, Priming, and
Genotoxic Stress Treatments

To integrate the data mining approach with further experimental results, we investi-
gated the expression levels of MtSOG1a and MtSOG1b in peculiar systems, such as seed
priming/over-priming [73,74] and specific genotoxic stress imposed by treatments with
camptothecin (CPT, topoisomerase I inhibitor) and NSC120686 (tyrosyl-DNA phosphodi-
esterase 1 inhibitor) [53]. Both systems have been previously proven to induce different
types of DNA damage and activation of DDR pathways [53,73,74].

For the seed germination system, primed and over-primed M. truncatula seeds, ob-
tained through hydropriming followed by desiccation (dry-back), were analyzed at the
indicated time points of imbibition and desiccation, respectively (Figure 6a). Relative
water content (RWC) measurements indicate the levels of water uptake during imbibition
(Figure 6b) and water loss during desiccation (Figure 6c). It is possible to observe that
after dry-back, the RWC of primed seeds is similar to dry (unprimed) seeds while the over-
primed seeds retain more water, and the desiccation curve is slowed down. Looking at the
expression profiles of MtSOG1a during seed imbibition, it is possible to observe significant
upregulation only from 12 to 24 h (Figure 6d). Seed priming, on the other hand, anticipated
the MtSOG1a upregulation, observed already in the 2-6 h interval (Figure 6e). Differently,
no significant changes compared to the control (0 h) were observed during over-priming
(OP), although the gene is significantly more expressed relative to priming conditions (P) at
4 h and 6 h of dry-back. A similar pattern is also observed when considering the expression
of MtSOG1b during seed imbibition (Figure 6f), whereas a trend of increased expression
in response to over-priming was observed only at 4 h of dry-back (Figure 6g). Why is it
important to study such a system? Even though enhanced germination speed and unifor-
mity are viewed as added value in agricultural contexts [75,76], the empirical choice of
priming protocols can be conducive to inadequate imbibition–dehydration timing patterns
that may operate at the limits of seed desiccation tolerance [77]. Limiting the occurrence of
over-priming is, therefore, crucial to optimizing seed-priming protocols. Moreover, in the
context of priming protocols, the occurrence of over-priming can be envisioned as a model
to identify possible hallmarks of desiccation stress, which can include reactive oxygen
species (ROS), expression profiles of genes involved in DNA damage (e.g., OGG1, TDP1),
the antioxidant (e.g., APX, SOD), and DDR (e.g., MRE11/RAD50/NBS1) pathways [73,74].
The upregulation of SOG1 in the context of seed imbibition is in line with previous work
ascertaining that the DDR pathway is highly active during this process to allow the repair
of DNA damage (possibly induced by ROS accumulation during water uptake) before the
start of cell division [63,78]. Similarly, priming treatments have been already correlated
with anticipated germination as well as anticipated gene expression profiles, specifically
related to DNA damage repair [54,79].

The CPT/NSC system, applied to 7-day-old seedlings, grown in the presence of CPT,
NSC, and CPT+NSC, and their corresponding DMSO controls, resulted in changes in
seedling morphology for the CPT and CPT+NSC treatments, where seedlings were shorter
and stockier compared to their respective controls (Figure 7a). To investigate the effect
of CPT/NSC treatments, the relative expression values obtained for MtSOG1 genes are
presented as the fold-change (FC) to each correspondent DMSO concentration (Figure 7b).
The results show that both MtSOG1a and MtSOG1b genes are upregulated in response to
the imposed treatments. Nonetheless, the degree of upregulation is different between the
two genes during the treatments. While the MtSOG1a gene expression is highly induced by



Genes 2022, 13, 667 13 of 18

the NSC treatments, the MtSOG1b gene expression is highly triggered by the CPT treatment.
Differential expression of other genes involved in DNA damage repair (e.g., PARP1, ERCC1,
MUS81, MRE11/RAD50/NBS1) and cell-cycle regulation (Cdk1a, Cycb1, Cycd2, TOR) were
also observed in this system, suggesting that the imposed treatments can truly affect
DDR [53]. Differently from the usual treatments known to induce DSBs and the activation
of DDR (e.g., irradiation, zeomycin), the relevance of using such a system of treatments
comes from the different types of DNA damage (e.g., DNA–protein crosslinks, oxidative
damage) and respective DNA repair pathways that are activated. While CPT treatments
are known to activate the DNA–protein crosslink repair (DPC) [80], NSC treatments were
connected to the activation of Base Excision repair (BER) [81]. These effects may rely
on the existing interactions between players such as TopI (topoisomerase 1, an enzyme
that cut one of the two strands of double-stranded DNA, resulting in the accumulation
of single-strand breaks) and TDP1 (tyrosyl DNA phosphodiesterase 1, involved in the
removal of TopI-DNA covalent complexes). During the CPT treatment, TDP1 and TopI
genes are inhibited while genes involved in DNA repair pathways alternative to TDP1 (e.g.,
PARP1, ERCC1, MUS81,) are highly active. When NSC is given, the TDP1 and Top1 genes
are active, and the alternative repair is inhibited. The NSC+CPT combination target both
TDP1 and TopI functions, resulting in cytotoxic and genotoxic effects, corresponding to the
obstructed seedling development [53].
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Figure 6. (a) Experimental design for the seed priming/over-priming system. Dry seeds and imbibed
seeds were collected at 2 h, 4 h, 6 h, 8 h, 12 h, 16 h, and 24 h of imbibition. Subsequently, primed
and over-primed seeds were collected at 24 h of hydropriming and during dry-back at 2 h, 4 h, and
6 h. (b) Percentage (%) of relative water content (RWC) during seed imbibition. (c) Percentage (%) of
relative water content (RWC) during seed dry-back. Relative gene expression profiles of MtSOG1a
(d) during seed imbibition and (e) priming (P)–over-priming (OP). Relative gene expression profiles
of MtSOG1b (f) during seed imbibition and (g) priming (P)–over-priming (OP). Data were analyzed
with two-way ANOVA and Tukey–Kramer test, where means without common letters are considered
significantly different (p < 0.05).

Overall, the registered data aptly corroborate the data retrieved from the public
repository as well as complement the recent study on P. patens [27], suggesting that the
multiple SOG1 homologues have redundant functions in a given plant species.

Why the SOG1 function has developed this redundancy in plant species is still a
question to be answered in future works. Nonetheless, there are some indications related
to other redundancies also related to the DDR pathway in the mammalian system. It is
believed that, to avoid failure of its essential function in maintaining genome stability,
different steps of DDR can be highly redundant and employ different mechanisms [82,83].
The fact that this redundancy is spread across all kingdoms may imply the high impor-
tance that is placed on the detection and repair of DNA damage during evolution [84,85].
Specifically related to plants, the fact that there are multiple SOG1 homologues with re-
dundant functions could contribute to improving the ability of a given species to respond
to environmental stresses. Alternatively, this may represent a buffering strategy, wherein
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in the case one gene becomes inactive, the others guarantee the function as evidenced for
other gene families [86].
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Figure 7. (a) Representative image of 7-day-old M. truncatula seedlings to evaluate the phenotypic
effect of CPT, NSC, and CPT+NSC treatments and corresponding DMSO concentrations (DMSO_1,
DMSO_2, DMSO_3). Control (CTRL), non-treated seedlings are also included. (b) Expression profiles
of MtSOG1a and MtSOG1b in response to the imposed treatments. Data are represented as fold-
change (FC) to the respective DMSO controls. Statistically significant (p < 0.05) differences between
treatments and control (CTRL, un-treated seedlings) are represented with an asterisk (*).

4. Conclusions

In the current work, multiple SOG1 genes were identified for the following plant
species: B. rapa, G. max, K. fedtschenkoi, K. laxiflora, L. usitatissimum, M. domestica, M. esculenta,
M. truncatula, P. thricocarpa, P. virgatum, S. italica, S. purpurea, and S. viridis, based on
data gathered from Phytozome. The phylogenetic analyses revealed two main groups for
Monocots and Eudicots species, along with the presence of the NAM (more recently referred
to as NAC) domain and the specific SQ motives (required for ATM/ATR phosphorylation)
in all analyzed species.

A gene expression data mining approach carried out in four specie (M. truncatula,
G. max, K. fedtschenkoi, P. trichocarpa) possessing multiple SOG1 homologues indicated that
these have similar expression patterns under different conditions, suggesting redundant
functions in plants as recently proposed in P. patens [27].

Data retrieved from in silico protein–protein interactors showed that predicted inter-
actomes of SOG1 are overlapping (between homologues of the same species as well as
between different species) and mostly include proteins with demonstrated functions in
DDR and DDR-downstream pathways (e.g., DNA repair, cell-cycle checkpoint).

Finally, experimental systems designated to target seed germination and seedling
responses to genotoxic stresses were applied to support the gene expression data-mining
approach, using the model legume M. truncatula. This corroborates the redundant function
of the two genes (MtSOG1a and MtSOG1b) which followed a comparable expression pattern,
being upregulated during seed imbibition as well as CPT/NSC treatments. Moreover, the
retrieved data on early seed development and generated data on early seed germination
agree with the required activation of DDR during these physiological processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13040667/s1, Figure S1: Sequence alignment between
SOG1 amino acid sequences from A. thaliana, M. truncatula, G. max, K. fedschenkoi, P. trichocarpa;
Table S1: Percentage (%) of similarity between SOG1 amino acid sequences from A. thaliana, M.
truncatula, G. max, K. fedschenkoi, P. trichocarpa; Table S2: Lists of putative cis-acting regulatory
elements identified in the promoter regions of MtSOG1a and MtSOG1b; Table S3: Lists of putative
protein–protein interactors, identified via STRING, provided for A. thaliana AtSOG1, M. truncatula
MtSOG1 and MtSOG1b, G. max GmSOG1a, GmSOG1b, GmSOG1c, GmSOG1d, and P. trichocarpa
PtSOG1a and PtSOG1b.
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