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Accurate tissue differentiation during orthopedic and neurological surgeries is
critical, given that such surgeries involve operations on or in the vicinity of vital
neurovascular structures and erroneous surgical maneuvers can lead to
surgical complications. By now, the number of emerging technologies
tackling the problem of intraoperative tissue classification methods is
increasing. Therefore, this systematic review paper intends to give a general
overview of existing technologies. The review was done based on the
PRISMA principle and two databases: PubMed and IEEE Xplore. The
screening process resulted in 60 full-text papers. The general characteristics
of the methodology from extracted papers included data processing
pipeline, machine learning methods if applicable, types of tissues that can be
identified with them, phantom used to conduct the experiment, and
evaluation results. This paper can be useful in identifying the problems in the
current status of the state-of-the-art intraoperative tissue classification
methods and designing new enhanced techniques.
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Introduction

Identifying and differentiating individual tissue types and anatomical structures is one

of the most fundamental skills a surgeon must have to perform surgery in a safe and

successful manner. Taking spinal surgery as an example, the combination of poor

visualization, complex anatomy, and vital adjacent structures such as the spinal cord,

peripheral nerves, and the aorta imposes a particular set of challenges for the surgeon

(1). During spinal instrumentation, pedicle screws must be placed inside a safe corridor

enclosed within the pedicles of each vertebra. Surgeons use their tactile and auditory

senses along with their visual perception to determine anatomic landmarks and a

specific tissue type (e.g., cortical bone vs cancellous bone) and avoid screw perforation.

Differentiation between tissue types is particularly challenging in minimal invasive
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surgeries (MIS), such as percutaneous screw placement, due to

the lack of direct visual information and unobscured haptic

feedback (2). Depending on the incorporated surgical technique

and the assessment metric, screw perforations can occur in 5%

to 41% in the lumbar spine and from 3% to 55% in the

thoracic region (3) which can cause serious peri- and

postoperative complications (4). Accurate and real-time

intraoperative tissue classification can help surgeons to identify

whether a given pedicle screw is breaching (or has breached)

the cortical bone layer and therefore alleviate potential

malposition and the associated postoperative complications.

Computer-assisted surgical navigation can be noted as the

most common technique for providing surgical guidance during

operation (5, 6) and relies on either an optical or an

electromagnetic tracking sensor to provide the positional

information of surgical tools relative to the anatomy. The

image-guided methods can provide intraoperative navigation

and differentiation between rigid tissue types based on the

registration of preoperative imaging data (e.g., computed

tomography or magnetic resonance imaging) to the anatomy

based on the real-time tracking information of the patient and

the surgical instruments. Navigation techniques have been

shown to result in superior implantation accuracy for the spine

surgery use case (7). Similarly, the clinical usefulness of surgical

navigation has been acknowledged in neurosurgery procedures

(8). Owing to the registration process, the established navigation

systems are, however, limited in their capability to differentiate

tissues in real-time, especially soft tissue structures that deform

during manipulation, as well as changes due to patient positioning.

Inspired by the enhanced ability of surgeons when

combining visual and non-visual senses to determine a

specific tissue type, a growing body of research strives to

leverage intraoperative sensing technologies (e.g.,

hyperspectral imaging and vibro-acoustic sensing) for tissue

classification and differentiation to improve the effectiveness

of surgical navigation and autonomy of surgical robotics (9–

12). Particularly, many of the emerging technologies provide

tissue classification through utilizing non-visual sensing by

either complementing the existing visual navigation systems to

improve their accuracy or offering new functionalities and

abilities for surgeons to monitor the surgical procedure. This

way, registration of preoperative data to the anatomy can be

rendered obsolete, which can potentially facilitate the

adoption of such algorithms for intraoperative use.

The increasing number of publications on this topic

suggests the need for a systematic review of available

intraoperative tissue classification methods in the fields of

orthopaedics and neurosurgery and to understand the

development status of available technologies. In this article,

we have characterized the existing papers with respect to the

underlying sensing technology, the clinical application, the

data processing algorithms, the classification accuracy, and

outlook from a clinical perspective.
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Methods

Search strategy

In this study, we conducted a systematic review on

intraoperative tissue classification methods in orthopedic and

neurological surgeries based on the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines (13). The search strategy is illustrated in the form

of a flow diagram (Figure 1). Since the scope of this paper

was on preclinical and clinical studies, PubMed was selected

as the primary publication database and search engine.

Additionally, IEEE Xplore was used to find relevant papers

with a technical focus. The following search term was used in

both databases:
(tissue OR nerve OR cartilage OR bone OR artery OR

ligament OR state) AND (classif* OR sens* OR detect*)

AND (surgery OR intraoperative) AND (orthop* OR

spine OR neurosurgery) AND (data fusion OR sensor

fusion OR machine learning OR deep learning OR

artificial intelligence OR neural networks OR signal

processing)
where “OR” and “AND” terms denote the corresponding logical

operations between the individual keywords. The first group

includes the tissue types such as nerve, artery, cartilage, bone,

or ligament. The term “state” was added to include relevant

articles concerning state identification within the anatomy.

The second group comprises synonymous words for

classification including sensing and detection. To include both

nouns and gerunds, only the word root was used together

with wildcards, e.g., classif* instead of classification and

classifying. Since we intended to cover sensor fusion, machine

learning, and classical signal processing, a third group was

added accordingly.
Study selection

Preliminary individual search and screening were

performed on November 23, 2021, by two independent

reviewers in a blinded fashion (Figure 1). In case of

contradicting results, joint discussions between the two

individual reviewers were conducted to reach a consensus.

The screening was conducted based on the titles and the

abstracts of the collected articles. A publication was deemed

eligible to be included in this review if:

• The topic of the paper concerned real-time tissue

classification during orthopedic and neurological surgeries.
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FIGURE 1

Prisma flow diagram.
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• The method for classifying different tissue structures was

binary or multi-class. Since some studies involved shape

detection (e.g., x-ray-based vertebrae boundary detection),

one versus rest classification approach-based reports were

excluded.

• The study was either in-vivo or ex-vivo conducted on either

human or animal tissues or synthetic anatomical models.

We only included studies that were published in English.
Data extraction

To facilitate the systematic extraction of data from the

included articles, we created the following template based on

which the key characteristics of each study were recorded:

• The surgical task for which the proposed method was

developed.
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• The main sensor or sensing technology used for tissue

classification.

• The implemented data processing steps.

• If the method involves machine learning: the name of the

machine learning method or framework used.

• The type of specimen used in the study (e.g. human brain,

animal brain, synthetic phantom, etc.)

• Classes or tissue types classified with the proposed method

(e.g. tumor, blood vessels, cortical bone, etc.)

• Criteria used for performance evaluation such as accuracy,

recognition rate, success rate, sensitivity, and specificity.

• Further prospective on clinical applications.

Results

Studies included

A total of 3,008 publications were retrieved through our

initial database search. As no duplicates were found, two
frontiersin.org
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independent reviewers screened the titles and the abstracts of all

retrieved publications. The screening process resulted in 2,944

papers that were further evaluated against the above-

mentioned criteria. A total of 64 papers passed through the

screening from which 60 full-text papers were included in this

systematic review. Three papers were excluded due to missing

online full text and one paper was excluded as it was not

written in English.

The identified papers were grouped into categories depending

on the sensing technology used, namely hyperspectral

imaging, spectroscopic sensing, ultrasound imaging, force,

robotic and impedance sensing, vibro-acoustic sensing, optical

coherence tomography, endoscopic and microscopic imaging,

and x-ray imaging. The general overview of categories is

tabulated in Table 1.
TABLE 1 General overview of sensing technologies.

Category Sensors S

Hyperspectral imaging
(9, 14–18)

VNIR hyperspectral pushbroom camera, NIR
hyperspectral pushbroom camera, VNIR
hyperspectral snapshot camera

brain tumor res

Spectroscopic sensing
(10, 11, 19–33)

optical scattering spectroscopy probe, Raman
spectrometer, diffuse reflectance spectroscope,
stimulated Raman scattering microscope, red
and infrared lasers, Narrow-band imaging,
coherent anti-stokes Raman scattering
microscope, visible-resonance Raman
spectrometer, laser displacement sensor, Q-
switched frequency-doubled Nd:YAG and Er:
YAG lasers, endo-microscope, fluorescence
imaging and color imaging

brain tumor res
spinal surgery, r
surgery, robotic
intracranial mic
robotic bone mi

Ultrasound imaging
(12, 34, 35)

Ultrasound, elastography trans-psoas surg

Force, robotic control,
and impedance
sensing (36–46)

Custom-made mechatronic bone drilling tool,
force sensor, current sensor, UR5 robotic arm,
custom-made tactile sensing probe using
balloon expansion, load cell, DC drill motor,
robot manipulator, optical tracking sensor,
impedance spectroscopy device

bone drilling, ro
bone milling, tu

Vibro-acoustic sensing
(10, 47–57)

Laser displacement sensor, accelerometer, free-
field microphone, inertial measurement unit
chip, condenser microphone, contact
microphone, non-contact acoustic
microphone, sound recorder

robotic bone mi
bone drilling, bo

OCT imaging (58–61) OCT system, full-field swept-source OCT
system

Brain tumor res

Microscopic and
endoscopic imaging
(62–66)

Surgical microscope, surgical endoscope Spinal endoscop
transforaminal e
craniotomy, mic

X-ray imaging (67, 68) X-ray bone tumor rese
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Hyperspectral imaging

Hyperspectral imaging is a spectroscopy method that

captures both spectral and spatial information. Each pixel

represents hundreds of spectral bands, which correlate with

the chemical composition of the underlying imaged material

(Figure 2).
Clinical application
Six publications (9, 14–18) were found in this category that

focused on tissue classification based on hyperspectral imaging

(Table 2). These articles focused on detecting brain tumor tissue

since hyperspectral imaging facilitates non-contact, non-ionizing,

and real-time data acquisition that is used for tumor diagnosis.
urgical tasks Classes

ection healthy tissue, tumor, blood vessels, dura mater

ection, minimally invasive
obotic laser-based orthopedic
orthopedic surgery,
rosurgery, tumor resection,
lling, bone cutting

brain, nerve, fat, artery, muscle, solid tumor,
infiltrating tumor, necrosis, normal tissue, bone,
intervertebral disc, spinal cord, cartilage,
subchondral, meniscus, cancellous bone, normal
tissue, lesional tissue, low-grade tumor, high-
grade tumor, malignant gliomas, diffuse lower-
grade gliomas, pilocytic astrocytoma,
ependymoma, lymphoma, metastatic tumor,
medulloblastoma, meningioma, pituitary
adenoma, gliosis, white matter, grey matter,
nondiagnostic tissue, ligament, internal carotid
artery, facial nerve, glioblastoma, melanoma,
breast cancer, vertebrae, adjacent bony structures,
hard bone, soft bone, skin

ery, brain tumor resection nerve, bone, psoas muscle, glioblastoma, solitary
brain metastases, tumor, healthy tissue

botic bone drilling, robotic
mor resection

breakthrough from cortical to cancellous bone,
cortical bone, 30pcf cancellous bone, 50pcf
cancellous bone, outer cortical bone, cancellous
bone, inner cortical bone, white matter, gray
matter, pedicle cortical bone, pedicle cancellous
bone, vertebral cancellous bone, cortical transit
cancellous, almost break cortical, fat, muscle fiber

lling, robotic bone drilling,
ne cutting, bone milling

vertebrae, spinal cord, adjacent bony structure,
muscle, cortical bone, cancellous bone, annulus
fibrosus, cortical bone, fascia, fat, liver, muscle,
breakthrough, skin, outer cortical layer, inner
cortical layer

ection, tumor resection Non-cancerous tissue, glioma-infiltrated tissue,
vital tumor, healthy tissue, necrosis, meningioma,
cortex, hippocampus, corpus callosum, striatum,
thalamus

ic surgery, percutaneous
ndoscopic discectomy,
rovascular decompression

Nerve, dura mater, vessel, parenchyma, trigeminal
nerve, facial nerve, glossopharyngeal nerve, vagus
nerve, anterior inferior cerebellar artery, –
posterior inferior cerebellar artery, petrosal vein

ction Benign tumor, malignant tumor, normal tissue

frontiersin.org

https://doi.org/10.3389/fsurg.2022.952539
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 2

Spectral signatures generation for the specific tissue type (69).

TABLE 2 General descriptions of selected studies on hyperspectral imaging.

Citation Surgical
Task

Sensor Preprocessing ML Method Material Classes Evaluation

Fabelo et al.
2018

brain tumor
resection

VNIR hyperspectral
pushbroom camera

image calibration,
image denoising,
band removing,
spectral averaging,
normalization,
dimensional reduction

SVM +KNN +HKM brain tissue healthy tissue,
tumor,
blood vessels,
background

Acc.87.27%–

100%
Spec. 99.52%–

100%
Sens. 97.95%–

100%

Fabelo et al.
2019a

brain tumor
resection

VNIR hyperspectral
pushbroom camera

image calibration,
image denoising,
image normalization

U-Net + 1D DNN + 2D
CNN

brain tissue healthy tissue,
tumor,
blood vessels,
background

Acc. 0.78–0.81

Fabelo et al.
2019b

brain tumor
resection

VNIR hyperspectral
pushbroom camera

image calibration,
noise filtering,
band averaging,
normalization

2D-CNN, PCA + SVM +
KNN,1D DNN, SVM

brain tissue healthy tissue,
tumor,
blood vessels,
background

Acc. 84%–85%
Sens. 25%–99%
Spec. 90%–99%
AUC 0.82–1.00

Leon et al.
2021

brain tumor
resection

VNIR and NIR push-
broom hyperspectral
cameras

noise filtering,
band removing,
NIR upsampling,
VNIR-NIR registration,
cropping,
spectral fusion,
NIR reflectance offset
adjustment

K-means,
K-medoids, HKM,
SVM,
RF,
KNN

synthetic
phantom

material,
color,
material-color

Acc. 76.50%–

90.6%
Jaccard 0.53–
0.76

Manni et al.
2020

brain tumor
resection

VNIR hyperspectral
pushbroom camera

image calibration,
noise filtering,
band removing
ant colony
optimization

3D-2D CNN brain tissue healthy tissue,
tumor,
blood vessels,
background

Acc 0.80
Sens. 0.68–0.96
Spec. 0.87–0.98
AUC 0.70–0.91

Urbanos et al.
2021

brain tumor
resection

VNIR hyperspectral
Snapshot camera

calibration,
spectral correction,
normalization

SVM, RF, 3D CNN brain tissue healthy tissue,
tumor,
venous blood
vessel,
arterial blood
vessel,
dura mater

Acc. 60%–95%

Massalimova et al. 10.3389/fsurg.2022.952539
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Technologies used
Extracted reports used different technologies of varying

spectral wavelengths. The majority of studies used Visual and

Near-Infrared (VNIR) push-broom cameras covering a 400–

1,000 nm wavelength range (9, 14, 15, 17, 18). In contrast to

push-broom imaging technology, Urbanos et al. (16) used a

VNIR snapshot camera that can be used in a surgical

environment due to its smaller footprint. However, such

sensors generally deliver a narrower wavelength range, namely

655–955 nm. Leon et al. (14) proposed the combination of

VNIR and Near-Infrared (NIR) cameras to cover the

broadband spectral range between 435 nm and 1638 nm.
Data processing
The data preprocessing steps for hyperspectral imaging

conventionally start with image calibration, where the raw

data is calibrated with respect to white and dark reference

images. This is followed by image denoising and band

averaging. Afterward, spectral signatures are normalized to

prevent the differences in radiation intensities caused by

surface irregularities (9, 15–17). Unlike other studies, Leon

et al. (14) additionally included a coarse-to-fine search

algorithm, which was applied to gray-scale images from VNIR

and NIR cameras to identify the most relevant bands for

spatial registration. Feature-based registration technique using

Speeded Up Robust Features (SURF) detectors with projective

transformations was applied afterward to register two images.

The processed hyperspectral data is then generally used as

an input for machine learning methods that are trained to

perform tissue classification. Within the collected articles,

different machine learning algorithms were used for this task,

namely: Support Vector Machines (SVM) (14, 16, 17),

K-Nearest Neighbors (KNN) (14), (Hierarchical) K-Means

(HKM) (14), Random Forests (RF) (14, 16), 1-Dimensional

(1D) Deep Neural Networks (DNN) (17), 2D Convolutional

Neural Networks (CNNs) (17) and 3D CNNS (16). Fabelo

et al. (15) proposed a more complex learning framework

incorporating both supervised and unsupervised machine

learning methods. First, an SVM classifier was employed to

generate a supervised pixel-wise classification map. This was

followed by fixed reference t-stochastic neighbors embedding

dimensionality reduction algorithm and a KNN filtering in

order to reach spatial homogenization. Secondly, a

segmentation map was obtained by employing the

unsupervised clustering method HKM. The two branches

were combined with a majority voting approach (15).
Tissue classes and accuracy
The majority of studies were based on human brain tissue

samples and aimed at differentiating between healthy tissue,

tumor, blood vessels, and background using push-broom

hyperspectral sensors. The method reported in Urbanos et al.
Frontiers in Surgery 06
(16) additionally classified venous, arterial blood vessels, and

dura mater by a snapshot camera by conducting two

evaluations, namely intra-patient and inter-patient.

Experiments in Urbanos et al. (16) resulted in the highest

overall accuracy of 95% using RF in an intra-patient

evaluation. However, the inter-patient evaluation based on

SVM showed a poor performance (acc. 60%), which was

explained by the lower number of bands available through

snapshot cameras and inter-patient variability (16). Fabelo

et al. (15) achieved a robust classification using a hybrid

network integrating supervised and unsupervised learning

methods with an accuracy higher than 87.27%. After

optimizing the algorithm, the total processing time was

reported to be in the order of 1 min (15). The results of Leon

et al. (14) revealed that the average classification accuracy

after data fusion from VNIR and NIR cameras was 21%

higher than when using individual camera data using SVM,

KNN, and RF algorithms.
Outlook
In spine surgery, hyperspectral imaging might be useful in

differentiating intervertebral disc or scar tissue from nerve

structures to identify vital structures earlier, more accurately,

and without missing sequestered disc fragments in close

relation to other tissues. In this regard, till today there is no

intraoperative technology providing that functionality.
Spectroscopic sensing

Spectroscopy provides a precise analytical method for

identifying the chemical composition of the material based on

its emission spectrum. The contactless nature of the

spectroscopic technology makes it suitable for intraoperative

tissue identification during surgical interventions. Spectroscopy

provides a similar reflectance spectrum as hyperspectral

imaging but it does not capture spatial information. Instead,

light is dispersed with diffraction grating first and then

projected onto charge-coupled devices (CCDs). Afterward,

spectral information is extracted from this digital format.
Clinical application
The majority of studies that we found in this category (19–28)

used spectroscopic methods for delineating the brain tumor

regions (Table 3) by showing that the spectroscopic information

can successfully characterize tumor tissues during neurosurgery.

Furthermore, Kenhagho et al. (29) demonstrated that

optoacoustic properties can characterize the tissue type during

laser osteotomy. Gunaratne et al. (30) showcased the feasibility

of integrating diffuse reflectance spectroscopy into robotic knee

laser surgery, which typically lacks tactile feedback.
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TABLE 3 General descriptions of selected studies on spectroscopy.

Citation Surgical
task

Sensor Preprocessing ML Method Material Classes Evaluation

Andrews
et al. 2000

brain tumor
resection

optical scattering
spectroscopy probe

N/A N/A rat brain
tissue

brain, nerve, fat, artery,
muscle

N/A

Broadbent
et al. 2018

brain tumor
resection

Raman
spectrometer

open morphology weighted
penalized least square,
third-order smoothing,
band removing, normalization,
median filtering,
synthetic minority
oversampling

SVM brain tissue solid tumor, infiltrating
tumor, necrosis, normal
tissue

Acc. 89%,
Sens. 94%,
Spec. 97%

Cakmakci
et al. 2020

brain tumor
resection

high resolution
magic angle
spinning nuclear
magnetic resonance
spectrometer

left shifting,
frequency domain
transformation,
phase correction, cropping

PLS-DA, RF,
SVM, NN,
CNN

brain tissue tumor/healthy tissue,
benign/ malignant tumor

AUC 0.74–0.98

Chen et al.
2016

minimally
invasive spinal
surgery

Raman
spectrometer

wavelet denoising,
spike removing,
standard normal variate,
fluorescence background
correction

PCA-LDA swine
backbone

bone, fat, intervertebral
disc, muscle, spinal cord

Acc. 93.1%,
Spec. 85.7%–

100%,
Sens. 82%–

100%

Gunaratne
et al. 2019

robotic laser-
based
orthopedic
surgery

diffuse reflectance
spectroscope

normalization,
dimensionality reduction

LDA joint tissue cartilage, subchondral,
meniscus, and cancellous
bone

Acc. 99%,
Sens. 99.2%–

100%

Hollon et al.
2018

brain tumor
resection

stimulated Raman
scattering
microscope

N/A RF brain tissue normal/ lesional tissue,
low-grade/ high-grade
tumor

Acc. 89.4%–

93.8%, AUC
0.96–0.97

Hollon et al.
2020

brain tumor
resection

stimulated Raman
scattering
microscope

N/A Inception
ResNet- v2

brain tissue malignant gliomas,
diffuse lower grade
gliomas,
pilocytic astrocytoma,
ependymoma,
lymphoma,
metastatic tumor,
medulloblastoma,
meningioma,
pituitary adenoma,
gliosis,
white matter, grey matter,
nondiagnostic tissue

Acc. 86.4%,
IoU 0.51–0.93

Laws et al.
2020

robotic
orthopedic
surgery

red and infrared
lasers

image cropping,
resizing

GoogLeNET shoulder
sample

cartilage, ligament,
muscle,
metal surgical tools

Pre. 84.8%–

100%,
Re. 90.7%–

100%

Livermore
et al. 2020

brain tumor
resection

Raman
spectrometer

signal-to-noise thresholding,
cosmic ray removing, third-
order polynomial baseline
correction, normalization

PCA-LDA brain tissue glioma,
normal brain

Sens. 0.96,
Spec. 0.99,
Acc. 0.99

Puustinen
et al. 2020

Intracranial
microsurgery

custom-built
narrow-band
imaging

normalization,
band reduction,
Savitzky-Golay filter

U-Net cadaveric
temporal
bone

internal carotid artery,
facial nerve

Acc. 90%

Riva et al.
2021

brain tumor
resection

Raman
spectrometer

band reduction,
median filtering, signal-to-
noise ratio thresholding,
background signal subtraction,
outlier removal,
signal normalization

RF,
GB

brain tissue glioma,
normal brain tissue

Acc. 80%–83%,
Pre.79%–82%,
Re. 80–82%,
F1 80%–82%,
AUC 0.80–0.82

Uckermann
et al. 2014

tumor
resection

Coherent anti-
Stokes Raman
scattering
microscope

N/A N/A brain tissue,
breast tissue,
mouse tissue

Glioblastoma, melanoma,
breast cancer

N/A

(continued)
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TABLE 3 Continued

Citation Surgical
task

Sensor Preprocessing ML Method Material Classes Evaluation

Zhou et al.
2019

brain tumor
resection

Visible Resonance
Raman
spectrometer

baseline removal,
normalization

PCA-SVM brain tissue healthy brain tissue,
normal control tissues,
glioma tumors at low
grades, glioma tumors at
high grades

Acc. 53.7–
96.3%,
Sens.100%,
Spec. 71%

Dai et al.
2015

robotic bone
milling

laser displacement
sensor

median filter, WPT three-layer
backpropagation
neural network

porcine spine vertebrae, spinal cord,
adjacent bony structure,
muscle

Suc. rate 83–
100%

Kenhagho
et al. 2021

bone cutting Q-switched
frequency-doubled
Nd:YAG laser, Er:
YAG laser

FFT, bandwidth selection PCA+ quadratic SVM/
gaussian SVM/ three-
layer back propagation
neural network

porcine
proximal,
distal femurs

hard bone, soft bone,
muscle,
fat, skin tissues

Err. 0–94.40%

Kamen et al.
2016

Brain tumor
resection

clinical endo-
microscope

Entropy-based image pruning,
local features (Scale Invariant
Feature Transform), feature
coding (Bag of Words, sparse
coding, locality-constrained
sparse coding), feature pooling

SVM +majority voting brain tissue glioblastoma,
meningioma

Acc. 0.83–0.84,
Sens. 0.87–0.89,
Spec. 0.77–0.81

Shen et al.
2021

bone tumor
resection

Second near-
infrared
fluorescence
imaging and color
imaging combined
instrument

White light (WL) image,
fluorescence light (FL) image,
normalization

FL-CNN, WL-CNN brain tissue tumor/
non-tumor

Spec. 0.803–
0.822,
Sens. 0.821–
0.938,
PPV 0.889–
0.910,
NPV 0.699–
0.872,
F1 0.853–0.824

Massalimova et al. 10.3389/fsurg.2022.952539
Technologies used
Spectroscopic sensing methods found in the reviewed

articles can be categorized into the following technologies:

optical scattering spectroscopy probe (19), high-resolution

magic angle spinning nuclear resonance spectrometer (21),

Raman spectrometers (i.e. coherent anti- Stokes Raman

scattering, visible resonance Raman, stimulated Raman

scattering) (11, 20, 22–27), diffuse reflectance spectroscopy

(30, 31), selective narrow-band imaging (32), clinical

endomicroscopy (28), and fluorescence imaging (33). The

largest subgroup among these studies was based on Raman

Spectroscopy (RS). Raman spectra are generated from the

interaction of the monochromatic laser beam radiation with

the molecules of the tissue. The reflected light characterizes

the contents of lipids, protein, and nucleic acid of the tissue

under investigation. Shen et al. (33) presented a

combination of fluorescence imaging and color imaging

cameras to delineate brain tumor regions. This technology

was capable of capturing white light and fluorescence

images simultaneously. Q-switched frequency-doubled

Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG)

and Erbium-doped Yttrium Aluminum Garnet (Er:YAG)

lasers were compared during laser bone cutting in

Kenhagho et al. (30).
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Data processing
The preprocessing pipeline of spectral data consisted of

signal denoising (11, 20, 24, 25), band reduction to extract

biologically relevant spectra (20, 30, 32), normalization (20,

25, 27, 30, 32, 33), and median filtering to remove outliers

(10, 20, 25). The majority of the proposed classification

methods for Raman spectroscopy were based on traditional

machine learning approaches including SVM (20), combined

linear discriminant analysis (LDA) and principal component

analysis (PCA) (11), combined SVM and PCA (27, 29), RF

(22, 25), and gradient boosting (25). Hollon et al. (23)

implemented a more complex learning method based on the

inception ResNet-v2 network. Dai et al. (10) presented laser

displacement sensor application during robotic bone milling

based on wavelet packet transformation and artificial neural

network. Gunaratne et al. (30) and Laws et al. (31) applied

diffuse reflectance imaging in robotic orthopedic surgery with

LDA and GoogLeNET.

Tissue classes and accuracy
Multiple studies aimed at using RS in detecting different

types of tumor tissues such as solid tumors (20), infiltrating

tumors (20), or glioma tumors with different gradings (22, 25,

27). Moreover, Hollon et al. (23) expanded the number of
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classes to 13 diagnostic tumor classes. The ground truth labels

were based on conventional hematoxylin and eosin-staining

histology results of the samples collected. The overall accuracy

using inception ResNet-v2 was 86% and comparable with

other methods (23). Articles related to orthopedic surgery

reported the recognition of different tissue types including

bone, fat, intervertebral disc, muscle, spinal cord, cartilage,

and ligament. Gunaratne et al. (30) classified four different

tissue types including cartilage, subchondral bone, cancellous

bone, and meniscus tissues within the wavelength range of

200–1030 nm using LDA. The methodology achieved a better

than 99% accuracy. Laws et al. (31) showed that an infrared

laser is more accurate (acc. 97.8%) in classifying the shoulder

joint tissue type (cartilage, ligament, muscle, and metal

surgical tools) than a red laser (acc. 94.1%) using

GoogLeNET. Chen et al. (11) used RS with a 785–1,100 nm

spectral range to differentiate bone, fat, muscle, intervertebral

disc, and spinal cord of the swine backbone. The overall

accuracy of the proposed method was above 93.1%. Dai et al.

(10) presented a success rate above 83% using a three-layer

back propagation neural network in identifying vertebrae,

spinal cord, adjacent bony structures, and muscle. Moreover,

Nd:YAG and Er:YAG lasers were used to recognize hard and

soft bone, muscle, fat, and skin from fresh porcine femurs

during laser bone cutting in Kenhagho et al. (29). The

amplitude of the signal generated with the Nd:YAG laser was

greater than Er:YAG laser, which in turn contributed to the

lower overall classification error. In terms of classification

methods, the three-layer back propagation neural network

outperformed SVM with an error rate of 5.01 ± 5.06% and

9.12 ± 3.39% using the Nd:YAG and Er:YAG lasers

respectively (29). The fluorescence imaging-based deep

learning approach outperformed the clinicians in terms of

sensitivity, specifically 93.8% vs. 82% (33).
Outlook
Spectroscopic sensing is a potentially powerful technology

for spine surgical use cases as it might assist in breach
TABLE 4 General descriptions of selected studies about ultrasound.

Citation Surgical
Task

Sensor Preprocessing M

Carson
et al. 2021

trans-psoas
surgery

ultrasound
imaging
system

tapered windowing function,
time gain compensation,
brightness normalization,
dilation and erosion

U-

Cepeda
et al. 2020

Brain tumor
resection

Ultrasound,
elastography

normalization, despeckling,
Gaussian blur filter

inc
(tr
lea
SV
kN

Ritschel
et al. 2015

Brain tumor
resection

ultrasound
system

N/A SV
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detection during pedicle screw preparation, detection of low-

grade infections, differentiation of seroma and cerebrospinal

fluid, and tissue differentiation.
Ultrasound imaging

Ultrasound imaging is an established clinical imaging

method that provides real-time information about anatomy

and physiology based on the emission and detection of sonar

signals. This technology has been widely used in guiding

interventional and diagnosis procedures owing to its

portability, low price, and non-invasiveness (no radiation

exposure). However, it is typically accompanied by low

resolution, image artifacts, and operator dependency.
Clinical application
Within the reviewed articles, three studies (12, 34, 35)

unveiled the potential of ultrasound imaging for tissue

classification (Table 4). Carson et al. (12) tackled the problem

of nerve localization and identification in lateral lumbar

interbody fusion surgery with a trans-psoas approach, where

the disc space is accessed through the psoas muscle. Cepeda

et al. (34) and Ritschel et al. (35) used ultrasound sensing in

detecting brain tumor regions for tumor resection. Cepeda

et al. (34) compared B-mode and elastography ultrasound

techniques in detecting the brain tumor region. Ritschel et al.

(35) used an additional contrast agent, namely a bolus

injection, to detect the brain tumor during tumor resection.
Technologies used
Carson et al. (12) used an ultrasound imaging system

(SonoVision,TM Tissue Differentiation Intelligence, USA).

Cepeda et al. (34) reported using the Hitachi Noblus with a

C42 convex probe, 8–10 MHz frequency range, 20 mm scan

width radius, and 80° scan angle of field of view. In Ritschel

et al. (35), the ultrasound system Aplio XG 500 (Toshiba

Medical Systems, Japan) in the second harmonic imaging
L Method Material Classes Evaluation

Net porcine
tissue

nerve, bone, psoas
muscle

Dice 83.81%–90.60%, Sens.
100%, Spec. 93.13% –

98.61%, Acc. 96.30% –

98.29%

eption V3
ansfer
rning) + LR,
M, RF, NN,
N

brain tissue glioblastoma,
solitary brain
metastases

AUC 0.791–0.985, Acc.
74.9%–94.7%, F1 0.724-0.
947, Pre. 0.779-0. 947, Re.
0.749-0. 947

M brain tissue tumor, healthy
tissue

Pre. 0.71, TN 0.93, Acc.
0.90, Sens. 0.76, Spec. 0.94
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mode was used along with a 2 ml of contrast agent SonoVue

(Bracco Imaging, Germany). By sweeping over the skin

surface of the anatomy, one can visualize the underlying

anatomical structures using an ultrasound system. Ultrasound

waves are transmitted from the transducer to the anatomy.

The ultrasound images are formed based on the echoes

received and the time duration to receive the signal back. The

echoed signal differs depending on the sensed tissue type.
Data processing
In the work by Carson et al. (12), the edges of the B-mode

images were suppressed with tapered windowing functions

followed by time gain compensation and normalization. Then,

the morphological operations including dilation and erosion

were applied. Processed images were used further to train a U-

Net architecture. Cepeda et al. (34) cropped and removed small

peripheral artifacts from B-mode images and the corresponding

areas from elastograms. Afterward, images were rescaled,

normalized, despeckled, and smoothed with Gaussian filtering.

The transfer learning method using the inception V3 network

was used with the preprocessed data. Then, classification

methods such as logistic regression, SVM, RF, neural network,

and KNN were applied. Ritschel et al. (35) differentiated

tumors from healthy tissue with SVM.
Tissue types and accuracy
The data collection for the U-net method was conducted on

in-vivo porcine specimen with the objective to categorize it into

three classes, namely nerve, bone, and psoas muscle (12). The

ground truth labels were created by clinical experts. The

network demonstrated high performance and achieved a

83.81%-90.60% dice score, a 100% sensitivity, a 93.13%–

98.61% specificity, and a 96.30%–98.29% accuracy across all

three classes (12). Other approaches based on ultrasound

addressed brain tumor resection (34, 35) as a binary

classification problem of glioblastomas vs. solitary brain

metastases and tumor tissue vs. healthy brain tissue.

Elastography (acc. 79%–95%) based algorithms outperformed

B-mode (acc. 72%–89%) in Cepeda et al. (34). Ritschel et al.

(35) reached a 90% accuracy and a 76% sensitivity.
Outlook
With accurate real-time imaging of soft tissues even with

plastic deformation, ultrasound offers a potential benefit for

anterior approaches to the spine, which are challenging due to

their proximity to vital soft-tissue structures, especially in the

revision situation with scarring and altered anatomy.

Furthermore, by visualizing posterior vertebral structures,

ultrasound could be used as a data basis for non-ionizing

spinal navigation.
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Force, robotic, and impedance sensing

Through physical contact and tactile sensation, humans can

perceive a variety of object properties including size, hardness,

and stiffness. Tactile sensing is especially crucial when areas

are inaccessible for visual perception. With the rapid

development in robotics, research in robotic control and force

sensing has gained interest in the development of robots

having surgeon-like tactile sensations. Besides, impedance

sensing is another promising technology allowing the

evaluation of the physiological state of the tissue, given that

biological structures of the tissue cause impedance differences.

Clinical application
Bone drilling and milling are common surgical procedures

in orthopedic surgeries. In manual bone-cutting procedures,

surgeons use their tactile sensation to ensure a safe and

accurate operation. Therefore, the majority of studies found in

this category (36–43) proposed systems to compensate for the

loss of the surgeon’s tactile sensation in robotic surgery with

force sensors and load cells (Table 5), whereas (44, 45)

developed a custom-made tactile sensing probe using balloon

expansion and impedance spectroscopy device allowing to

differentiate between tissues in brain tumor resection surgery.

Technologies used
Robotic bone drilling and milling-related articles used force

sensors (36, 37, 39, 40), load cells (41, 42), and electrical current

sensors (38). Wang et al. (43) integrated an optical tracking

system in the robotic setup to identify the milling states

including cortical, cortical-transit-cancellous, almost-break-

cortical, and cancellous states. Another method for active

tactile sensing was proposed by Tanaka et al. (44), who used

balloon expansion, which was brought in direct contact with

the tissue and was expanded through the fluid, particularly

biocompatible water. Based on pressure and volume changes,

the stiffness and slimness of the underlying material in

contact were derived. Another proof of concept study was

performed by Wong et al. (45) using a bioimpedance

spectroscopy device. They proposed that the resistance

mapping reconstruction allowed the distinction between fat

and muscle fibers.

Data processing
The approaches reported in Al-Abdullah et al. (36), Deng

et al. (37), and Tian et al. (40) differentiated bone layers using

force sensors based on feed rate and spindle speed

measurements, Hilbert-Huang Transform based on empirical

mode decomposition, and hybrid force feature extraction

respectively. The work of Al-Abdullah et al. (36) applied an

artificial neural network to synthetic bone boxes, whereas the

hybrid force feature extraction method from Tian et al. (40)
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TABLE 5 General description of selected papers related to force, robotic, and impedance sensing.

Citation Surgical
Task

Sensor Preprocessing ML method Material Classes Evaluation

Accini et al.
2016

bone drilling custom-made
mechatronic bone
drilling tool

ramp-shaped position signal N/A bovine
femoral shaft
bone, chicken
bone

breakthrough point Acc. 100%

Al-Abdullah
et al. 2019

robotic bone
milling

6 DOF force
sensor

feed rate/spindle speed
measurement

Three-layer back
propagation
neural network

sawbones cortical bone,
30pcf cancellous
bone, 50pcf
cancellous bone

N/A

Deng et al.
2013

robotic bone
milling

force sensor empirical mode decomposition,
Hilbert transform,
linear weighting combination,
feature extraction (average
amplitude/kurtosis, crest factor,
average remaining)

SVM pig scapula outer cortical bone,
cortical bone,
cancellous bone,
inner cortical bone

Rec. rate
86.7%–100%

Ho et al.
2018

robotic bone
drilling

UR5 robot arm
(feed rate, thrust
force), current
sensor

estimation of removal energy
density

porcine bone breakthrough point N/A

Qu et al.
2021

robotic bone
milling

UR5 robotic arm,
six-axis force
sensor,
ultrasonic bone
scalpel

wavelet transform denoising,
data extracting, quick sorting, data
removal, the mean of residual data
estimation, normalization

BP NN living pig
spine

outer cortical bone
layer, cancellous bone
layer, inner cortical
bone layer

Rec. rate 85%–

100%

Tanaka
et al. 2010

tumor
resection

custom-made
tactile sensing
probe using
balloon expansion

outer pressure of the balloon
estimation

N/A porcine brain white matter,
gray matter

N/A

Tian et al.
2014

robotic bone
drilling

6-DOF force
sensor

hybrid force feature extraction (the
average value of force signal and
force difference), recognition
threshold as state recognition

N/A sheep lumbar
spine

initial state,
outer cortical state,
cancellous state,
transitional state,
inner cortical state

Acc. 100%

Torun et al.
2020

robotic bone
drilling

load cell, DC drill
motor,
6-DOF robot
manipulator

motor current/control signal/
instantaneous power of drill motor/
closed-loop speed error/ reference
speed/ reference feed rate of robot/
thrust force measurement, low pass
filter

KNN, Ensemble
classifier

synthetic bone
model, sheep
femur

4-class, 9-class Acc.98.2%–

99.7%

Vadala et al.
2020

robotic bone
drilling

load cell the position-referenced average
mechanica
limpedance measurement from
thrust force and feed rate

N/A lumbar spine pedicle cortical bone,
pedicle cancellous
bone, vertebral
cancellous bone

N/A

Wang et al.
2015

robotic bone
drilling

force sensor,
optical tracking
sensor

motor current, thrust force,
deflection of a robot arm, rotate
speed

SVM pig scapula the cortical, cortical-
transit-cancellous,
almost-break-
cortical, cancellous
states

Pre. 76.5%–

96.3%,
Re. 75.7%–

96.4%

Wong et al.
2019

brain tumor
resection

impedance
spectroscopy
device

resistance mapping reconstruction N/A rib-eye steak fat, muscle fiber Err. 2%

Massalimova et al. 10.3389/fsurg.2022.952539
was based on thresholding. Data fusion opened the possibility to

extract complementary multi-modal information in Al-

Abdullah et al. (36), Ho et al. (38), Torun et al. (41), Vadala

et al. (42), and Wang et al. (43). For example, Torun et al.

(41) fed a KNN with motor current, control signal,

instantaneous power of the drill motor, closed-loop speed
Frontiers in Surgery 11
error, reference speed, reference feed rate of the robot, and

thrust force measurements to integrate an ensemble classifier.

Tissue classes and accuracy
The evaluation of the method in Torun et al. (41) classified

4 and 9 different states of robotic bone drilling and showed a
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98.2% to 99.7% accuracy. The ground truth labels for drill bit

states were obtained from video recordings and robot drill bit

positions. Additionally, the data extracted from the sensors in

Wang et al. (43) served as an input to SVM with 4 classes,

namely cortical, cortical-transit-cancellous, almost-break-

cortical, and cancellous states. The ground truth labels were

acquired using an optical tracking system, which was used to

track the relative position of the robotic arm with respect to

anatomy. The assessment of the system on pig scapula

demonstrated a 76.5%–96.3% precision and a 75.7%–96.4%

recall. Based on the preliminary experiments in Tanaka et al.

(44), the sensor was able to classify white matter from gray

matter with the sensing time of 2s during ex-vivo porcine

brain experiments.

Outlook
In addition to yet investigated fields of use like breach

detection and tissue differentiation, force and impedance

sensing could help spine surgeons to intraoperatively assess

bone mineral density and quality of screw purchase or the

need for cementation, respectively. This would help avoid

revision surgery for mechanical failure at the implant-bone

interface.
Vibro-acoustic sensing

Auditory perception arises from sensing the vibrations in

the physical world, whereas a vibration signal depicts

information on the oscillations occurring during an

equilibrium event. Therefore, vibration signals can

characterize the differences between textures and detect the

roughness of the surface.

Clinical application
In a surgical setup, information about the relative position

between the instrument and the bone can be extracted from

the cutting vibration. Specifically, the direct contact between

the surgical tools as drilling and milling machines and bone

induces vibration signals that differ with respect to the in-

contact bone layer type. Vibration signals can be measured

with accelerometers (47, 48) to safely navigate a bone milling

procedure (Table 6). Surgeons also use their auditory

perception to discern the distance between surgical tools and

target anatomy. Inspired by this idea are microphone-based

acoustic sensing approaches (49–56) used in bone drilling and

milling.

Technologies used
Acceleration sensing methods performed by Dai et al. (47,

48) tackled tissue classification during robotic bone drilling to

make conclusions about material density. Several studies

proposed to capture acoustic signals during surgical drilling
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and milling using free-field microphones (49, 53, 54),

condenser microphones (50), contact microphones (51), and

sound recorders (55). A more complex solution was proposed

by Dai et al. (56), in which the authors combined a free-field

microphone with an accelerometer.
Data processing
Dai et al. (47) reported the use of wavelet packet transform

feature extraction and SVM classification. In contrast, the more

recent work reported in Dai et al. (48) implemented Hopfield

networks after transforming the accelerometer signal to a

square wave. Free-field microphone-based methods (49, 53,

54) extracted WPT features from porcine tissue samples.

While Sun et al. (53) demonstrated that cortical and

cancellous bone tissue can be classified by estimating the

exponential mean amplitude (Figure 3), Dai et al. (49)

introduced a self-organizing feature map method.

Methods found in Ostler et al. (50) and Seibold et al. (51)

represented the state-of-the-art in machine learning, as they

suggested classification by using deep learning architectures

during bone drilling. Ostler et al. (50) extracted log-

spectrograms acquired during tissue drilling. Seibold et al. (51)

used mel-spectrograms of the audio signals with a ResNet18

network (Figure 4). In Dai et al. (56), after bandpass filtering

of each signal source, correlation and covariance of sound

pressure and acceleration signal were estimated. three-layer

back propagation neural network, PCA, and LDA techniques

were applied to the correlation and covariance measurements.
Tissue classes and accuracy
Dai et al. (47) classified vertebrae, spinal cord, adjacent bony

structure, and muscle with a per class success rate of above 95%.

Dai et al. (48) classified cortical bone, cancellous bone, and a

mixture of cortical and cancellous bones with an 88%–98%

sensitivity and a 94%–100% specificity. The ground truths

were attained purely based on visual inspection of the

samples. Dai et al. (49) classified cortical bone, cancellous

bone, and annulus fibrosis with an 85%–95% success rate. In

Ostler et al. (50), fascia, fat, porcine liver, and muscle were

the output classes of the CNN and its accuracy, recall,

precision, and F1-score were reported to be 88.8%, 89.10%,

89.04%, and 89.07% respectively. Their data were collected

from experiments using 27 porcine specimens. Seibold et al.

(51) reported that custom-made shielded piezo contact

microphones were sufficiently sensitive to detect the

cancellous and cortical bone drilling as well as the

breakthrough events (transition from cortical to cancellous

bone) from in-house cadaveric experiments. Their proposed

deep-learning architecture showed a 93.64% breakthrough

detection sensitivity.
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TABLE 6 General description of selected paper related to vibro-acoustic sensing.

Citation Surgical
task

Sensor Preprocessing ML Method Material Classes Evaluation

Dai et al.
2015

robotic bone
milling

laser displacement
sensor

median filter, WPT Three-layer back
propagation neural
network

porcine
spine

vertebrae, spinal
cord, adjacent bony
structure, muscle

Suc. rate 83%–

100%

Dai et al.
2016

robotic bone
milling

Single-axis
accelerometer

median filter, WPT SVM porcine
spine

vertebrae, spinal
cord, adjacent bony
structure, muscle

Suc. rate 95%–

100%

Dai et al.
2017

robotic bone
milling

free-field microphone,
laser displacement
sensor

bandpass filter based on WPT self-organizing
feature map

porcine
spine

cortical bone,
cancellous bone,
annulus fibrosus,
nothing

Suc. rate 85%–

95%

Dai et al.
2018

robotic bone
milling

free-field microphone,
accelerometer

bandpass filter, correlation and
covariance (sound pressure,
acceleration signal),
normalization

Three-layer back
propagation neural
network, PCA,
LDA

porcine
spine

cancellous, cortical,
muscle, nothing

PPV 85–100%,
NPV 95.2%–

100%,
Spec. 95.2%–

100%,
Sens. 84.2%–

100%

Dai et al.
2021

robotic bone
milling

Single-axis
accelerometer

anti-aliasing filter, ADC
converted, transformation to a
square wave, serial to parallel
converter

Hopfield Network porcine
spine

cortical bone,
cancellous bone,
mixture, nothing

PPV 83.6%–

100%,
NPV 96%–

98.7%,
Spec.94%–

100%,
Sens. 88%–98%

Feng et al.
2014

bone drilling inertial measurement
unit chip (gyroscope
and 3-axial
accelerometer)

variance, root mean square,
mean absolute value,
approximate entropy,
continuous wavelet transforms
+ SVM

N/A pig femur cortical bone,
cancellous bone

N/A

Ostler et al.
2020

robotic bone
drilling

condenser
microphone

log-melspectogram CNN porcine
liver,
muscle,
fatty tissue

fascia, fat, idle, liver,
muscle

Acc. 88.8%,
Re. 89.10%,
Pre. 89.04%,
F1 89.07%

Seibold
et al. 2021

bone drilling self-made shielded
piezo contact
microphone

melspectrogram ResNet18 hip sample breakthrough,
cortical bone

Sens. 84.38%–

93.64%

Shevchik
et al. 2021

bone cutting non-contact acoustic
microphone

WPT Laplacian SVM,
CNN, RDF, BNN

pork spare
rib

skin, fat, muscle,
bone

Acc. 89%–99%

Sun et al.
2014

robotic bone
drilling

free-field microphone FFT/ WPT, Exponential Mean
Amplitude/ Hurst Exponent

N/A porcine
scapulae

outer cortical layer,
inner cortical layer

Rec. rate
65.7%–88.6%

Torun et al.
2018

robotic bone
drilling

sound recorder PSD (Welsch method) N/A bone
piecework

cancellous bone,
cortical bone

Rec. rate 100%

Yu et al.
2015

bone milling free-field microphone WPT N/A porcine
bone

cortical bone,
cancellous bone

N/A

Massalimova et al. 10.3389/fsurg.2022.952539
Outlook
With its high specificity in classification of different bone

tissue, vibro-acoustic sensing might be of particular promise

in predicting pedicle breaches. Pedicle breaches can be

predicted during the pedicle drilling step, when the drill or

bone awl has close contact with cortical bone.
Optical coherence tomography

Optical coherence tomography (OCT) is known as a non-

invasive and radiation-free medical imaging technique capable
Frontiers in Surgery 13
of generating 2D or 3D images of biological tissues based on

backscattered light measurement. It can be performed in situ

and in real-time. Image resolution varies between 1 µm and

15 µm. However, a maximum imaging depth ranges between

2 mm and 3 mm (7).
Clinical application
All the extracted articles of this category (58–61) were

related to tumor resection surgery and used similar OCT

technology that reaches a maximum depth of 3 mm (Table 7).
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Technologies used
Möller et al. (59) used a commercially available spectral-

domain OCT system (Thorlabs Ganymede, New Jersey, USA)

with a 930 nm central wavelength, a 7 µm axial resolution, an

8 µm lateral resolution, a 1.4 refractive index, and the

maximum penetration depth of 1.7 mm in air and 1.2 mm in

brain tissue. Similarly, Lenz et al. (61) used a spectral-domain

high-resolution OCT system (Thorlabs Ganydeme). It

outstands the system in Möller et al. (59) owing to its 6 µm

axial resolution, 1.36 refractive index, and maximal

penetration depth of 2.7 mm in air and 2 mm in brain tissue.

On the other hand, Almog et al. (60) introduced a full-field

swept-source OCT system. Swept-source OCT is a type of

OCT employing tunable laser sources to increase the

sensitivity and speed of the system. Full-field acquisition

capability of the OCT facilitates the 2D frame acquisition

instead of point-by-point scanning. They developed a tailored
FIGURE 3

The exponential mean amplitude based state recognition from
audio signal during robotic bone drilling (53).

FIGURE 4

Data processing pipeline of a breakthrough detection method (51).
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endoscopic tip for the full-field swept-source OCT system to

allow access to deep brain regions.
Data processing
The processing steps in Möller et al. (59) and Lenz et al. (61)

involved median filtering, Canny edge detection, Otsu

thresholding, normalization, and PCA. Möller et al. (59) and

Lenz et al. (61) used SVM to identify if the tissue is healthy

or tumorous. Patient C-scans in Almog et al. (60) were

preprocessed to extract the texture features including the

contrast, correlation, uniformity of energy, and homogeneity

of an individual pixel with respect to neighboring pixels.

Afterward, these estimates were fed to a PCA classification

method.
Tissue classes and accuracy
Lenz et al. (61, 62) used brain tissue to discern meningioma

from healthy tissue and showed a 98% classification accuracy.

Möller et al. (60) implemented the classification algorithm to

identify the vital tumor, healthy tissue, and necrosis in the

lung, colon, and breast tissues. Their accuracy ranged between

95.75–99.10%. The method developed by Almog et al. (61)

recognized different brain regions including cortex,

hippocampus, corpus callosum, striatum, and thalamus. The

classification accuracy reached 75%.
Outlook
As a non-ionizing high-resolution real-time medical

imaging, optical coherence tomography could potentially aid

with the classification of nervous tissue in the surgical

treatment of intradural pathologies such as tumors or tethered

cords.
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TABLE 7 General description of selected papers related to optical coherence tomography.

Citation Surgical
Task

Sensor Preprocessing ML
method

Material Classes Evaluation

Juarez-
Chambi et al.
2019

brain tumor
resection

OCT system cropping, Canny edge detection, warping,
peak detection, 2D entropy filtering

LR brain tissue non-cancerous tissue,
glioma- infiltrated
tissue

Sens. 90%,
Spec. 82%

Möller et al.
2021

tumor
resection

OCT system local binary patterns/run-length analysis/
Haralick’s texture analysis/Laws texture
energy measures estimation, median
filtering, Canny edge detection, Otsu
thresholding, cropping, normalization, PCA

SVM lung, colon,
breast tissues

vital tumor, healthy
tissue, necrosis

Acc. 95.75%–

99.10%

Lenz et al.
2018

brain tumor
resection

OCT system median filter, Canny edge detection, Otsu
thresholding, cropping, normalization, PCA

SVM brain tissue healthy tissue,
meningioma

Acc. 98%

Almog et al.
2020

stereotactic
neurosurgery

Full-field
swept-source
OCT system

Maximum intensity projection, max
pooling,Gray Level Co-Occurrence Matrix,
Contrast/Correlation/Energy/homogeneity
estimation

PCA rat brain
tissue

cortex, hippocampus,
corpus callosum,
striatum, thalamus

Acc. 75%

TABLE 8 General description of selected paper related to microscopic and endoscopic imaging.

Citation Surgical Task Sensor Preprocessing ML
Method

Material Classes Evaluation

Cui et al.
2019

spinal endoscopic
surgery

surgical
endoscope

N/A YOLOv3 spine
tissue

nerve, dura mater Sens. 94.27%,
Spec. 97.55%, Acc.
95.12%

Cui et al.
2021

percutaneous
transforaminal
endoscopic
discectomy

surgical
endoscope

N/A YOLO v3 spine
tissue

nerve, dura mater Sens. 90.90%,
Spec. 93.68%,
Acc.92.29%, IoU
51.42%

Haouchine
et al. 2015

craniotomy surgical
microscope

N/A U-Net brain
tissue

vessel, parenchyma, background IoU 0.647–0.744,
Dice 0.786–0.852

Bai et al.
2021

microvascular
decompression

surgical
microscope

random horizontal flip,
random scale cropping,
random Gaussian blur,
normalization

DeepLabv3+ brain
tissue

trigeminal nerve, facial nerve,
glossopharyngeal nerve, vagus
nerve, anterior inferior cerebellar
artery, posterior inferior
cerebellar artery, petrosal vein

IoU 75.73%

Nercessian
et al. 2021

craniotomy surgical
microscope

N/A VGG-19 +
U-Net

brain
tissue

vessel, parenchyma, background IoU 0.709, dice
0.822
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Endoscopic and microscopic imaging

Microscopic and endoscopic approaches are common MIS

methods. Microscopic surgery is performed with high-

powered microscopes that allow magnifying the field of view,

whereas endoscopic surgery allows visualizing the hidden

interior structures via an endoscopic tube with a small camera

that is inserted into the incision area.

Clinical application
Studies using surgical endoscopes focused on spinal

endoscopic surgeries (62) and percutaneous transforaminal

endoscopic discectomies (63), where the identification of

neural structures is critical. A surgical microscope was used in

Haouchine et al. (64), Bai et al. (65), and Nercessian et al.

(66) during craniotomy and microvascular decompression

(Table 8).
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Technologies used
A surgical endoscope was used in the studies by Cui et al.

(62, 63), whereas Haouchine et al. (64), Bai et al. (65), and

Nercessian et al. (66) relied on surgical microscopes. No

detailed information about types and brands of the devices

was given.

Data processing
Studies reported in Cui et al. (62, 63) used YOLO-v3 as the

basic tissue classification algorithm, whereas Haouchine et al.

(64) and Nercessian et al. (66) applied CNN architectures for

semantic segmentation such as U-Net and VGG-19. A similar

deep learning-based approach was used in Bai et al. (65), but

the architecture was based on the semantic segmentation

method known as DeepLabv3 + and was extended with the

feature distillation block and the atrous spatial pyramid

pooling modules.
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Tissue classes and accuracy
Surgical endoscope-based studies (62, 63) identified nerve

and dura, while surgical microscope-based studies (64, 66)

classified vessel, parenchyma, and background to distinguish

trigeminal nerve. Bai et al. (65) classified the facial nerve,

glossopharyngeal nerve, vagus nerve, anterior inferior

cerebellar artery, posterior inferior cerebellar artery, petrosal

vein vessel, parenchyma, and background from microvascular

decompression recordings. All the evaluation metrics reported

in the endoscopic studies (62, 63) including sensitivity,

accuracy, and specificity were reported to be on the order of

90%. The microscopic study by Bai et al. (65) reached a 75.73%.

Outlook
Spinal endoscopy and microsurgery already are indispensable

pillars of spine surgery with continuous development. Currently,

in addition to decompressions, lumbar fusion surgeries with

interbody cages are also performed endoscopically. Here, a

combination with other sensing technologies is of particular

interest as haptic feedback is reduced.
X-Ray imaging

X-ray imaging uses electromagnetic energy beams to

produce images of various media based on the interaction of

x-rays with matter. Two main phenomena happen during

x-ray – matter interaction, namely absorption and scattering

effects. Compton scatter, coherent scatter and photoelectric

effects are the major effects that are considered in medical

applications. The detection of x-rays can be accomplished

either indirectly or directly. The (older) indirect x-ray

detection method uses scintillators first to convert received

radiation to light and then photodetectors to detect the

generated light. Whereas the direct method is based on

semiconductor detectors that convert x-ray photons directly

into electrical signals. Although x-ray imaging is a widely

used imaging technology in medicine, it is invasive due to the

radiation exposure to the patient.

Clinical application
X-ray imaging is widely used in diagnosing tumors or bone

fractures. Extracted papers (67, 68) are used in bone tumor

diagnosis during tumor resection surgery (Table 9).
TABLE 9 General description of selected papers related to X-ray.

Citation Surgical
task

Sensor Preprocessing ML Meth

Furuo et al.
2021

bone tumor
resection

X-ray N/A VGG16,
ResNet152

Ho et al.
2019

bone tumor
resection

X-ray bone segmentation
(bidirectional W-network)

VGG16,
ResNet50,
InceptionV3
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Technologies used
No technical details were provided.

Data processing
Furuo et al. (67) used deep learning architectures (VGG16 and

Resnet152) directly on x-ray images. Ho et al. (46) proposed a

more complex algorithm, which was an integration of a

regenerative semi-supervised bidirectional W-network for

segmenting femur, tibia, and fibula of knee region and

classification step for a malignant tumor, benign tumor, and

normal tissue with VGG16, ResNet50, and Inception-v3 networks.

Tissue classes and accuracy
The studies of Furuo et al. (68) and Ho et al. (46) acquired

the x-ray images of the human knee region. Three classes were

identified in Ho et al. (46) namely normal tissue, benign tumor,

and malignant tumor. Furuo et al. (68) showed that VGG16

provided higher accuracy compared to Resnet 152 in terms of

f1-score, specifically 0.790 vs. 0.784. Their accuracy was

around 82%, while the method in Ho et al. (46) resulted in

an accuracy range of 77%–87%.

Outlook
X-ray imaging probably has limited applicability for tissue

classification in spinal surgery, as superimpositions particularly

complicate the delineation of individual tissues in the spine.

Research efforts are aimed more at 3-dimensional registration

of the anatomy as a basis for low-radiation navigation.
Discussion

Clinical application

The clinical applications of reviewed methods can be

categorized into two main groups. The first group concerns

intraoperative tissue classification methods for brain tumor

resection in neurosurgery. This group entails hyperspectral

imaging (e.g., 9), spectroscopic sensing (e.g., 20), ultrasound

imaging (e.g., 34), impedance sensing (e.g., 45), and OCT

imaging (e.g., 61). Brain tumor resection is the most common

type of treatment. It is critical to identify cancerous cells

correctly, as resecting too much brain tissue can lead to

neurological impairment of the patient. The current tumor
od Material Classes Evaluation

knee bone benign tumor,
malignant tumor

Loss 1.07–1.31, Acc. 0.823–0.824,
F1 0.784–0.790

knee bone normal tissue, benign
tumor, malignant
tumor

Acc. 77.84% –86.93%,Pre.
77.15%–85.24%,Re. 77.94%–

85.56%, F1 77.69%–85.29%
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assessment method in clinics involves pre-operative and post-

operative imaging to identify the location of the tumor and

evaluate the success of resection. However, pre-operative data

can become outdated due to tissue manipulation or through

dynamic changes in intracranial content which makes tissue

detection essential.

The second group addresses intraoperative tissue

classification in orthopedic surgery. Some of the surgical

instruments used in orthopedic surgeries (e.g., scalpel, saw,

burr, and drill) create forces, vibrations or even damage to the

manipulated anatomical structure and surrounding tissues.

Thus, real-time feedback to classify the tissue during

orthopedic surgery is addressed using spectroscopic sensing

(e.g., 31), force and robotic sensing (e.g., 41), vibro-acoustic

sensing (e.g., 48), and microscopic and endoscopic imaging

(e.g., 62). These technologies could be of particular value

during orthopedic implant insertion as imminent fractures or

bone breaches could be avoided, for instance when inserting a

prosthetic stem in hip surgery or pre-drilling for pedicle

screws in spine surgery. Especially for spine cases, such

technical support is of notable value, where a reduced bone

mineral density is regularly found and the transition between

bone and surrounding soft tissues (e.g., spinal nerves) is critical.
Technologies used

Among brain tumor detection-related studies, the

technologies that were used to detect brain tumors (9)

intraoperatively are mainly based on the optical properties of

the tissue. These include technologies such as hyperspectral

imaging (e.g., 9), Raman spectroscopy (e.g., 22), and optical

coherence tomography [e.g., (64)]. Unlike other studies

concerning the application of the VNIR hyperspectral push-

broom camera (e.g., 9), Urbanos et al. (16) proposed the

snapshot camera, which could be used in a surgical

environment due to its small footprint. However, it should be

noted that the major challenge till today in developing robust

and real-time intraoperative tissue classification methods

based on hyperspectral cameras is the large size of the

hyperspectral images. This in turn leads to a longer data

processing time and requires higher computational power.

Additionally, ultrasound imaging was used to detect brain

tumor (e.g., 34). It should be noted that the brain surface to

be scanned with an ultrasound probe should be filled with a

fluid – a saline solution. Besides, air should not be trapped in

the resection cavity as it affects the visualization quality.

Furthermore, surgical microscope-based tissue classification

during craniotomy was proposed in Haouchine et al. (64) and

Nercessian et al. (66). They particularly targeted the

segmentation of cortical vessels located at the brain surface by

claiming that it can serve as an additional information

resource to resolve the issue of brain shift caused by craniotomy.
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The majority of the work related to orthopedic surgery

based their tissue classification methods on the biomechanical

properties of the bone during bone cutting, milling, and

drilling processes. Such work formed on the accelerometer

(e.g., 47), microphone (e.g., 53), force sensor (e.g., 37), load

cell (e.g., 42) and laser technologies (e.g., 10). Experiments

were mainly done with robotic arms (e.g., 38, 39) since the

major area of application is the tissue classification during

robotic drilling or milling to compensate for the tactile or

auditory perception of the human. In addition, ultrasound

was added to the orthopedic sensing category, as it can be

used to differentiate bone from soft tissues.

Overall, based on current analysis, integration of sensors

[e.g., a fiber laser and non-contact microphones (49), a free-

field microphone and an accelerometer (56), VNIR and NIR

cameras (14), etc.] can be noted as the recent trend in

intraoperative tissue classification. Potentially, the investigated

imaging modalities like hyperspectral imaging or optical

coherence tomography could be of clinical use due to their

real-time performance and ease of integration into existing

visual systems such as surgical microscopes.
Data processing

Recent work on tissue classification using hyperspectral

imaging used CNNs after image calibration, noise filtering,

band reduction, and normalization steps (e.g., 17, 18).

Similarly, data processing before applying a CNN (e.g.,

U-Net) from Raman spectrometer involved noise filtering,

band reduction, and normalization steps (e.g., 32). On the

other hand, within the force, tactile, and robotic control-based

sensing group, the majority of algorithms were developed with

the aid of classical machine learning approaches such as SVM

(e.g., 37) and KNN (e.g., 41). Similarly, the majority of studies

concerning vibro-acoustic sensing classified the tissue type

using a three-layer back propagation neural network (e.g., 10)

and SVM (e.g., 47). Except for the microphone sensing

methods that applied additionally CNNs to the spectrogram

(e.g., 50). Imaging information-based studies including x-ray

and surgical endoscopes used similarly computer vision

algorithms such as YOLO v3 (e.g., 63) and VGG (e.g., 68).

Overall, the application of various deep learning approaches

facilitates the possibility of interpreting the data in a more robust

and precise fashion compared with conventional signal

processing methods. However, the development of a deep-

learning approach requires access to large amounts of annotated

data. The reviewed methods providing tissue classification

algorithms based on imaging methods (microscope e.g., 65, x-ray

e.g., 68, ultrasound e.g., 12) created the required training datasets

by manually labeling done by medical specialists. This manual

labeling requires meticulous attention and can result in human

error. Whereas, Raman spectroscopy-related studies (e.g., 24)
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were labeled with histopathological evaluation, which is generally

considered to be more accurate. The tactile sensing methods (43)

in bone tissue type identification were also accompanied by

computer navigation systems, enabling labelling of the signals

based on the relative position between milling tool and anatomy.

Since optical tracking systems are known as highly accurate in

spatial localization, they enable accurate labeling of the bone

tissue type. On the other hand, hyperspectral imaging data of the

reviewed methods was labeled with semi-automatic software

(e.g., 9). In addition to accurate labeling, the size and

heterogeneity of the dataset have to be sufficiently large to

achieve a high performance in the classification.
Tissue classes and accuracy

Hyperspectral imaging-based methods classify healthy

tissue, tumor, blood vessels, and dura mater in brain tumor

resection surgery (e.g., 9). They showed accuracy in the order

of 84%–85% with a VNIR hyperspectral push-broom camera

(17). Although the deep learning integration with the

snapshot camera reached an accuracy of only 49%–60% in

Urbanos et al. (16), it is still a promising technology for

intraoperative tissue classification in MIS owing to its small

size. On the other hand, ultrasound and optical coherence

tomography-based tissue classification methods in brain

resection surgery targeted the identification of tumors (e.g.,

glioblastoma, solitary brain metastases) and healthy tissue.

Their performance in binary classification tasks was found to

be promising. For example, the OCT-based classifier achieved

98% accuracy in Lenz et al. (61) and the ultrasound system-

based approach reached 90% accuracy in Ritschel et al. (35).

Both methods were integrated with traditional machine

learning methods such as SVM among extracted papers. Their

performance may be further improved by more complex

networks in the future such as deep learning networks and

perhaps increase the number of classes.

The majority of the work related to orthopedic surgery is

aimed at the classification of different bone tissues. They mainly

focused on discriminating cortical bone, cancellous bone and the

transition state from cortical to cancellous. However, the data

fusion approach presented in Torun et al. (41) identified more

states (4 and 9) with 98.2%–99.7% accuracy. This provides

support and evidence for the potential of data fusion in tissue

classification, which was also verified in the vibro-acoustic

sensing group, where the integration of accelerometer with free-

field microphone achieved 84.2%–100% accuracy
Conclusion

Both orthopedic and neurological studies in this current

review paper showed that a combination of sensors from
Frontiers in Surgery 18
different modalities (e.g., vibro-acoustic and force sensing) can

provide much-needed redundancy and complement the

overall information on tissue types, which in turn can help in

making more comprehensive decisions. Thus, a sensor fusion

deep-learning enabled approach is one of the most promising

research directions that could substantially enhance existing

technologies for intraoperative tissue classification.
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