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Phonon arithmetic in a trapped ion system
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Single-quantum level operations are important tools to manipulate a quantum state.

Annihilation or creation of single particles translates a quantum state to another by adding or

subtracting a particle, depending on how many are already in the given state. The operations

are probabilistic and the success rate has yet been low in their experimental realization. Here

we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic

particle, in particular a phonon of ionic motion in a harmonic potential. We realize the

operations by coupling phonons to an auxiliary two-level system and applying transitionless

adiabatic passage. We show handy repetition of the operations on various initial states and

demonstrate by the reconstruction of the density matrices that the operations preserve

coherences. We observe the transformation of a classical state to a highly non-classical

one and a Gaussian state to a non-Gaussian one by applying a sequence of operations

deterministically.
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I
n quantum mechanics, bosonic creation ây and annihilation â
operators bear the following operator relations

ây ¼
X
n¼0

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

nþ 1j i nh j;

â ¼
X
n¼1

ffiffiffi
n
p

n� 1j i nh j;
ð1Þ

where nj i stands for a Fock state of n bosons. The proportionality
factors

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

and
ffiffiffi
n
p

appear due to the symmetric indis-
tinguishable nature of bosons1,2. Thus, the addition or
subtraction in quantum domain involves the modification of
the probability amplitude of state due to the excitation
n-dependent factor. The bosonic annihilation and creation
operation have been proposed to be a building block to
generate an arbitrary quantum state3,4, to distill entanglement
or non-locality5 and to transform a classical state to a non-
classical state6. In recent times, there have been seminal works to
realize the bosonic operations at the single-boson level for the test
of foundations and applications of quantum mechanics7–13.
However, such bosonic operations are not trace preserving and
inherently probabilistic. The probability of success has so far been
extremely low in their implementation for photonic fields.
A higher probability may be obtained at the expense of
lowering the performance fidelity14. Owing to this, a repetition
of these operations has been limited.

The conventional addition and subtraction of a particle can be
written as

Ŝþ ¼
X
n¼0

nþ 1j i nh j; Ŝ� ¼
X
n¼1

n� 1j i nh j: ð2Þ

The addition Ŝþ takes the n particle state to the (nþ 1) state,
whereas the subtraction operation Ŝ� brings the n state to the
(n� 1) state without incurring additional factors. Seeing the form
of the operations in equation (2), we immediately recognize that
Ŝþ is a deterministic process while Ŝ� may not be, as it is not
possible to subtract a particle from vacuum |0i. When the
vacuum component of the initial state is small, the subtraction
can be done near-deterministically. In recent times, there have
been theoretical proposals of the operations (equation (2)) for the
generation of an arbitrary quantum state15, the measurement of
vacuum16, the transformation to a non-classical state17 and the
amplification of a quantum state18. In particular, such arithmetic
operations form an important component of a qubit gate
operation for ions in a harmonic potential19. The operations
(equation (2)) were also suggested as the elements of a
phase operator20. Beyond the quantum-state engineering, the
subtraction can be used for the sub-Doppler cooling in the
trapped ion system21.

In this study, we experimentally demonstrate deterministic
addition and near-deterministic subtraction of a bosonic particle,
in particular a phonon of a 171Ybþ ion trapped in a harmonic
potential. We realize the operations by coupling phonons to an
auxiliary two-level system, so called the hybrid scheme of discrete
and continuous variable22, and applying a transitionless
quantum-driving scheme. We perform the operations on
superpositions of Fock states and coherent states, and we
demonstrate that our single-phonon operations are (near)
deterministic and preserve coherence. By applying a sequence
of operations deterministically, we show that classical states are
turned into non-classical ones manifesting highly sub-Poissonian
statistics and negativity in the Wigner function.

Results
Experimental implementations. We implement the Ŝþ and Ŝ�

operations of equation (2) on a vibrational mode of frequency oX

for a single trapped 171Ybþ ion in a three-dimensional harmonic
potential23 through its interaction with the two-level system of
atomic energy levels. The harmonic potential is generated by an
oscillating electric field in the radial axis with trap frequency
oX¼ (2p)2.8 MHz. The two-level system is represented by two
hyperfine states F¼1;mF¼0j i � "j i and F¼0;mF¼0j i � #j i
of the S1/2 manifold with the transition frequency
oHF¼ (2p)12.6428 GHz. As shown in Fig. 1a, the anti-Jaynes–
Cummings (aJC) interaction or blue-sideband transition,
HaJC¼ ZO

2 âwŝþ eiDt þ h:c:, is realized by the stimulated Raman
laser beams with beat-note frequency (oR1�oR2)¼ (oHFþoX)
þD. Here, O is the Rabi frequency of the two-level system,
Z¼ Dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘=2MoX

p
the Lamb–Dicke parameter, Dk the net wave

vector of the Raman laser beams and M the mass of 171Ybþ ion.
The aJC coupling produces the transition between #; nj i and
"; nþ 1j i with the oscillation frequency of

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

ZO, where theffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

factor comes from the fundamental property of âw and â
operators in equation (1). Therefore, the application of the simple
aJC interaction does not transfer #; nj i to "; nþ 1j i in an
n-independent manner at a fixed duration of time.

The full population transfer independent of the initial motion
state, the uniform blue-sideband transition,

P
n¼0 "; nþ 1j i

#; nh j þ h:c:, can be obtained by the application of the stimulated
Raman adiabatic passage24–26. The adiabatic scheme provides a
robust transfer against the variations in the transition rate either
from the intensity change of the control Raman beams or from
the property of the transitions25. Therefore, a properly designed
adiabatic passage would allow a decent state transfer for a wide
range of phonon number states through the aJC interaction,
despite the

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

ZO dependence. In the adiabatic passage,
typically ZO slowly increases at the beginning and decreases at the
end, that is, O(t)¼O0 sin(pt/T), whereas the detuning D changes
according to D(t)¼D0 cos(pt/T), where T is the total transfer
time, across the resonance. However, for the applicability of the
scheme to a wide range of initial phonon numbers with high
fidelity, we should set D0 as high as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nMþ 1
p

ZO0=2, where nM is
the largest phonon number for the transfer and should fulfill the
adiabatic condition, T � 1=ZO0. In our experimental conditions,
the reasonable duration T for such an adiabatic transfer is around
21 times that of p-pulse duration for the blue-sideband transition
of the ground state p/ZO0, when we include up to the maximum
phonon number nM¼ 6.

In recent times, the transitionless quantum-driving scheme27–30

has been developed to speed up the adiabatic control. When
the transfer is non-adiabatic, it introduces an additional term
in the Hamiltonian of the instantaneous basis, which is
� ib ZO tð Þ

2 âwŝþ eiDt þ h:c:, where b is in the order of p/ZO0/2T,
the ratio between the p-pulse duration and the total operation time.
By adding a counter-diabatic term in the control, we can suppress
the non-adiabatic excitation with a reasonable speed up over the
adiabatic passage. For the aJC interaction, the optimal values of D0

and b are dependent on the phonon number n for the given O0. In
our experiment, we optimize D0 and b for the case of the geometric
average of the minimum and maximum phonon number,
nO¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nMþ 1ð Þ

p
. By doing this, we are able to reduce the

total duration of the operation from 21 to 7 times p/ZO0 without
sacrificing the fidelity of the rapid adiabatic passage for the same
range of phonons nM¼ 6.

To rigorously achieve the uniform blue-sideband operationP
n¼0 "; nþ 1j i #; nh j þ h:c:, it is important not only to increase

the phonon number but also to preserve the relative phases
between component states of the quantum state. For our previous
realization23, the different extra phases were accumulated
depending on the phonon number of the initial state, which
prevented from keeping the initial phase coherences (see ‘AC
Stark shift compensation’ in Methods). In this study, we have
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Ŝ + = Σ ⎜n +1〉〈n ⎢
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Figure 2 | Schematic diagram and experimental results for the phonon addition. (a) Implementation of addition is composed of a p-pulse of uniform

blue-sideband transition
P
"; nþ 1j i #; nh j þ h:c:, followed by a p-pulse of carrier transition

P
#; nj i "; nh j þ h:c: This realizes the addition operation Ŝþ of

equation (2). (b) Additions on a superposition state cij i¼ n ¼ 0j i þ n ¼ 1j ið Þ=
ffiffiffi
2
p

clearly shows the capability of keeping coherence. The reconstructed

density matrices, only the real part of them, indicate the fidelity 0.99 (o0.01) of the initially prepared state and those of the final states 0.96(0.01),

0.92(0.01) and 0.87(0.01) after 1, 2 and 3 times addition, respectively. The purities of the output states are 0.92(0.01), 0.81(0.03) and 0.71(0.06),

respectively. The numbers in the parentheses represent the sizes of error estimated by the maximal-likelihood methods (see Methods). (c) Phonon

distributions after the addition on a coherent state cij i¼ a¼0:81j i. Our addition operations shift up the populations on phonon numbers while keeping the

variance the same, making the variance over average phonon number nh i=s2, which is initially set to 1, reduce to 0.43, 0.39 and 0.26 as the average phonon

number is increased by 1, 2 and 3, respectively. (d) Wigner functions of the coherent state cij i¼ a¼0:81j i after performing the addition operation n times

(n¼0, 1, 2 and 3). The upper figures are theoretical and the lower figures are experimental. Observed negative values in the Wigner function proves the

production of non-Gaussian state. The fidelities are reduced from 0.97(0.01) for the initial state to 0.87(0.01) (one single-phonon addition), 0.84(0.01)

(two additions) and 0.85(0.02) (three additions), and purities are changed from 0.99 to 0.93(0.02), 0.93(0.02) and 0.80(0.03), respectively.
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Figure 1 | Experimental scheme and dynamic and adiabatic transition by anti-Jaynes–Cummings interaction. (a) 171Ybþ system in a harmonic potential.

The qubit level in S1/2 manifold, F¼0;mF¼0j i � #j i and F¼1;mF¼0j i � "j i are coupled by the Raman laser beams, where the beat-note frequency is near

resonant to the qubit levels, oHF. When the beat-note frequency is tuned to BoHFþoX, the scheme produces the anti-Jaynes–Cummings interaction or

blue-sideband transition. We denote O as the Rabi frequency on the qubit transition and D is the frequency difference between the beat-note frequency of

Raman beams and oHFþoX. The Raman beams are realized by picosecond pulse train similar to the scheme in ref. 45. (b) The controls of experimental

parameters of O and D for the uniform blue-sideband transition. Naturally, the Rabi frequency of the blue-sideband transition is dependent on the motional

quantum number n. To remove the n-dependency, we control O and D as the red and blue curves such as O(t)¼O0[sign(T/2� t)sin(pt/T)þ ib] and

D(t)¼D0sign(T/2� t)cos(pt/T). The phase ib in O is the counter-diabatic term to suppress the transition during the evolution. Here O0¼ (2p)38.5 kHz,

b¼0.075 and D0¼ 1.6O0. (c) The basic operation of the uniform blue-sideband transition without the
ffiffiffiffiffiffiffiffiffiffi
nþ 1
p

dependence by the pulse shaping of b.

(d) The experimental demonstration of the uniform blue-sideband transitions. The total time to execute the transitions is 91 ms for any nj i (n¼0, 1, ... 5).
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developed a sequence of operations compensating the phonon-
number-dependent phases based on the spin-echo principle. As
shown in Fig. 1b, we invert the sign of O and reverse the control
of D in the middle of the sequence of the operation, which
symmetrizes the whole operation and produces the accumulated
phases of opposite signs before and after the inversion and
reverse. Therefore, the total phases are cancelled out at the end of
the operation (see ‘AC Stark shift compensation’ in Methods).

Conventional phase-coherent addition. We implement the
coherent addition operation Ŝþ in equation (2) by applying the
uniform blue-sideband transfer followed by the p-pulse of carrier

transition as shown in Fig. 2a. By this operation, we add single
phonons deterministically, independent of the initial number of
phonons. To manifest the coherence property of the addition
operations, we prepare an initial state 1ffiffi

2
p n¼0j i þ n¼1j ið Þ, apply

the operations up to three times and measure the density matrices
of the resulting phonon states. As shown in Fig. 2b, the
coherences represented by the off-diagonal terms of the density
matrix clearly remain after the multiple addition processes up to
three times.

We also consider an initial coherent state of the amplitude
a¼ 0.81, which is achieved by displacing the vacuum. The density
matrix is reconstructed (see Fig. 2c,d) by using the iterative
maximum-likelihood algorithm31 on the phonon number

Ŝ – = Σ ⎢n –1〉〈n ⎢

1. Σ ⎢n,↑〉〈n,↓ ⎢
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Figure 3 | Schematic diagram and experimental results of phonon subtraction. (a) Sequence of subtraction operations: the sequence of the operations

for addition is reversed, that is, a p-pulse of carrier transition followed by a p-pulse of adiabatic blue-sideband transition. This takes the phonon state from

#; nþ 1j i to #; nj i, except n¼0j i where #;0j i transfers to ";0j i. The ";0j i state is abandoned by the conditional measurement after the fluorescence

detection, which only collects non-zero phonon state data without fluorescence. (b) Subtraction on a superposition state cij i¼ n¼2j i þ n¼3j ið Þ=
ffiffiffi
2
p

. The

population is reduced and the coherence is conserved. The initial fidelity and purity of the state are 0.83(0.02) and 0.73(0.03). The fidelities are changed

to 0.77(0.02) and 0.83(0.01) after 1 and 2 times subtraction, respectively. The purities become 0.65(0.02) and 0.75(0.02). In the preparation and

displacement operations for the superposition states with fluorescent detection, the zero components are increased due to unexpected experimental

imperfections, which accidentally increase the fidelity and purity for the state 1ffiffi
2
p 0j iþ 1j ið Þ. (c) Subtraction from an initial coherent state a¼ 1.2. The initial

fidelity of the state is 0.96(0.01) and the fidelities are reduced to 0.92(0.01) and 0.66(0.01) after 1 and 2 times subtraction, respectively.
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distributions for eight different angles (see ‘Reconstruction of the
phonon density matrix’ in Methods). The phonon number
distributions are obtained by observing the time evolutions
of the standard blue-sideband transitions, similar to the direct
reconstruction scheme of the phonon density matrix32. One
immediate consequence of adding single phonons on the
coherent state is the production of sub-Poissonian phonon
statistics, because the addition increases the average phonon
number but not the shape of the distribution nor the variance.
We observe that the ratios between the variance and the average
phonon number reduce from 1 to 0.43, 0.39 and 0.2, after 1–3
single-phonon additions, respectively. Applying the first addition
operation, we detect negativity in the Wigner function as shown
in the second column of Fig. 2d. It is important to note that the
addition operation, which converts a coherent state to a highly
non-Gaussian and non-classical state, is deterministic unlike the
case of ây operation9–11. There is a technical limit in the number
of additions we can apply, owing to the validity of the adiabatic
approximation and the heating process of phonons33. Under this
limitation, we could perform the operations three times without
the significant loss of fidelity. As shown in Fig. 2d, the
experimental results and the theoretical predictions for the
Wigner functions are in agreement, except the shift of
the orientation, which would come from the phase offset
between the preparation and the analysing pulses. This is
significant in comparison with the photonic realization of
bosonic operations of single-photon creation and annihilation11.
We detect negativity in the Wigner function as shown in the
second column of Fig. 2, where we obtain the Wigner function of
the state from the reconstructed density matrix.

Conventional subtraction operation. The subtraction operation
Ŝ� in equation (2) is realized by reversing the sequence of the
addition operation, that is, the application of the p-pulse of
carrier transition and the uniform blue-sideband transfer,
followed by the fluorescence detection as shown in Fig. 3a. The
zero phonon state n¼0j i is eliminated after the subtraction,
which is implemented by the conditional measurement in our
experimental scheme. After the detection sequence, we only
collect the data with no fluorescence, which has the success rate
given by the probability of the non-zero phonon states. We
examine the performance of the subtraction operation with
an initial phonon superposition state 1ffiffi

2
p n¼2j i þ n¼3j ið Þ. As

shown in Fig. 3b, the subtraction operation reduces the phonon
excitation by one quanta. After the second application of the
subtraction, the off-diagonal terms of the density matrix
are significantly reduced, which shows the current limit in

experiments due to heating of the system. We also prepare a
coherent state a¼1:2j i and apply the subtraction twice as
shown in Fig. 3c, which shows qualitatively that the subtraction
operation works for any initial quantum state. The subtraction
operation can squeeze a coherent state, which is different from
annihilation â that has the coherence state as its eigenstate.
However, our experimental precision is not high enough to
observe the squeezing effect.

Commutation relation of addition and subtraction operations.
We study experimentally how the quantum states are changed
depending on the order of the addition and subtraction for an
initial coherent state cij i¼ a¼1:2j i. If we add and then subtract
Ŝ� Ŝþ cij i, the state after the sequence is the same as the original
one, as there is no amplitude modification. For the case of
subtraction-then-addition Ŝþ Ŝ� cij i the final state does not have
vacuum component, because a vacuum component is annihilated
by Ŝ� and cannot be restored by Ŝþ . Figure 4b shows the
experimental result of Ŝ� Ŝþ cij i, which is basically identical to
the initial state of Fig. 4a. Figure 4c shows the result after the
operation of Ŝþ Ŝ� cij i, where there is no significant vacuum
component in the density matrix. The vacuum component is not
perfectly absent because of the detection error during the
projective measurement based on the atomic fluorescence and
heating of the system. The fluorescence detection duration is
comparable to the motional coherence time of our system,
which makes the off-diagonal part of the final state suppressed
significantly (see ‘Error analysis’ in Methods). Our experimental
result is well in line with the non-commuting relation of the
Susskind–Glogower’s phase operators, that is, Ŝ� ; Ŝþ

� �
¼ 0j i 0h j

(ref. 20).

Discussion
Owing to the capability of deterministically generating a non-
classical and non-Gaussian states, the conventional addition and
subtraction operations provide an efficient scheme for quantum
state engineering34,35. The current work can also be a stepping
stone to realize the ion qubit gate operation as proposed by
Schneider et al.19 without having to worry about long operation
times and loss of coherences. This scheme may be further applied
to various quantum optics setups such as cavity quantum
electrodynamics and optomechanics. We note a theoretical
scheme that the non-Gaussian information of a phonon state
would be transferred to that of photon through phonon–photon
coupling36,37. It has also been discussed that the conventional
arithmetic addition and subtraction can be used to measure the
vacuum state without disturbing the state16 and therefore it can
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Figure 4 | Experimental results after addition-then-subtraction and subtraction-then-addition. Only the real part of experimentally measured density

matrices is shown (a) for an initial coherent state cij i¼ a¼1:2j i, (b) single-phonon added-then-subtracted Ŝ� Ŝþ cij i state and (c) single-phonon

subtracted-then-added Ŝþ Ŝ� cij i state. (b) The state after addition-then-subtraction is basically identical to the original state. The fidelity of the Ŝ� Ŝþ cij i
state to the original state cij i is 0.97(0.01) and the purity is 0.96(0.01). (c) The state after subtraction-then-addition is not the same as the original state,

because the vacuum component is thrown away during the projective measurement. The small population in zero component mainly comes from the

imperfection of the fluorescence detection and heating of the system, which is in good agreement with numerical simulation.
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be directly applied to construct the Q-function of a quantum state
of motion. We have noted that an arithmetic subtraction was
performed for a photonic system38.

Methods
AC Stark shift compensation. The AC Stark shift in the adiabatic operations
mainly comes from the off-resonant coupling to the carrier transition, the tran-
sition between S1/22P1/2 states of 171Ybþ ion and the other radial motional mode
(oYEoXþ (2p)0.4 MHz). The dominant AC stark shift comes from the carrier

transition of frequency O2
0

2oXZ2 � 2pð Þ33 kHz with O0¼ (2p)38.5 kHz and the Lamb–
Dicke parameter Z¼ 0.089. The amount of the shift brought by the Y mode is given

by O2
0Y

2 oY �oXð Þ, that is, B20 times smaller than that from the carrier coupling. The AC

stark shift between qubit states from the Raman laser beams due to S1/22P1/2

transition is g2
R1 þ g2

R2
2DR

oHF
DR
� 2pð Þ1 kHz, where gR1 and gR2 are the coupling strengths

of Raman 1 and Raman 2 beams, respectively, and the DR¼ (2p) 18 THz is the
detuning from the level of 2P1/2.

We consider total AC stark shift as the form of O tð Þj j2
2Dtotal

, where Dtotal is the
detuning effectively including all the possible origin of AC stark shifts discussed
above. We obtain oorg

bsb and Dtotal by fitting the several points of oact
bsb;Obsb

� �
with

the equation oact
bsb¼o

org
bsb þ

O2
bsb

2Dtotal
. The actual frequency of blue-sideband oact

bsb is
measured by observing the resonant excitation. Including the AC stark shift, the
actual waveform of O(t) that we apply on our arbitrary waveform generator is as
follows:

O tð Þ ¼ O0 sin pt=Tð Þ cos f tð Þð Þ� b sin f tð Þð Þ½ �;

f tð Þ ¼
Z t

0
oact

bsb t0ð ÞþD t0ð Þ
� �

dt0:
ð3Þ

Here, D(t0)¼D0 cos(pt/T) and we note that the imaginary part in original form of
O(t)¼O0[sin(pt/T)þ ib] is changed to sin-wave, which has the p

2 phase difference.
Here, f(t) is calculated as follows:

f tð Þ ¼
Z t

0
oact

bsb þD t0ð Þ
� �

dt0 ¼
Z t

0
oorg

bsbþ
O tð Þj j2

2Dtotal
þD0 cos pt=Tð Þ

� �
dt0 ð4Þ

¼ oorg
bsbtþ O2

0

2Dtotal

Z t

0
sin2 pt=Tð Þþb2� �

dt0 þD0
T
p

sin pt=Tð Þ ð5Þ

¼ oorg
bsbtþ O2

0

4Dtotal
1þ 2b2	 


tþ T
2p

sin 2pt=Tð Þ
� �

þD0
T
p

sin pt=Tð Þ: ð6Þ

Reconstruction of the phonon density matrix. We use an iterative algorithm in
ref. 31 for the reconstruction of a quantum state. It consists of a maximum-
likelihood estimation solved by the expectation-maximization algorithm followed
by a unitary transformation of the eigenbasis of the density matrix r.

Based on the measured phonon distribution fn by N measurements after a
displacement of the quantum state, we aim to get real probabilities pn¼ nh jr nj i that
are as close to the observed frequencies fn as possible, subject to the maximum-
likelihood functional

ln L rð Þ ¼ ln
Y

n

nh jr nj ifn¼ �
X

n

fn ln pn; ð7Þ

from which we reconstruct r. This likelihood functional can be interpreted as a
linear and positive problem in the classical signal processing:

pn ¼
X

i

rihin; ð8Þ

where ri is the eigenvalues of r and hin is a positive kernel. We can solve this linear
and positive problem with the expectation-maximization algorithm39,40:

r kð Þ
i ¼ r k� 1ð Þ

i

X
n

hinfn

pn r k� 1ð Þð Þ; ð9Þ

which is initially set to a positive vector r ri40 8ið Þ. This is repeated for different
displacements.

The second part of the reconstruction scheme aims at getting the eigenbasis
diagonalizing the density matrix. This part consists of two steps: reconstruction of
the eigenvectors of r in a fixed basis and rotation of the basis using a unitary
transformation

f0n


 �

f0n
� 

 ¼ U fnj i fnh jUy ð10Þ

with the infinitesimal form U � eiEG � 1þ iEG and E is a small positive real
number. G¼ i[r, R] is chosen as a Hermitian generator of the unitary
transformation, where R is a semipositive definite Hermitian operator
R¼
P

n
fn

pn
nj i nh j.

Starting from some positive initial density matrix r, we continue repetition of
first finding eigenvalues ri using the expectation-maximization iterative algorithm
(equation (9)) and then finding eigenvectors fi by unitarily transforming the old
ones. The likelihood of the estimate pn is increased and we finally reach to
determine the density matrix

r ¼
X

n

rn fnj i fnh j: ð11Þ

Error analysis. Dominant error comes from the phonon heating process caused by
the electric-field noise from the trapped electrodes41. Heating decreases the Fock
state preparation fidelity and affects the adiabatic blue sideband process. Its time
evolution is known to be described by41,42:

_r tð Þ ¼ g
2

�n 2âyr tð Þâ� r tð Þâây � ââyr tð Þ
� �

þ g
2

�nþ 1ð Þ 2âr tð Þây � r tð Þâây � âyâr tð Þ
� �

:
ð12Þ

where g is the coupling strength between the ion motion and the thermal reservoir
and �n is the average phonon number for the thermal reservoir. In our experimental
setup, the heating rate g�n � gn 	 1 is 150 Hz. It can be reduced by using a
large trap, cleaning the electrodes43 (equivalent to reducing g) or cooling the trap
(equivalent to reducing �n) (ref. 44).

Error may be caused by fitting, as some noise in the blue-sideband curves may
be recognized as a high phonon population. Although the Fock state preparation
error will be involved in the transition probability, fortunately the error for a small
n is relatively insignificant and the population mainly resides in small n-values for
the initial states we prepared in the experiments.

There are some other small errors that we did not calculate or simulate,
including the fluctuation of the trap frequency B0.1 kHz coming from B2%
intensity fluctuation of Raman laser and B1 kHz trap frequency fluctuation
coming from sudden changes of the ion position. We see how much our
experimental results are modified when comparing with the simulations23.
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