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Abstract

Background: Neonates with hypoxic ischemic encephalopathy (HIE) frequently develop acute 

kidney injury (AKI). Aminophylline has been shown to reduce severe renal dysfunction in 

neonates after perinatal asphyxia. However, the effect of aminophylline on renal function in 

neonates undergoing hypothermia has not been studied.

Methods: A single-center, retrospective chart review of neonates cooled for moderate/severe HIE 

who received aminophylline for AKI was conducted to assess changes in urine output (UOP) and 

serum creatinine (SCr). Comparisons were also made to control neonates matched for hours of life 

who were cooled but unexposed to aminophylline.

Results: Sixteen neonates cooled for HIE received aminophylline starting at 25 ± 14 hours of 

life. Within 12 hours of starting aminophylline, UOP increased by 2.6 ± 1.9 ml/kg/h. SCr declined 

by 0.4 ± 0.2 mg/dl in survivors over the first 4 days. When compared to control neonates, UOP 

increase was greater in the aminophylline group (p<0.001). SCr declined in survivors in both 

groups, although baseline SCr was higher in the aminophylline group.

Conclusion: Aminophylline use in neonates with HIE undergoing hypothermia was associated 

with an increase in UOP and a decline in SCr. A randomized trial will be needed to establish a 

potential renal protective role of aminophylline.
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Introduction

Neonates with hypoxic ischemic encephalopathy (HIE) are at high risk of acute kidney 

injury (AKI) with several reports of an incidence as high as 40% (1–3). Antenatal and 

postnatal hypoxia, hypotension, and use of nephrotoxic medications may contribute to 

ongoing renal insult. The occurrence of AKI in neonates with HIE is an independent risk 

factor for adverse outcomes including prolonged mechanical ventilation, prolonged length of 

hospital stay, injury on magnetic resonance imaging (MRI), and increased risk of long-term 

neurodevelopmental impairment (1,4–6). While therapeutic hypothermia has been shown to 

improve neurodevelopmental outcomes in neonates with birth asphyxia (7), there has been 

limited research into pharmacotherapies that may reduce AKI in this vulnerable population.

Theophylline and aminophylline (the ethylenediamine salt formulation of theophylline and 

same active molecule) are potential targeted therapeutic agents for AKI through action as 

non-selective adenosine receptor antagonists. During hypoxia/ischemia, intrarenal 

vasoconstriction occurs as a consequence of higher adenosine levels with a subsequent 

reduction in renal blood flow and fall in glomerular filtration rate (GFR) and filtration 

fraction (8). In newborn animal models, administration of low dose theophylline prevented 

hypoxemia associated reductions in GFR and filtration fraction (8,9). Theophylline or 

aminophylline for renal protection has been studied in infants with congenital heart disease 

after cardiac surgery (10,11), neonates on extracorporeal membrane oxygenation support 

(12), and preterm infants with apnea of prematurity (13,14), with reports of augmented urine 

output, improved creatinine clearance, and no adverse effects. However, the physiologic 

effect of theophylline on renal function in the HIE population remains unclear. Neonates 

being cooled for HIE with AKI have higher renal saturation measures compared to those 

without AKI (15), possibly reflecting decreased extraction of oxygen by an injured kidney. 

Theophylline may increase renal blood flow post-hypoxic insult and lead to improved renal 

saturation measures.

In single center, randomized controlled trials, a single dose of theophylline shortly after birth 

has also been shown to improve urine output (UOP) and reduce the incidence of severe renal 

dysfunction in neonates with severe perinatal asphyxia (16–20). Based on available 

evidence, the 2011 Kidney Disease Improving Global Outcomes (KDIGO) guidelines 

suggest a single dose of theophylline to be considered for prevention of AKI in the HIE 

population (moderate quality of evidence) (21). However, all theophylline clinical studies to 

date were conducted before the widespread use of therapeutic hypothermia (whole body 

cooling) for HIE, and the therapeutic benefit of theophylline (or aminophylline) in the 

context of hypothermia remains unknown.

Guided by its underlying mechanism of action and previous clinical studies in asphyxiated 

neonates, our center has been using aminophylline as a renal protective management strategy 

for several years in neonates with HIE undergoing hypothermia who develop low UOP 

and/or rising serum creatinine (SCr). We first report our experience on the use of 

aminophylline during clinical care in a cohort of neonates being cooled for HIE with a 

descriptive analysis of the impact of treatment on clinical biomarkers of renal function 

including UOP, SCr, and renal saturation. Secondly, we compared the time-course of clinical 
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biomarkers in those who received aminophylline with a time-matched control group of 

neonates with HIE undergoing hypothermia, but unexposed to aminophylline. We 

hypothesized that treatment with aminophylline in neonates with HIE undergoing 

hypothermia would be associated with a greater increase in UOP and larger decrease in SCr 

compared to those who did not receive aminophylline.

Methods

Term neonates with moderate or severe HIE undergoing therapeutic hypothermia at a tertiary 

care neonatal intensive care unit between 1/1/2014 and 12/31/2017 were assessed for a 

descriptive study of neonates exposed to aminophylline during clinical care and also a 

matched observational cohort study comparing neonates exposed and unexposed to 

aminophylline. For the matched cohort study, neonates who received aminophylline during 

clinical care served as the aminophylline group. A control group, matched 1:1 based on 

nearest time of admission, was identified from the population of neonates with HIE 

undergoing hypothermia who did not receive aminophylline. Aminophylline was initiated 

per clinician discretion for low UOP, rising SCr and/or other concern for AKI with an 

intravenous loading dose of 5 mg/kg (equivalent to 3.9 mg/kg theophylline), followed by 

maintenance dose of 1.8 mg/kg (equivalent to 1.4 mg/kg theophylline) every 6 hours. 

Theophylline levels were monitored as part of clinical care and adjusted to maintain a level 

of 5-7 mg/L. Aminophylline was discontinued per discretion of the care team. Whole body 

cooling per clinical protocol was achieved using a CritiCool thermoregulation system 

(Belmont Medical Technologies, Billerica, MA) to maintain esophageal temperature at 33.5° 

C for 72 hours followed by rewarming to 37° C by 0.5° C/hour. All neonates underwent 

monitoring with video electroencephalography during cooling and rewarming as per clinical 

routine. This study was approved by the Stanford Institutional Review Board with waiver of 

consent.

Neonatal characteristics and outcome data were obtained from the electronic medical record. 

All SCr levels during the birth hospitalization and UOP for 12 hours before and 72 hours 

after aminophylline were recorded. Near-infrared spectroscopy (NIRS) monitoring of 

cerebral and renal saturation levels (Csat and Rsat) was used routinely as per institutional 

standard of care during hypothermia and through the rewarming period (INVOS 5100C, 

Medtronic, Minnesota). In those neonates with NIRS data available, the Rsat and Csat for 12 

hours before and 72 hours after aminophylline administration were collected. AKI was 

determined using criteria from the AWAKEN study, specifically KDIGO criteria modified 

for neonates and defining AKI as a rise in SCr of 0.3 mg/dL or 50% from the lowest 

previous value and/or UOP <1 mL/kg/h averaged over 24 hours after the first 24 hours of life 

(22).

Statistical analyses

For the descriptive study of neonates receiving aminophylline, the closest SCr measured 

before aminophylline start served as the baseline and was compared to SCr over the next 4 

days after aminophylline start. UOP (ml/kg/h) over the 12 hours before aminophylline start 

served as the baseline and was compared to UOP over the next 72 hours in 12 hour blocks of 
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time for the first 24 hours followed by 24 hour blocks of time. For Rsat and Csat, the mean 

value over the 12 hours before aminophylline start was compared to the mean value over the 

12 hours after aminophylline. Changes in UOP, SCr, Rsat, and Csat before and after 

aminophylline start were compared using repeated measures ANOVA (Stata V13, StataCorp, 

College Station, TX). For neonates who died prior to the end of the study period, the last 

observation carried forward was used. Data are reported as mean ± standard deviation or 

counts (%) unless otherwise specified.

Given the large changes in renal physiology, blood flow, and function that occur over the 

first days of life after birth, it was important to compare any changes in SCr, UOP, Rsat, and 

Csat measures after aminophylline start with a control group of neonates cooled for HIE 

evaluated over similar hours of life. Therefore, each patient in the aminophylline group was 

matched 1:1 with a control patient, and the hours of life when aminophylline was given to 

the aminophylline patient served as the reference time=0 hours for both patients in a pair. 

This created 16 pairs. In the unexposed control group, the same outcome measures were 

calculated as for the aminophylline group for pre and post comparisons. Fisher’s exact, 

Mann-Whitney U, or Student t-test compared categorical, ordinal, and continuous 

characteristics and outcomes between neonates exposed to aminophylline and unexposed 

controls (R environment, version 3.5.3). Repeated measures ANOVA was used to assess 

differences between groups in SCr, UOP, Rsat, and Csat. Given a distinct response of UOP 

and SCr in those who survived compared to those who died, analyses were also performed 

comparing three groups: aminophylline survivors, aminophylline non-survivors, and control. 

Significance was set at p<0.05 for all analyses.

Results

Neonates Receiving Aminophylline

Of 97 neonates with HIE undergoing therapeutic hypothermia during the study period, 16 

neonates received aminophylline. Clinical characteristics are shown in Table 1. On average, 

aminophylline was started at 25.2 ± 13.5 hours of life and continued for a mean of 2.6 ± 2.2 

days. In 13 of 16 neonates, theophylline drug levels were measured during the first day of 

therapy with a mean concentration of 6.8 ± 1.2 mg/L (range 5.3 – 8.4 mg/L). In 8 neonates, 

theophylline levels were repeated on the second or third day of therapy with an increase to a 

mean concentration of 11.3 ± 2.1 mg/L, and 7 neonates had a theophylline concentration 

>10 mg/L. All were receiving 1.8 mg/kg every 6 hours at the time of drug level 

measurement.

Clinical Outcomes after Aminophylline

Four neonates who received aminophylline died after withdrawal of intensive care support 

for poor neurologic prognosis and multiorgan failure (mean age of 67 hours, range 32-95 

hours). Eleven patients developed clinical or electrographic seizures, with a mean age at 

detection of 41.4 hours of life (range 2.7-176.6). Five neonates (45%) first demonstrated 

seizures prior to the administration of aminophylline and 2 (18%) first demonstrated seizures 

after aminophylline was discontinued (16 and 122 hours after discontinuation of 

medication). No adverse events related to aminophylline administration were described.
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Clinical Biomarkers of Renal Function

UOP response to aminophylline by survival status is shown in Figure 1. One neonate started 

therapy within 7 hours of birth, and UOP data were not available prior to start, leaving 15 

subjects for UOP analysis. In the 12 hours after aminophylline start, UOP significantly 

increased from 0.7 ± 0.5 ml/kg/h to 3.2 ± 2.1 ml/kg/h (change of 2.6 ± 1.9 ml/kg/h; 

p<0.001). This increase in UOP was sustained over the 72 hour period of study (p<0.001 for 

all time points). Compared to non-survivors (n=4), neonates who survived (n=12) had a 

similar pre-aminophylline UOP (p=0.7), but a higher UOP for all time points after 

aminophylline start (p<0.01).

Changes in SCr after aminophylline by survival status are shown in Figure 2. Two neonates 

died within two days of aminophylline therapy, and SCr was not available beyond 24 hours 

after aminophylline. Two neonates continued to have a rising SCr up to 72 hours after 

aminophylline was started; both of these infants also died. In comparison, neonates who 

survived demonstrated a significant decline in SCr by −0.2 ± 0.3 mg/dL from baseline by 48 

hours after start of aminophylline (p<0.01) and by −0.4 ± 0.2 mg/dL from baseline by 96 

hours after aminophylline (p<0.001).

Regarding NIRS measures, no significant changes in Rsat or Csat were detected during the 

12 hour period after start of aminophylline therapy. However, there was a positive 

correlation between Rsat prior to aminophylline exposure and increased UOP after start of 

therapy (Figure 3).

Aminophylline vs. Control Group Comparison

From the original 76 neonates who did not receive aminophylline while being cooled for 

HIE, 16 neonates with sufficient NIRS, SCr and UOP data were selected as the control 

cohort matched on nearest time of admission. Demographic and perinatal characteristics of 

the aminophylline and control groups are shown in Table 1. Patients were similar except the 

aminophylline group was of slightly lower gestational age (38 ± 2 vs. 39 ± 2 weeks, 

p=0.03), more often delivered by Cesarean section (94% vs. 44%, p=0.04), and had lower 5 

minute APGAR scores (median 4 [IQR 2-5] vs. 6 [IQR 4-7], p=0.01). There was no 

statistically significant difference between aminophylline and control groups for the 

concomitant use of other drugs potentially affecting renal function, although neonates 

receiving aminophylline more often required pressor support (9 in aminophylline group vs. 5 

in control group). There was no association between pressor use and change in urine output 

(p=0.79).

Clinical outcomes and discharge measures of comparative cohort

Six of 16 patients in the aminophylline group met criteria for AKI by modified KDIGO 

criteria compared to none in the unexposed group (38% vs. 0%, p=0.02). Three neonates 

met AKI criteria based on SCr only, one neonate based on UOP only, and 2 neonates based 

on both. The remaining 26 patients in the cohort did not meet any criteria for AKI.

Although not all statistically significant, neonates exposed to aminophylline also had other 

markers of poorer clinical outcomes compared to controls, including increased death (25% 
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vs. 6%, p=0.33), increased moderate to severe MRI abnormalities (58% vs. 13%, p=0.02) 

(23), and an increased rate of clinical or electrographic seizures (69% vs. 44%, p=0.15) 

(Table 1). While the 4 deaths in the aminophylline group occurred within 96 hours of life 

due to multiorgan failure, the only patient death in the control group occurred at 20 days of 

age after prolonged respiratory failure and seizures. At the time of hospital discharge (Table 

1), there was no difference in SCr levels (0.38 ± 0.14 mg/dl vs. 0.36 ± 0.09 mg/dl) or 

systolic blood pressure percentiles for postmenstrual age (37%ile vs. 36%ile) (24) between 

groups, although those receiving aminophylline were more likely to have a longer duration 

of hospitalization (21 ± 11 days vs. 15 ± 7 days). No infants had neonatal hypertension 

(blood pressure >95%ile for postmenstrual age).

UOP, SCr, NIRS measures of comparative cohort

Clinical biomarkers of renal function were compared between the aminophylline and control 

groups. Infants receiving aminophylline had a lower UOP during the 12 hour period prior to 

start of therapy compared to the control group during an age matched 12 hour period (0.7 ± 

0.5 vs. 1.9 ± 1.1 ml/kg/h, p=0.01). UOP was <1 ml/kg/h for 12 neonates in the 

aminophylline group and 3 neonates in the control group during this pre-aminophylline 

baseline period. The mean increase in UOP from baseline in the aminophylline group during 

the 12 hour period after start of therapy was 2.6 ± 1.9 ml/kg/h (p<0.001) compared to an 

increase from baseline of 0.6 ± 1.2 ml/kg/h in the control group (p=0.16). Eleven of 15 

neonates (73%) receiving aminophylline had >1 ml/kg/h increase in UOP after 

aminophylline compared to 6 of 16 (38%) controls over the same age matched period 

(p=0.07). By 12 hours after aminophylline start and continuing for the remainder of the 72 

hour period of study, there were no longer significant differences in UOP between 

aminophylline and control groups. UOP in controls is compared to aminophylline survivors 

and aminophylline non-survivors in Figure 1.

Infants receiving aminophylline had a higher SCr prior to start of therapy compared to the 

control group at an age matched day of life (1.0 ± 0.3 mg/dL vs. 0.8 ± 0.2 mg/dL, p<0.05). 

In aminophylline survivors (n=12) and control patients (n=16), SCr decreased from baseline 

over the 96 hour study period by 0.3 ± 0.2 mg/dL (p<0.001) and 0.4 ± 0.2 mg/dL (p<0.001), 

respectively (Figure 2). The one neonate in the control group who died had a declining SCr 

after birth. The mean SCr remained significantly higher in the aminophylline survivors 

compared to the control group at all time points except 96 hours.

NIRS measures of Rsat and Csat were not significantly different between aminophylline and 

control groups during the period of study (Table 2). The positive relationship between 

baseline Rsat and UOP seen in the aminophylline group was not seen in the control group 

(data not shown).

Discussion

In this observational cohort of neonates with HIE undergoing therapeutic hypothermia, we 

aimed to describe the impact of receiving aminophylline during clinical care on biomarkers 

of renal function. We secondly compared these patients receiving aminophylline to a time-

matched control group not exposed to aminophylline. We found that aminophylline was 
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associated with a rapid and robust increase in UOP and a slow decline in SCr in survivors. In 

contrast, non-survivors exposed to aminophylline did not demonstrate a significant increase 

in UOP and continued to have rising SCr after aminophylline start. A control group of 

cooled HIE patients not exposed to aminophylline started with a higher baseline UOP, but 

UOP increased in aminophylline survivors to be similar to or greater than control patients 

within 12 hours of aminophylline exposure. Control patients had a lower baseline SCr which 

declined over the first days of life. However, SCr was similar between aminophylline 

survivors and control patients by the end of the study period and at hospital discharge. NIRS 

measures of Csat and Rsat were not impacted by aminophylline, although a higher Rsat at 

baseline was associated with a greater UOP response to aminophylline. A randomized 

clinical trial of aminophylline for renal protection in the HIE population will be necessary 

before its widespread use in clinical care.

The current study represents the first published experience of theophylline, here given as its 

salt formulation aminophylline, in neonates with HIE undergoing hypothermia. Similar to 

randomized clinical trials of theophylline without the use of hypothermia in neonates with 

HIE, theophylline exposure increased UOP and was associated with a decline in SCr. Given 

the observational nature of this study, we were unable to examine the impact of theophylline 

exposure on the risk of AKI due to confounding by indication, where only neonates with 

worsening renal dysfunction were started on aminophylline. For example, of the 6 neonates 

who met AWAKEN criteria for AKI, 4 were diagnosed at time of aminophylline start. The 

aminophylline group was also more clinically ill at baseline with poorer outcomes (higher 

rates of seizures, MRI abnormalities, length of stay, and death) compared to the control 

group. These neonates may already have developed an advanced degree of kidney injury no 

longer responsive to the benefits of aminophylline. Moreover, aminophylline was initiated at 

mean age of 25.2 ± 13.5 hours of life. In contrast, in the clinical trials to date demonstrating 

a lower risk of AKI with theophylline (relative risk 0.40 [0.30-0.54]) in the HIE population, 

neonates were randomized at birth to treatment within the first hour of life (16–20). 

Prevention or amelioration of AKI may be most effective when theophylline exposure 

occurs soon after birth (prior to 24 hours of life or even sooner), similar to the benefit of 

cooling by 6 hours of life to reduce the incidence of moderate to severe encephalopathy.

The optimal theophylline exposure needed for prevention or treatment of AKI in neonates 

with HIE is not known. Only one randomized controlled trial of theophylline in neonates 

with HIE measured drug levels during treatment with a mean theophylline concentration of 

12.7 g/mL (range: 7.5-18.9 g/mL) at 36 to 48 hours of life (16). In this study the dose of 

theophylline was 8 mg/kg (=10 mg/kg aminophylline). Similar outcomes were found when 

lower theophylline doses of 5 mg/kg (6.3 mg/kg) were used and indicate lower exposures are 

effective (17,19,20). In our study, theophylline concentrations of 5.3-8.4 mg/L during the 

first day of therapy resulted in clinically significant increases in UOP and declines in SCr. 

Within this concentration range, no correlation between theophylline concentration and UOP 

were observed (R2 =0.1; data not shown) suggesting no additional benefit of higher 

exposures. Our findings agree with prior in vitro studies which have shown theophylline 

concentrations of 1-2 mg/L are adequate to inhibit adenosine receptors (subtypes A1 and 

A2) involved in renal hemodynamics (25–27). In newborn rabbits, theophylline 

concentrations <0.7 mg/L prevented hypoxemia-induced changes in GFR and renal blood 
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flow (8). Theophylline concentrations ranging from 1-10 mg/L have been associated with 

improvement in UOP or serum creatinine in clinical studies in adults, children, and neonates 

(13,28–30). Taken together, current evidence suggests theophylline concentrations of 4 to 8 

mg/L are a reasonable target for renal protective indications. These concentrations are lower 

than needed for theophylline’s bronchodilator effects (10-20 mg/L) and will also minimize 

toxicity concerns seen at higher concentration (>20 mg/L).

Given the narrow therapeutic index of theophylline, understanding the pharmacokinetics of 

theophylline will be critical to advance its therapeutic use and support a safe and effective 

dosing strategy. The dose of aminophylline used in our population was a 5 mg/kg (=4 mg/kg 

of theophylline) load followed by maintenance doses of 1.8 mg/kg (=1.4 mg/kg of 

theophylline) every 6 hours. While exposures during the first day of treatment were 

appropriate, this dosing regimen resulted in ongoing accumulation with 7 of 8 patients 

having theophylline concentrations of >10 mg/L on the second or third day of treatment. The 

pharmacokinetics of medications in neonates with HIE undergoing hypothermia are known 

to be unique, and reduced drug clearance and need for lower doses of several medications 

has been described (31–33). To guide the development of an individualized dosing strategy 

of theophylline for neonates with HIE undergoing hypothermia, our group has recently 

conducted a clinical pharmacokinetic study of theophylline (given as aminophylline) and 

analysis is currently underway.

Neonates with higher renal saturations at baseline had larger increases in UOP after 

aminophylline in our study. This finding parallels our previous research demonstrating 

increased renal saturations in those infants with AKI (15), possibly identifying a high-risk 

population that would most benefit from aminophylline. Rsat measures did not significantly 

increase in the aminophylline group, despite an expected physiologic increase in renal blood 

flow with adenosine receptor inhibition. The expected increase in Rsat after aminophylline 

may have been blunted by hypothermia-induced renal vasoconstriction. Alternatively, renal 

blood flow (and oxygen delivery) may have increased with an equivalent increase in 

metabolic activity of the renal parenchyma. Increased GFR and changes in tubular 

reabsorption after aminophylline may have contributed to improved UOP, but these 

mechanisms were not detectable using non-invasive monitoring of tissue saturation.

The SCr response to aminophylline was less clear from this observational study. Both 

aminophylline-exposed survivors and control neonates had a significant decline in SCr from 

baseline over the 96 hour study period, which is similar to the expected trajectory over time 

after birth (3). However, it is unclear if the patients receiving aminophylline would otherwise 

have had a rise in their SCr or a slower rate of decline. For example, in their cohort of 

asphyxiated newborns treated with hypothermia,Selewski et al. found that those who 

developed AKI had a rising SCr in the first 72 hours of life, no decline from baseline until 

after 7 days, and an elevated SCr at the time of discharge (1). Additional investigation is 

needed to target those individuals most likely to respond to aminophylline.

Similar to aminophylline and theophylline, other methylxanthines including caffeine may 

also be effective therapeutic treatments through adenosine receptor inhibition. Caffeine is a 

compelling drug to investigate given its longstanding and widespread use in the preterm 
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NICU population for apnea and neuroprotection as well as its favorable safety profile. 

Moreover, retrospective studies suggest a renal protective effect in the preterm population 

who received caffeine for apnea (34,35). However, before caffeine can be advanced for renal 

protection, further understanding is needed. In animal models the effects of theophylline and 

caffeine on renal hemodynamics were not the same (36), and caffeine has not been studied 

in models of hypoxemia to evaluate its effect on kidney function in this setting. More 

importantly, the use of caffeine in neonates with HIE undergoing hypothermia has not yet 

been established and no clinical studies have examined it use in this population. At this time 

only theophylline has been endorsed in KDIGO clinical practice guidelines as a potential 

treatment option in neonates with HIE to prevent AKI (moderate level of evidence based on 

available literature in 2011) (21).

As the population of infants with HIE are at high risk for brain injury and 

neurodevelopmental impairment, an ideal renal protective agent would not have adverse 

effects on the brain. Our study demonstrated no change in cerebral saturation for patients 

receiving aminophylline. This finding is consistent with animal and newborn studies 

showing transient minimal effects of aminophylline on cerebral blood flow (37,38). 

Although MRI abnormalities were more significant in the aminophylline exposed group, it is 

known that neonates with brain injury after birth asphyxia are also more likely to have 

multiorgan dysfunction, including AKI (4,39). Theophylline and other methylxanthines have 

been associated with an increased risk of CNS excitation and seizures at high doses, 

particularly with theophylline concentrations over 100 mg/L or with chronic use >30 mg/L 

(40–42). However, the clinical trials in HIE patients using theophylline at a standard dose of 

5 mg/kg did not demonstrate any difference in seizure burden (16,17,19,20). Our study 

showed seizures occurred in 11 infants exposed to aminophylline (69%) compared to 7 

unexposed infants (44%). However, in the aminophylline-exposed group, almost half of 

infants had their seizures first detected prior to administration of aminophylline. Seizures in 

HIE patients typically occur in the first 24 to 48 hours of life (43,44), and in our study most 

likely reflects the more severe degree of encephalopathy in the population receiving 

aminophylline. Moreover, theophylline levels in those infants with seizures were all within 

5.4-8.4 mg/L range, making theophylline toxicity an unlikely cause of lowered seizure 

threshold. Nonetheless, further safety data of theophylline exposure in the HIE population in 

well-controlled trials is needed.

This study is limited by lack of long-term renal function data and incidence of chronic 

kidney disease. Although SCr and blood pressure measures at the time of hospital discharge 

were not abnormal in our cohort, follow-up data were not available to assess possible longer-

term complications. The literature remains sparse with regards to which infants with HIE 

progress from AKI to chronic kidney disease (45–47). Additional measures including urine 

biomarkers or imaging studies may provide further insight into the potential protective effect 

of aminophylline. We also caution that our direct comparison of an observational HIE 

control group with HIE patients started on aminophylline for clinical care is limited given 

the inherent differences in illness severity which impact biomarkers of kidney function and 

clinical outcomes. Moreover, the aminophylline-exposed group had increased severity of 

perinatal asphyxia and HIE as demonstrated by significantly lower 5-minute Apgar score 

compared to the control group. Other investigators have demonstrated that severity of 
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encephalopathy predicts renal failure even more than serum creatinine (48), again 

highlighting the inherent difficulties of an observational study of aminophylline exposure. A 

randomized clinical trial of aminophylline in the HIE population undergoing cooling is 

therefore necessary to establish the potential therapeutic benefit of aminophylline, including 

measures of longer-term kidney function for prevention of chronic renal dysfunction.

Conclusions

Aminophylline exposure in neonates with HIE undergoing therapeutic hypothermia was 

associated with increased UOP and a decline in SCr in survivors. Control neonates not 

exposed to aminophylline exhibited a smaller increase in UOP over time and had a similar 

decline in SCr after starting from a lower baseline. No adverse effects were associated with 

aminophylline administration. Future investigations of aminophylline should focus on 

optimal dosing strategies, importance of timing and duration of exposure, long-term markers 

of kidney function, and identification of sub-groups most likely to benefit. This knowledge 

will inform the design of a clinical efficacy trial of aminophylline as a renal protective 

treatment in a population of neonates undergoing hypothermia for HIE.
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Impact statement:

• The renal protective effect of aminophylline in neonates with HIE has not yet 

been studied in the context of therapeutic hypothermia.

• Aminophylline exposure in neonates cooled for HIE was associated with 

increased urine output and a similar decline in serum creatinine when 

compared to control infants unexposed to aminophylline.

• Improved renal function after receiving aminophylline in this observational 

cohort study suggests the need for future randomized trials to establish the 

potential benefit of aminophylline in the HIE population undergoing 

hypothermia.
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Figure 1: Changes in Urine Output
Neonates receiving aminophylline (n=12 survivors and n=4 non-survivors) had lower urine 

output (UOP) during the 12 hour period prior to start of aminophylline compared to an age 

matched time period in control patients (n=16) (* p<0.05 vs. control at time point). A 

significant increase in UOP from baseline was seen after aminophylline treatment in 

survivors at all time points (# p<0.001 vs. ‘pre’ time point) and in control patients at 24 and 

72 hours (+p<0.05 vs. ‘pre’ time point). UOP was significantly higher during the first 12 

hours after aminophylline start in survivors compared to control patients (* p<0.05 vs. 

control at time point) but no differences in UOP between these two groups were seen at later 

time points. UOP in non-survivors who received aminophylline did not increase significantly 

over the study period.
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Figure 2: Changes in Serum Creatinine
Serum creatinine (SCr) significantly decreased from baseline by 48 hours after 

aminophylline in survivors (n=12) and by 24 hours during an age matched time period of 

life in control patients (n=16, # p<0.05 vs. ‘pre’ time point within each group). SCr remained 

significantly higher at 24, 48, and 72 hours in survivors compared to control patients 

(*p<0.05 vs. control). Non-survivors (n=4) in the aminophylline group had a rising SCr over 

the study period prior to withdrawal of intensive care support.
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Figure 3: Change in Urine Output Compared to Baseline Renal Saturation
Mean renal saturation (Rsat) in the 12-hour baseline period prior to start of aminophylline 

therapy shows a positive correlation with increase in urine output for the 12-hour period 

after aminophylline was given.
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Table 1.

Characteristics of Neonates with Hypoxic Ischemic Encephalopathy Receiving Hypothermia

Aminophylline (n=16) Control (n=16) p-value

Demographics

 Gestational age (weeks) 38.09 ± 1.73 39.47 ± 1.62 0.03

 Birth weight (kg) 3.17 ± 0.67 3.41 ± 0.64 0.32

 Male 8 (50%) 10 (63%) 0.48

 Inborn 3 (19%) 4 (25%) 1

 5-minute Apgar (IQR)
a 4 (2-5) 6 (4-7) 0.01

 Cesarean section delivery 15 (94%) 9 (44%) 0.04

 pH from cord gas or first baby gas 6.89 ± 0.21 6.95 ± 0.17 0.39

Drug Data

 Age (h) Aminophylline Started 25.2 ± 13.53 NA NA

 Days of Aminophylline 2.64 ± 2.17 NA NA

 Initial Theophylline level (mg/L)
b 6.82 ± 1.18 NA NA

 Concomitant drugs

  Lasix 6 (38%) 5 (31%) 0.71

  Dopamine 8 (50%) 4 (25%) 0.14

  Gentamicin 8 (50%) 9 (56%) 0.72

  Epinephrine 5 (31%) 1 (6%) 0.17

Neonatal Outcomes

 Death 4 (25%) 1 (6%) 0.33

 Acute kidney injury 6 (38%) 0 (0%) 0.02

 Seizures 11 (69%) 7 (44%) 0.15

 Moderate/Severe MRI abnormalities
c 7 (58%) 2 (13%) 0.02

 Length of hospital stay (days)
d 21 ± 11 15 ± 7 0.08

 Systolic blood pressure percentile for age at discharge
d 37 ± 21 36 ± 13 0.91

 Creatinine at discharge (mg/dl)
d 0.38 ± 0.14 0.36 ± 0.09 0.7

a
5-minute Apgar data represents aminophylline n=15 and control n=15.

b
Theophylline level data represents aminophylline n=13.

c
Moderate/Severe MRI abnormalities represent aminophylline n=12 and control n=16.

d
Length of hospital stay, systolic blood pressure percentile for age at discharge, and creatinine at discharge represent aminophylline n=12 and 

control n=15.
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Table 2.

Renal and Cerebral Saturation by Treatment Group for 12-hours Pre- and Post-Aminophylline

Aminophylline Control
a p-value

Rsat
b
 (%)

Pre- 78 ± 15 74 ± 15 0.44

Post- 76 ± 12 75 ± 13 0.65

Change −2 ± 8 1 ± 10 0.5

Csat
c
 (%)

Pre- 85 ± 7 82 ± 9 0.74

Post- 85 ± 10 84 ± 8 0.9

Change 0.1 ± 6 2 ± 4 0.46

Rsat, renal saturation; Csat, cerebral saturation.

a
Control group did not receive aminophylline and data for each neonate represents an age-matched period with a neonate in the aminophylline 

group.

b
Rsat data represents aminophylline n=11 and control n=12.

c
Csat data represents aminophylline n=12 and control n=12.
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