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a b s t r a c t

The new coronavirus, known as COVID-19, first emerged in Wuhan, China, and since then has been
transmitted to the whole world. Around 34 million people have been infected with COVID-19 virus so
far, and nearly 1 million have died as a result of the virus. Resource shortages such as test kits and
ventilator have arisen in many countries as the number of cases have increased beyond the control.
Therefore, it has become very important to develop deep learning-based applications that automatically
detect COVID-19 cases using chest X-ray images to assist specialists and radiologists in diagnosis. In
this study, we propose a new approach based on deep LSTM model to automatically identify COVID-19
cases from X-ray images. Contrary to the transfer learning and deep feature extraction approaches, the
deep LSTM model is an architecture, which is learned from scratch. Besides, the Sobel gradient and
marker-controlled watershed segmentation operations are applied to raw images for increasing the
performance of proposed model in the pre-processing stage. The experimental studies were performed
on a combined public dataset constituted by gathering COVID-19, pneumonia and normal (healthy)
chest X-ray images. The dataset was randomly separated into two sections as training and testing
data. For training and testing, these separations were performed with the rates of 80%–20%, 70%–30%
and 60%–40%, respectively. The best performance was achieved with 80% training and 20% testing
rate. Moreover, the success rate was 100% for all performance criteria, which composed of accuracy,
sensitivity, specificity and F-score. Consequently, the proposed model with pre-processing images
ensured promising results on a small dataset compared to big data. Generally, the proposed model can
significantly improve the present radiology based approaches and it can be very useful application for
radiologists and specialists to help them in detection, quantity determination and tracing of COVID-19
cases throughout the pandemic.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The new Coronavirus (COVID-19), which was first emerged
n Wuhan, China in December 2019, is a member of virus fam-
ly. Coronavirus was named firstly as SARS-CoV-2 by Interna-
ional Committee on Taxonomy of Viruses (ICTV) [1]. Then, its
ame was replaced with COVID-19 by World Health Organization
WHO) in February 2020. A Global Health Emergency reported
hat the COVID-19 disease broke out on 30 January 2020. Lastly,
OVID-19 disease has been considered as a Pandemic since 11
arch 2020 by WHO. With the outbreak, COVID-19 cases and
eaths increased so quickly that the COVID-19 cases and deaths
eached the numbers of 24,665,184 (active and recoveries) and
,003,150, respectively, by 27 September 2020 [2]. The novel
oronavirus with increasing death and case numbers has severely
it countries such as UK, USA, Italy, Spain, Brazil and India.

E-mail address: fatihdemir@firat.edu.tr.
https://doi.org/10.1016/j.asoc.2021.107160
1568-4946/© 2021 Elsevier B.V. All rights reserved.
The COVID-19 disease may cause different symptoms and
indications of infection which contain high fever, diarrhea, cough,
respiratory diseases, and weakness. In some active cases, the
COVID-19 may lead serious problems for the patient such as
difficulty in breathing, pneumonia, multi-organ failure, sudden
cardiac arrest, and death. The health care of many developed
countries has come to a halt due to the exponential increase in
active cases. Test kits and ventilators have become insufficient in
countries with large numbers of active cases. The COVID-19 virus
also paved the way for the increase in crisis. Therefore, many
countries closed their borders with other countries. In addition,
these countries banned domestic and international travels to their
citizens and called for them to stay at home [3].

One of the most important steps to combat COVID-19 is to
isolate infected patients from non-infected individuals as soon
as possible. Real-time reverse transcription polymerase chain re-
action (rRT-PCR) has been the most effective diagnosis method
used to diagnose COVID-19 [4,5]. The test process is realized
on respiratory patterns of the suspicious patient and the test
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utcomes can be obtained in few hours to 3 days. In addition, the
ethods based on chest radiological imaging such as computed

omography (CT) and chest X-ray (CX), can be considered as
nother diagnosis method [6,7]. With these methods, researchers
ave observed that the lungs of COVID-19 patients have some
isual shapes such as marks and spots that can separate COVID-
9 positive cases from COVID-19 negative cases [8]. Thus, these
ethods provide important clues for early diagnosis. Also, more
recise results with these methods are achieved compared to
he PTR screening method. Therefore, the researchers argue that
adiological imaging based system may be a supplementary tool
o conventional methods in detection, counting and pursuit of
OVID-19 cases.
The radiological imaging based detection system has many su-

eriorities over test kits based methods. It can give quick results
nd can be used for many patients at the same time. Therefore,
t is very useful for hospitals in countries where test kits are
ot sufficient. Moreover, considering that there are radiological
maging systems in a hospital with average conditions, creating
uch a system will be both easy and cost-effective [9].
Nowadays, researchers working on different disciplines in

any countries, deal with COVİD-19 virus intensely. To aid the
ecision making process of radiologists and specialists, some
esearchers have proposed papers explaining deep learning and
achine learning based methods for automated COVID-19 detec-

ion from CT and CX images [10–12].

.1. Related works

There are a number of machine learning based studies on
espiratory diseases in the literature. In [13], Gray-level Co-
ccurrence Matrix (GLCM) was utilized to extract hand-crafted
eatures from CT images. To measure the performances of hand-
rafted features, the proposed method was evaluated with six-
lassifier. The highest accuracy was achieved as 0.89 with Ran-
om Forest Classifier. In [14], the local features were extracted
rom CX images by using descriptors containing grayscale his-
ogram, GLCM texture-based features, and local binary pattern
LBP) algorithms. This model, which the features were reduced
ith a multi-objective genetic algorithm, was classified with a
euro-fuzzy classifier. In [12], the feature set used for automated
OVID-19 detection using CX images was constituted with Resid-
al Exemplar LBP algorithm. The hand-crafted features reduced
ith Relief algorithm were classified by SVM classifier. The best
ccuracy was 100% for 2-class (normal and COVID-19) classifica-
ion problem. In sum, high performances can be achieved with the
achine learning based approaches for automated COVID-19 de-

ection. However, it may be necessary to re-adjust or change the
escriptive algorithms used as evaluation conditions and datasets
hange. In this case, it requires additional computational cost
nd time. In addition, deep learning-based approaches are more
ppropriate to changing conditions than machine learning-based
pproaches that include hand-crafted features since deep learning
pproaches do not need hand-crafted features due to extracting
he features from particular part of dataset in deep learning
odels. Moreover, the weight parameters of the pre-trained deep
odels such as VGGNet, AlexNet, and ResNet are publicly avail-
ble for evaluating with different classification and regression
roblems. Therefore, many researchers have conducted stud-
es involving deep learning models for automatic diagnosis of
OVID-19 disease.
Hemdan et al. [15] utilized a deep learning approach to de-

ect COVID-19 from CX data and constituted the COVIDX-Net
tructure including six CNN structure. Wang and Wong [11] con-
tituted a deep learning model for COVID-19 automatic diagnosis.
his model achieved 92.4% classification accuracy in detection of
2

3 classes with normal, pneumonia, and COVID-19 labels. Ioannis
et al. [16] improved a deep learning structure, which used 224
approved CT images as input. These structure reached to 98.75%
and 93.48% accuracy scores for 2 and 3 classes, respectively.
Narin et al. [10] used the ResNet50 model to identify COVID-
19 from CX images. Their method achieved a 98% classification
accuracy. The best classification score with this structure in-
volving the ResNet50 model was obtained as 95.38%. Y. Pathak
et al. [17], used CT images and the transfer learning technique,
which was utilized in CNN models to automatically diagnose
COVID-19, and achieved a high classification performance. To-
gacar et al. [18] proposed an automatic detection algorithm using
CX images for COVID-19 disease. In this study, CNN models such
as AlexNet, VGG-16, and VGG-19 were used for deep feature
extraction. With SVM classifier, the best accuracy score for the
used dataset was concluded as 99.41%. Ismael et al. [19] used
a comprehensive approach for COVID-19 detection based on CX
images. Researchers used three deep CNN learning approaches
for efficient COVID-19 detection. In addition, they used some
local texture descriptors and SVM for COVID-19 detection. Ali
Abbasian Ardakani et al. [20] utilized the popular deep learning
models such as VGGNet, SqueezeNet, Xception, ResNet to detect
COVID-19 disease and evaluated them with each other according
to the accuracy criteria. Ferhat Ucar et al. [21] presented a new
approach named Deep Bayes-SqueezeNet to perform binary clas-
sification (COVID-19 and normal) from X-ray images. Tulin Ozturk
et al. [22] proposed a new approach based on deep learning called
the DarkCovid-Net model, which had 17 convolutional layers
and applied various filters on each layer, for the detection of
COVID-19 disease. Ismael et al. [23] also used multiresolution
approaches namely, Shearlets, Wavelets, and Contourlet trans-
forms for COVID-19 detection. The researchers represented more
improved results than the deep learning method’s achievements.

1.2. Research problem statement and contributions

In this study, a novel approach was proposed for automated
COVID-19 detection. A deep LSTM architecture named the Deep-
Coronet was used for training from processed CX images. Contri-
butions of proposed method can be explained as follows:

• The performance of the DeepCoroNet was boosted with
processed images constituted with MCWS algorithm.

• Classical LSTM models were inclined to overfitting, it was
hard to implement the dropout layer to prevent this prob-
lem. Therefore, the dropout layer was used in the DeepCoro-
Net model.

• In the DeepCoroNet, the convolutional layer was used before
the LSTM layer to make the characteristic details of the CX
images more apparent.

• DeepCoroNet model after trained with big datasets, could be
used in real-world applications for helping radiologists and
specialists.

Limitations of proposed method can be explained as follows:

• The MCWS algorithm increases computational time of the
proposed method.

• Deep LSTM based approach requires high memory band-
width for real-world applications.

2. Dataset

A total of 1061 CX images obtained from different open public
data was included in the dataset. The labeling processes were
taken place by radiologists and specialists. CX images were re-
arranged under folders as COVID-19, Normal, and Pneumonia.
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Fig. 1. CX image samples in the dataset.
OVID-19, Normal, and Pneumonia folders had 361, 200 and 500
X images, respectively. 200 of the COVID-19 cases were male
hile 161 of them were female, and all cases were generally
ver 45 years old. The COVID-19 and normal (healthy) CX images
ere downloaded and arranged from Kaggle web sites [24,25].
he samples of pneumonia class were added from the dataset
onstituted by Wang et al. [15]. CX image samples for each class
re shown in Fig. 1. As shown Fig. 1, CX image samples taking
art in first, second and third column belong to the COVID-19,
neumonia and normal classes, respectively.

. Techniques and method

.1. Methodology

In this paper, a new and effective method was proposed to
etect COVID-19 virus with high accuracy. The proposed method,
resented in Fig. 2, was evaluated on the dataset composing of CX
mages. The proposed method was constituted with two stages,
hich contains the pre-processing and the deep LSTM model.

n the first stage, the pre-processing techniques were applied to
he CX images for increasing the classification performance. The
irst step of pre-processing was gradient operation by using Sobel
perator. The gradient operator was used for emphasizing the
pot regions in the CX images. In other words, gradient operator
as used for improving the performance of the marker-controlled
atershed segmentation (MCWS). In the second step, the MCWS
as used to segment the spots on the gradient images. Actually,
egmentation was used to reduce the number of the gray tones
f the input CX images. In the last step, these processed images
ere resized for fitting the input layer of the deep LSTM model,
3

which consisted of the sequence data creating block and the LSTM
network. For the evaluation of the proposed method in the last
stage, the deep LSTM model was created by using CNN based
layers and LSTM layer. In the sequence data creating block, the
resized MCWS images were converted to the sequence data (1D-
vector) for the LSTM network input. In this block, convolutional
operations were used for both input size decrease and pre-feature
extraction. In the deep LSTM model, the LSTM network block was
utilized for training and testing operations. The proposed LSTM
network composed of 5 layers, which included the LSTM, the fully
connected, the Rectified Linear Unit (ReLU), the dropout, and the
softmax layers. The classification process was performed with the
activation function in the softmax-layer.

3.2. Preprocessing

For input images in the gradient method, gradient magnitudes
and directions are computed using directional gradient. These
gradient operations are carried out with a gradient operator such
as Sobel, Roberts and Prewitt [26].

In the watershed transformation, surfaces including light pixel
density are high. In other words, surfaces including dark pixel
density are low. Thus, catchment basins and watershed ridge lines
in an image, are found with the watershed transformation [27].
In the watershed transformation, considering function g ∈ C(S)
have minimum {mk}k∈F for a set F , the catchment basin CB(mj)
of a minima mj is described as the set of points (x) which are
topographically closer to mj than to another local minima mi:

CB
(
mj

)
=

{
x ∈ S |∇i ∈ F{i} : g(mj)

+ Tf
(
x,mj

)
< g(mi) + Tf (x,mi)

}
(1)
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Fig. 2. Representation of the proposed method.
here S and Tf are domain and topographical distance, respec-
ively. The watershed transformation of g (Wshed(g)) is the set of
oints that do not relate to any CB:

shed (g) = S ∩
(
∪j∈FCB

(
mj

))
(2)

onsidering Wshed be a tag, Wshed /∈ F , and Wshed (g) is a
apping β : S → F ∪ Wshed.
The MCWS has been expressed to be a robust and valid algo-

ithm to separate objects with covered shapes, where the borders
re stated as ledges. Markers are inserted into the related objects.
he inner and exterior markers are assigned to the related objects
nd backgrounds, respectively. At the end of segmentation, the
orders of the watershed areas are constituted on the targeted
edges by dividing each object from its neighbors. Thus, the
CWS algorithm can separate each small or large detail that
tands out in a radiological image regionally. MCWS algorithm
omposes of these basic steps:

• Calculate a segmentation operation used to separate dark
regions into objects.

• Calculate foreground markers, which have the connected
pixel blots inside each of the objects.

• Calculate background markers, which denote pixels not be-
longing to any object.
4

• Re-arrange for minimizing the function of segmentation at
the foreground and background marker locations.

• Calculate the watershed transform with the updated param-
eters.

3.3. Deep learning techniques

In the sequence folding layer, a group of image sequences is
converted to a group of images and convolution operations are
applied to these image sequences by using time steps. In the
sequence unfolding layer, the data coming from the sequence
folding layer is transformed to sequence structure.

Convolution layer for a CNN is the main structure layer which
utilizes convolution operation symbolized as ‘‘∗’’, instead of gen-
eral matrix multiplication [28–30]. Learnable parameters in this
layer occur a set of learnable filters also called as kernels. The core
function of the convolutional layer is to extract features taking
part within local regions of the input data, which are similar along
the dataset, and assigning their view to a feature map. The 2D
convolution operation for discrete-time signals is given as Eq. (3).

(X ∗ K ) (i, j) =

∑∑
K (m, n) X(i − m, j − n) (3)
m n
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where X and K represent the input signal and 2D filter (kernel),
respectively.

Batch normalization (BN) layer is used for two main purposes.
One is to reduce training time of deep learning models, the
other is to improve network initialization performance. Also, this
layer is preferred to minimize the gradient vanishing problem.
Variables used in the BN layer are calculated as given in Eqs.
(4)–(7):

mb=
1
n

n∑
i=1

xi (4)

vb=
1
n

n∑
i=1

(xi − mb)2 (5)

x̂i=
xi − mb√

v2
b+ε

(6)

yi = ax̂i+b (7)

where mb and vb are mini batch mean and mini batch variance,
respectively. The normalized activation x̂i is computed as shown
in Eq. (6). Constant ε is added to improve the numerical opera-
tion, in case vb is very small. Balance factor a and scale factor b
are learnable parameters, and they are continuously updated to
find the most convenient BN layer output (yi) during optimization
process [31–33].

In deep learning models, the convolution layer output conveys
to a nonlinearity layer. The nonlinearity layer named also the
activation layer gives to the training operation a nonlinearity
characteristic [34]. To decrease the gradient vanishing and gra-
dient explosion problem in deep learning models, the activation
function, which is preferred in place of the sigmoid and tangent
function used commonly for artificial neural networks (ANN),
is ReLU function. In the ReLU layer, if the input is negative, it
becomes equal to zero, otherwise the input is equal to output.
It can be defined as follows.

f (x) = max(0, x) (8)

The flatten layer converts 2D data structure transmitted from
convolution and ReLU layers to 1D data structure.

LSTM model is a modified version of recurrent neural network
(RNN). The general LSTM cell has a control system, which consist
of input, output and forget gates. The architecture of a LSTM cell
is shown in Fig. 3. The LSTM cell memorizes values until a defined
previous time interval, and three gates control the data traffic in
input and output of the cell [35]. Also, the LSTM layer efficiently

prevents the problem of gradient vanishing and explosion.

5

The operation mechanism of forget gate looks like a single
layer neural network. The activation state of the forget gate is
computed as shown in Eq. (9).

ft = σ (W [xt , ht−1, Ct−1] + bf ) (9)

where, xt is input vector to the LSTM cell, ht−1 is output of
previous LSTM cell, Ct−1 is memory of previous LSTM cell, bf
is biased vector, W is weight vector, and σ is logistic sigmoid
function. The input gate is a part which the current memory
is constituted by a simple neural network with the hyperbolic
tangent function and the previous memory cell activation values.
These calculations are given in Eqs. (10) and (11).

it = σ (W [xt , ht−1, Ct−1] + bi) (10)

Ct = ft .Ct−1 + it .tanh([xt , ht−1, Ct−1]) + bc (11)

The data and information coming from blocks of current LSTM
cell are conveyed to the output gate. The output calculations are
shown in Eqs. (12) and (13).

σt = σ (W [xt , ht−1, Ct−1] + bo) (12)

ht = ot .tanh(Ct ) (13)

The fully connected layer connects all neurons of the previ-
ous and next layers to each other. The values of neurons give
information about the extent to which a value matches the par-
ticular class [36]. The values in last fully connected layer is
conveyed to the softmax layer, which gives the probable scores
of classes. The dropout layer, which aids obstruct overfitting,
randomly equalizes some input values to zero with a certain pos-
sibility during training process [37]. The softmax layer is utilized
as the main classifier in CNN. The softmax activation function is
given in Eq. (14).

Sk =
ex

k∑n
i=1 ex

n (14)

here x and S are the input vector and the output vector, respec-
ively. In this function, all output sums (S) equals to one [38].

.4. Method evaluation

The confusion matrix showing the true positive (TP), true
egative (TN), false positive (FP), false negative (FN) numbers
as used to evaluate the performance of proposed method. The
ccuracy (Acc), sensitivity (Sn), specificity (Sp), precision (Pr) and
-score values were utilized as the performance metrics. These
etrics were computed as the following equations.

cc =
TP + TN

(15)

TP + TN + FP + FN
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Fig. 4. The graphs of accuracy and loss values for the training and validation.
n =
TP

TP + FN
(16)

p =
TN

TN + FP
(17)

r =
TP

TP + FP
(18)

F − score =
2 × TP

2 × TP + FP + FN
(19)

. Experimental setup and results

The experimental works were performed on a work station
ith Intel R⃝ CoreTM i7-5500U, 2 GB graphics card, 8 GB mem-
ry card. The simulation operation was carried out with the
ATLAB(2020a) programming language.
The height and width of MCWS images were resized to 100

100 for the input layer. The filter size and numbers in the
onvolutional layer were set to 5 and 20, respectively. To not
ncrease the elapsed time of the training, the hidden layer number
f the LSTM layer was adjusted to 100.
To evaluate the proposed method, the dataset was randomly

ivided as the training data and testing data. The training and
esting data were evaluated in the proposed model at 0.8–0.2
training–testing), 0.7–0.3 (training–testing) and 0.6–0.4
training–testing) ratios, respectively. The max epoch, iteration
nd iterations per epoch values which were the fixed train-
ng parameters, were set as 150, 900 and 6, respectively. The
alidation results were adjusted to give results in every 30 it-
rations. The initial learning rate was selected as 0.001. The
earning drop factor and the learning drop period was adjusted
o 0.1 and 10, respectively, for the learning rate that gradually
ecreased during the training process. The stochastic gradient
escent with momentum (SGDM) algorithm was chosen for the
ptimization operation of learnable parameters. The elapsed time
f the training and testing was 53 min and 22 s For training data
ith 80 percent of the entire dataset, the graphs of training–
esting(validation) accuracies and training–testing loss values
ere given in Fig. 4.
At the end of 900 iterations, as seen in Fig. 4, training and

esting accuracies reached to 100% when training and testing
oss values reduced to 0, and the computation time for training

rocess of DeepCoroNet was 53 min 22 s.

6

As a result of the activation with the layer operations of the
inputs along the deep learning models, the important alterations
can occur in the activation maps, and the situation of the layers in
the training stage can be monitored using activation outputs. The
main target in the deep learning layers is to extract the activa-
tions that have the most discriminative characteristics compared
to others involving less representation ability. Many filter and
activation operations are utilized in the deep learning approaches,
and the inputs are processed in these operations. The attributes
involving the main shapes and colors are learned through the
first filter operations of deep learning models, while attributes
that need more detail are learned in later filter operations. Also,
finding the activations giving the best performance is a very
difficult process since the performance of activations can change
depending on the types of the challenges. The visual represen-
tation of the optimized activation outputs of the convolutional,
LSTM and last fully connected layers for all classes is shown
in Fig. 5. As can be seen from Fig. 5, activation dimensions
are reduced until they reach the last fully connected layer. The
activation output visual of the last fully connected layer in the
first, second and third rows in Fig. 5 gives information about the
input samples belong to the COVID-19, normal and pneumonia
classes, respectively.

For raw images, MCWS images (rows) and the rates of
training–testing (columns), the confusion matrix results are given
in Fig. 6. According to these confusion matrix results, other per-
formance criteria results, which consist of sensitivity, specificity,
precision and F-score, are shown in Table 1. As can be seen from
Fig. 6 and Table 1, the evaluations with MCWS images gave better
results than the evaluations with raw images. In the evaluations
performed with MCWS images, the best performance scores were
achieved with 80% training and 20% test rates. Besides, the deep
LSTM model using the MCWS images as input outperformed
the same model using the raw images as input. For example,
accuracy results in the evaluation, which was performed with
MCWS images for 80%–20%, 70%–30%, and 60%–40% training–
testing rates, increased by 2.64%, 1.57% and 3.77%, respectively. In
Table 1, the worst result in the evaluation made for all classes was
achieved as 0.81 for the precision criterion of the normal class,
which was obtained from 60%–40% training–testing rate and raw

images.
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Fig. 6. Confusion matrix results for input images, MCWS images and the rates of training–testing..
. Discussion

In this section, the state-of-the-art methods and the proposed
ethod are discussed according to performance criteria, which
onsist of accuracy, sensitivity and specificity. However, it cannot
e said that the methods are completely superior to each other
7

due to the different datasets and evaluation criteria. In addition,
big datasets, which give more valid and better results in deep
learning, are completely not organized because the COVID-19
virus has just emerged. For this reason, the evaluations in the
literature is generally performed on the combined datasets. The
performance scores of these methods are given in Table 2.
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Table 1
Performance criteria for training–testing rate and types of images.
training–testing rates (%) Type of images Classes Sn SP Pr F-score

80–20 MCWS
COVID-19 1,00 1,00 1,00 1,00
Normal 1,00 1,00 1,00 1,00
Pneumonia 1,00 1,00 1,00 1,00

70–30 MCWS
COVID-19 0,96 0,99 0,98 0,97
Normal 1,00 0,98 0,94 0,97
Pneumonia 0,99 1,00 1,00 0,99

60–40 MCWS
COVID-19 0,93 0,99 0,99 0,96
Normal 1,00 0,97 0,89 0,94
Pneumonia 0,99 1,00 1,00 1,00

80–20 Raw
COVID-19 1,00 0,96 0,94 0,97
Normal 0,88 1,00 1,00 0,93
Pneumonia 1,00 1,00 1,00 1,00

70–30 Raw
COVID-19 0,97 0,96 0,93 0,95
Normal 0,87 0,99 0,95 0,90
Pneumonia 1,00 1,00 1,00 1,00

60–40 Raw
COVID-19 0,89 0,96 0,91 0,90
Normal 0,85 0,95 0,81 0,83
Pneumonia 1,00 1,00 1,00 1,00
Table 2
The performance scores of the state-of-the-art methods and the proposed method.
Methods Dataset Number of classes Acc (%) Se (%) Sp (%)

DarkCovidNet [22] Public 3 87.02 92.18 89.96
COVIDiagnosis-Net [21] Public 3 98.26 99.13 –
The pretrained CNNs [16] Public 3 93.48 92.85 98.75
COVID-Net [11] Public 3 92.64 91.37 95.76
Deep features, ResNet-50, SVM [39] Public 2 95.38 – –
Deep CNNs [40] Public 2 90.00 100.00 80.00
Deep CNN, ResNet-50 [10] Public 2 98.00 – –
DRE-Net, deep CNN [41] Private 2 86.00 96.00 –
Deep CNN, Inception, transfer learning [42] Private 2 89.50 87.00 88.00
nCOVnet, transfer learning, deep CNN [43] Public 2 88.10 97.62 89.13
Deep CNN, SVM [44] Public 3 98.97 89.39 99.75
Proposed Method Public 3 100 100 100
Ozturk et al. [22] proposed a deep learning architecture com-
osing of 17 convolutional layers for automatic detection of
OVID-19 virus on a data set with 3 classes. The best accu-
acy score was 87.02% with the 5-fold cross validation. Ucar
t al. [21] learned the best hyperparameters of the pre-trained the
equeezeNet model with Bayes Optimization algorithm for the 3-
lass COVID-19 problem. Their model achieved a 98.26% accuracy
core using the data augmentation. Apostolopoulos et al. [16]
pted for the transfer learning method using VGG19, MobileNet
2, Inception, Xception and Inception ResNet v2 models to cat-
gorize the COVID-19 virus. The best accuracy was 93.48% with
his method. Wang et al. [11] reached an accuracy of 92.64% with
n end-to-end deep learning model involving many convolutional
ayers for COVID-19 classification problem. For feature extraction
nd classification, Sethy et al. [39] constituted a hybrid method
sing deep learning models and SVM algorithm, respectively.
he best accuracy was 95.38% for binary classification. Similar
o [10,40–44], the transfer learning, deep feature extraction and
nd-to-end deep learning algorithms were used to detect the
OVID-19 virus automatically from CX images.
The current study presents a novel deep LSTM model that is

earned from scratch instead of transfer learning or deep fea-
ure extraction approach. MCWS images were created instead of
sing a raw image and the algorithm were conveyed to deep
STM model in the pre-processing stage. MCWS images increased
erformance of deep LSTM based model. However, computation
ost is required for creating MCWS images. The proposed model
as trained and tested for different ratios of all dataset. Best
cores were obtained at a training-test ratio of 80%–20%. This
hows that as the training data increased, the performance of the
roposed method increased. Therefore, as the number of COVID-
9 cases increases, retraining the proposed model can increase its
8

success rate. However, the performance of the proposed model
will decrease if the CX images added to the training set is low
resolution and noisy.

The proposed approach reached to 100% success rate in accu-
racy, sensitivity and specificity criteria. It could not be argued that
the proposed method is completely superior to other methods
in the literature because of the fact that an organized dataset
that everyone can use has not yet been created for COVID-19
disease. In the future, the performance of the proposed method
can be tested more reliably with a challenge dataset. In addition,
the proposed model can be adapted to automatically detect all
respiratory diseases in addition to COVID-19 and pneumonia. In
addition, this model, which is associated with a GUI interface, can
be used as a supportive tool in the decision-making process of
experts, radiologists and physicians.

6. Conclusion

As COVID-19 cases are increasing every day, the increasing
number of deaths and economic crises in many countries with
resource shortages continue to affect social life adversely. During
the pandemic period, as studies on the COVID-19 virus go on,
the virus transmission from COVID-19 patients, which cannot be
diagnosed correctly, to the healthy people will increase the size
of the pandemic. Therefore, a new approach that detects COVID-
19 disease with high accuracy from CX images was proposed in
the present study. The proposed method based on the deep LSTM
model gave a high success rate for three-classes classification
problem that composed of COVID-19, pneumonia and normal. It
was also observed that using the MCWS images instead of the
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aw image as input in the deep LSTM model increased the classi-
ication performance. With the 80%–20% training–testing rate, the
est performance was achieved as 100% in all criteria involving
ccuracy, sensitivity, precision and F-score. In this period, artifi-
ial intelligence-based applications with high success rates will
rovide great support to experts in the decision-making process,
ince the Covid-19 cases increase excessively. A single expert can
etect more COVID-19 cases in one day since the increase in the
umber of cases can be prevented with this method, which has a
igh success with a small number of samples.
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