
antioxidants

Article

L-Arginine Alleviates LPS-Induced Oxidative Stress and
Apoptosis via Activating SIRT1-AKT-Nrf2 and SIRT1-FOXO3a
Signaling Pathways in C2C12 Myotube Cells

Ye Zhao 1,†, Qin Jiang 1,†, Xuefei Zhang 1,†, Xiaoxiao Zhu 1, Xia Dong 1, Linyuan Shen 1, Shunhua Zhang 1,
Lili Niu 1, Lei Chen 1, Ming Zhang 1, Jun Jiang 1, Daiwen Chen 2,* and Li Zhu 1,*

����������
�������

Citation: Zhao, Y.; Jiang, Q.; Zhang,

X.; Zhu, X.; Dong, X.; Shen, L.; Zhang,

S.; Niu, L.; Chen, L.; Zhang, M.; et al.

L-Arginine Alleviates LPS-Induced

Oxidative Stress and Apoptosis via

Activating SIRT1-AKT-Nrf2 and

SIRT1-FOXO3a Signaling Pathways

in C2C12 Myotube Cells. Antioxidants

2021, 10, 1957. https://doi.org/

10.3390/antiox10121957

Academic Editors: Edward E.

Schmidt, Hozumi Motohashi and

Anna Kipp

Received: 23 November 2021

Accepted: 6 December 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
zhye@sicau.edu.cn (Y.Z.); 13718@sicau.edu.cn (Q.J.); 14012@sicau.edu.cn (X.Z.);
2020202059@stu.sicau.edu.cn (X.Z.); 2020202058@stu.sicau.edu.cn (X.D.); shenlinyuan@sicau.edu.cn (L.S.);
14081@sicau.edu.cn (S.Z.); niulili@sicau.edu.cn (L.N.); chenlei815918@sicau.edu.cn (L.C.);
zhangming@sicau.edu.cn (M.Z.); jjun@sicau.edu.cn (J.J.)

2 Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an 625014, China
* Correspondence: dwchen@sicau.edu.cn (D.C.); zhuli@sicau.edu.cn (L.Z.)
† These authors contributed equally to this work.

Abstract: L-arginine (L-Arg) has been reported to possess a wide range of functions, including
anti-inflammatory, anti-oxidative, and anti-apoptosis. However, the role of L-Arg in LPS-induced
muscle injury and its potential protective mechanism has not been well elucidated. This study
aimed to investigate the effects of L-Arg on the LPS-induced oxidative stress and apoptosis in
differentiated C2C12 myotube cells. Our results demonstrated that myotube cells treated with
0.2 mg/mL LPS significantly decreased cell viability. L-Arg treatment significantly suppressed
LPS induced ROS accumulation and cell apoptosis. Furthermore, L-Arg improved antioxidant-
related enzymes’ activities; increased antioxidant ability via Akt-Nrf2 signaling pathway; maintained
the mitochondrial membrane potential (MMP); and enhanced FOXO3a expression, leading to a
decrease in the mitochondrial-associated apoptotic proteins. In addition, L-Arg exposure dramatically
increased the mRNA and protein expressions of SIRT1. The cytoprotective effect of L-Arg was
restricted by the SIRT1 inhibitor EX527, which led to an increase in ROS level, apoptosis rate, and
decreased cell MMP. The results also demonstrated that EX527 treatment significantly eliminated the
effect of L-Arg on LPS-induced oxidative damage and mitochondria-mediated cell apoptosis. Our
findings revealed that L-Arg could be used as a potential nutraceutical in reducing muscle injury via
regulating SIRT1-Akt-Nrf2 and SIRT1-FOXO3a-mitochondria apoptosis signaling pathways.
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1. Introduction

As the most abundant tissue in vertebrates, muscle injury seriously impacts the health
of the body [1]. Muscle injury has been described as one of the most important public
health problems due to its elevated prevalence and decreased health-related quality of life.
At the same time, as the main nutritional organ, muscle also has a variety of functions,
such as body maintenance, metabolism, and disease resistance, in response to the invasion
of environmental pathogens [2]. Pathogenic bacteria infections have been known to cause
muscle injury, which can trigger septic shock and result in a reduction in muscle mass [3,4].
As the main pathogenic factor of Gram-negative bacteria, lipopolysaccharide (LPS) could
trigger innate immunity and cause damage [5]. Emerging studies have revealed that the
cytotoxicity of LPS can induce oxidative damage and cell apoptosis in mammals [6,7].
Therefore, identification of the molecular mechanisms mediating LPS and exploration of
the effective and safe strategies that attenuated LPS-induced oxidative stress and apoptosis
might be beneficial for the prevention and therapy of muscle injury.
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Oxidative stress is the imbalance between the reactive oxygen species (ROS) and the
antioxidant defense system [8]. Two types of antioxidant defense systems, enzymatic and
non-enzymatic, have been evolved in vertebrates to scavenge surplus ROS and maintain
redox homeostasis [9]. Numerous studies have confirmed that the protein kinase B (Akt)-
nuclear factor erythroid 2-related factor (Nrf2) signaling pathway plays an important role
in regulating the expression of antioxidant genes and eventually alleviating oxidative
stress [10,11]. In response to the multiple stimuli, phosphorylated Akt activates the ex-
pression of Nrf2 in the nucleus and thus improves the levels of downstream antioxidant
genes [12]. In addition, as mitochondria is the mainly production site of intracellular
ROS [8], which is highly susceptible to oxidative stress. Excessive ROS is also considered
to be the key factor responsible for changing mitochondrial membrane permeability, re-
sulting in mitochondrial-related apoptosis [13]. As a family of evolutionally conserved
forkhead transcription factors, forkhead box protein 3 (FOXO3a) protein controls cell cycle,
differentiation, oxidative stress, as well as apoptosis [14,15]. A previous study reported
that phosphorylated FOXO3a alleviated senescence-induced muscle cell apoptosis by re-
ducing mitochondrial cyt c release and cleaved Caspase-3 protein levels, implying that
FOXO3a also plays an important role in the regulation of mitochondrial-related apoptosis
pathway [16]. Nonetheless, the role of Akt-Nrf2 and FOXO3a pathways in regulating
LPS-induced myotube cells oxidative stress and apoptosis are still unclear and insuffi-
ciently understood.

Sirtuin1 (SIRT1) is a primary NAD+ dependent deacetylase, mainly distributed in the
nucleus and implicated in a variety of cellular processes, including cell survival, develop-
ment, oxidative stress, aging, and apoptosis [17]. An emerging study has shown that SIRT1
activates the Akt-Nrf2 signaling pathway to alleviate AlCl3-induced neurotoxicity [9].
Ma et al. found that the knockout of SIRT1 in mouse oocytes results in the decreased
expression of Nrf2 and aggravates the oxidative stress caused by aging [18]. Additionally,
SIRT1 also plays a pivotal role in alleviating apoptosis. A recent study indicated that
SIRT1 upregulation alleviated manganese-induced neuronal apoptosis through activation
of FOXO3a [19]. Duan et al. found that Aralia Taibaitalia could facilitate the deacetylation
and phosphorylation of FOXO3a by activating the expression of SIRT1, thus alleviating the
apoptosis of mouse hippocampal neurons (HT22) cells [20]. Therefore, SIRT1 induction is
a feasible approach for activating Akt-Nrf2 and FOXO3a pathways with certain specific
stimulation. However, the role that SIRT1 plays in the regulation of the toxicological effect
of a given LPS to myotube cells is so far not clearly understood.

As a conditionally essential amino acid, L-arginine (L-Arg) exerts an essential role in
a wide range of physiological and pathological functions, including growth regulation,
inflammation response, oxidative stress, and apoptosis [21–24]. Accumulated evidence
has focused on the role of L-Arg in alleviating damage in intestinal epithelial cells [23,25],
Leydig cells [26], and endometrial cells [27]. Studies in mice and vascular endothelial cell
have also shown that L-Arg promotes SIRT1 expression [28,29]. Nevertheless, whether or
not L-Arg exerts the protective effects against LPS-induced oxidative stress and apoptosis
via SIRT1 remain unclear. Therefore, the objective of the present study was to investigate
the potential protective mechanisms of L-Arg against LPS-induced oxidative stress and
mitochondria-related apoptosis in myotube cells. The current study will provide new
insights into the comprehensive utilization of L-Arg in the prevention and management of
muscle disorders.

2. Materials and Methods
2.1. Cell Culture and Treatment

The C2C12 cell line (ATCC, Manassas, VA, USA) from the 7 to 10 passages were
grown in DMEM high-glucose medium supplemented with 10% fetal bovine serum and 1%
antibiotics (Gibco, Waltham, MA, USA), under a humidified atmosphere of 5% CO2 at 37 ◦C.
Medium was changed every other day. At confluence about 70–80%, the medium was
changed to the same amount of differentiation medium, consisting of DMEM containing



Antioxidants 2021, 10, 1957 3 of 18

2% horse serum to induce differentiation. The differentiation medium was changed to
another day for 5 days. Then the cells were starved for 6 h in the L-Arg-free differentiation
medium. After that, the medium was carefully removed, and cells were washed twice with
cold PBS and cultured in fresh L-Arg-free differentiation medium.

2.2. Cell Viability

A total of 100 µL C2C12 myoblast suspension (5 × 104 cells/mL) were seeded to the
wells of 96-well plates. After the cell density reached 70–80%, the culture medium was
removed and the cells were washed twice with cold PBS. Then the cells were incubated
with differentiation medium for 5 days to induce differentiation. On day 6, the medium
was changed to L-Arg- and serum-free medium for 6 h. Cells were treated with a series
of concentrations of LPS (0, 0.05, 0.1, 0.2, 0.4, 0.8 mg/mL) and/or L-Arg (0, 0.5, 2.5, 5, 15,
30 mM) for another 24 h. The cell viability was be measured according to the protocol of
the CCK-8 commercial kit. The experimental cell survival was calculated by the percentage
of control.

2.3. Intracellular ROS

The C2C12 myoblasts were cultured in 96-well plates. After the 5-day differentiation,
myotube cells were treated with the LPS and/or L-Arg for 24 h. After removing the medium
and washing twice with cold PBS, cells were cultured with serum-free DMEM medium
with the concentration of 7 µM 6-carboxy-2′,7′-dichlorofluorescin diacetate (Molecular
Probes-Invitrogen Co., Carlsbad, CA, USA) at 37 ◦C under dark condition for 20 min. The
fluorescence (excitation/emission at 485 nm/525 nm), reflecting the ROS concentration,
was measured using a fluorescence microscope (IX73, Olympus Corporation, Tokyo, Japan).
The ROS level was represented as the percentage of fluorescence intensity relative to
the control.

2.4. Measurement of Antioxidant-Related Enzyme Activities

The total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), catalase
(CAT), glutathione peroxidase (GSH-px) activities, and malondialdehyde (MDA) content were
analyzed in the C2C12 myotube cells using corresponding commercial kits (T-AOC, A015-
2-1; T-SOD, A001-1; CAT, A007-1-1; GSH-px, A005-1; MDA, A003-4-1; Nanjing Jiancheng
Bioengineering institute, Jiangsu, China) according to the manufacturer’s instruction.

2.5. JC-1 Staining

The mitochondrial membrane potential was determined in the C2C12 myotube cells
with JC-1 kits (Beyotime, Shanghai, China). After PBS washing, the cells were stained with
JC-1 for 20 min at 37 ◦C. The fluorescences were detected using a fluorescence microscope.
Then, the regions were randomly selected from each group and the relative fluorescence
intensity of cells were measured by the software Image J.

2.6. Determination of Cell Apoptosis

The C2C12 cells were seeded in 6-well plates and cultured for 5 days in differentiation
medium. Cell apoptosis was assessed by Annexin V-FITC and propidium iodide (PI)
double staining kit (Biolegend, San Diego, CA, USA). Briefly, C2C12 myotubes from
different treatments were harvested and washed two times with cold PBS. Afterwards, cells
were resuspended followed by the addition of binding buffer (100 µL), and stained with
Annexin V (2 µL) and PI (1 µL) for 20 min on ice. Finally, cell apoptosis was determined by
flow cytometry (BD Biosciences, San Jose, CA, USA).

2.7. Quantitative Real-Time PCR (qRT-PCR)

The total RNA in C2C12 myotubes was isolated using RNAiso reagent (Invitrogen,
Carlsbad, CA, USA). Subsequently, the 2 µg of total RNA was used to transcribe into cDNA
with a reverse transcription kit (Takara, Dalian, China). The integrity and purity of the
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obtained RNA were assessed using denaturing gel electrophoresis and a Nano Drop® 2000
spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Primers for qRT-PCR in this
experiment are displayed in Table 1. The qRT-PCR was performed in the CFX96 RT-PCR
Detection System (Bio-Rad, Hercules, CA, USA). The β-actin was regarded as an internal
control. Relative mRNA abundances were computed by the 2−∆∆CT method.

Table 1. The primer sequences used for RT-qPCR.

Gene Name Sequence (5′-3′) TM (◦C)

SIRT1 QF: AGGGAACCTTTGCCTCATCTA 61.4
QR: ATTGTTGTTTGTTGCTTGGTCTAC

Akt QF: TACTCATTCCAGACCCACGACC 60.4
QR: GCAAGTAGTCCAGGGCAGACAC

FOXO3a QF: TGGATGCGTGGACCGACTT 61.4
QR: CCAGCCCATCATTCAGATTCAT

Nrf2 QF: TTTCAACCCGAAGCACGC 56.9
QR: TTTCACATTGGGATTCACGC

Keap1 QF: TGCCCCTGTGGTCAAAGTG 59.4
QR: GGTTCGGTTACCGTCCTGC

MnSOD QF: ACAATCTCAACGCCACCGA 60.3
QR: CCAGCCTGAACCTTGGACTC

CAT QF: CACTGACGAGATGGCACACT 59.4
QR: TGTGGAGAATCGAACGGCAA

GSH-px QF: CAGGAGAATGGCAAGAATGAAG 56.9
QR: GGAAGGTAAAGAGCGGGTGA

Bcl-2 QF: AACCCAATGCCCGCTGT 60.4
QR: CCTGAAGAGTTCCTCCACCAC

BAX QF: TGCTACAGGGTTTCATCCAGG 58.4
QR: TGCTGTCCAGTTCATCTCCAAT

Caspase-9 QF: CCTTCCCAGGTTTTGTCTCC 60.4
QR: GCTTGTAAGTCCCTTTCGCAG

Caspase-3 QF: TGACTGGAAAGCCGAAACTCT 60.4
QR: GGGACTGGATGAACCACGAC

β-actin QF: GATGGTGGGAATGGGTCAGA 59.0
QR: TCAATGGGGTACTTCAGGGTC

2.8. Nuclear and Cytoplasmic Extraction

The cytoplasmic and nuclear protein fractions were extracted from C2C12 myotubes
using a nuclear and cytoplasmic protein extraction kit (Beyotime, Shanghai, China) ac-
cording to the manufacturer’s instructions. In brief, the lysates were ultracentrifuged
at 12,000× g for 10 min at 4 ◦C, and the supernatants were collected as the cytoplasmic
fraction. The pelleted nuclei were resuspended in a buffer containing 1 mM PMSF. After
30 min at 4 ◦C, lysates were centrifuged, and supernatants containing the nuclear proteins
were stored at−80 ◦C. The concentration of protein was measured by BCA assay (Beyotime,
Shanghai, China).

2.9. Western Blotting

Protein from C2C12 myotubes was isolated using RIPA lysis with 1 mM phenyl-
methanesulfonyl fluoride (Amresco, OH, Solon, USA) and proteinase inhibitors (Beyotime,
Shanghai, China) on ice. The protein contents were quantified by BCA assay (Beyotime,
Shanghai, China). Afterwards, the supernatant (20 µg of total protein) was loaded onto
the polyacrylamide gel and run 125 V for 2 h and transferred to PVDF membrane. The
membranes were blocked and then exposed to primary antibodies (SIRT1, Cell Signaling,
1:1000, 9475T; Akt, Cell Signaling, 1:1000, 4691S; phospho-Akt (p-Akt), Cell Signaling,
1:2000, 4060S; FOXO3a, ZenBio, 1:1000, 380728; phospho-FOXO3a (p-FOXO3a), Abcam,
1:1000, ab154786; Nrf2, ZenBio, 1:1000, 340675; Keap1, ZenBio, 1:1000, R26935; Bcl-2, Santa
Cruz, 1:500, sc7382; BAX, Santa Cruz, 1:500, sc7480; Caspase-9, Cell Signaling, 1:1000, 9502T;
Caspase-3, Cell Signaling, 1:1000, 14220T; LaminB1, ZenBio, 1:1000, 384825; β-actin, Cell
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Signaling, 1:1000, D6A8) overnight at 4 ◦C. Next, the membranes were washed with TBST
four times and then subjected to the corresponding secondary antibody (HRP-conjugated)
at 25 ◦C for 2 h. Then, bands were visualized by ECL chemiluminescence kit. The β-actin
or LaminB1 was used as a sample loading control. The protein densitometry was analyzed
by the Gel-Pro Analyzer.

2.10. Statistical Analysis

All data are presented as mean ± SEM. The statistical analysis was performed by
SPSS 20.0 (SPSS Inc., Chicago, IL, USA). Data were compared between different groups
by two-tailed Student’s t-test and/or one-way analysis of variance (ANOVA) followed
by Tukey’s post hoc tests. p-value < 0.05 and <0.01 were considered to determine the
significance level.

3. Results
3.1. L-Arg Attenuated LPS-Mediated Cytotoxicity in Myotube Cells

Incubation with cells for 24 h revealed that LPS induced cell death in a concentration-
dependent manner, with 0.1 mg/mL and higher concentrations causing significant inhibi-
tion (p < 0.05) (Figure 1A). The 0.2 mg/mL LPS was chosen for subsequent experiments. As
presented in Figure 1B, the myotube cells were treated with a series of concentrations (0.5,
1, 2.5, 5, 15, and 30 mM) L-Arg for 24 h. The results showed that compared with L-Arg-free
group, treated with 0.5–5 mM of L-Arg increased the cell viability, while exposure to 15 and
30 mM L-Arg for 24 h decreased the cell viability. Then the myotube cells were pretreated
with 0.5, 2.5, and 5 mM L-Arg for 1 h and 0.2 mg/mL LPS for an additional 24 h. These
concentrations of 2.5 and 5 mM L-Arg significantly attenuated the decreased cell vitality
caused by LPS (Figure 1C).

Figure 1. L-Arg ameliorated LPS-induced cytotoxicity in mice C2C12 myotube cells. Cell viability
was detected using a CCK-8 assay. (A) C2C12 myotube cells were cultured with 0, 0.05, 0.1, 0.2, 0.4,
0.8 mg/mL LPS for 24 h. (B) The C2C12 myotube cells were treated with different concentrations of
L-Arg (0, 0.5, 1, 2.5, 5, 15, and 30 mM) for 24 h. (C) C2C12 myotube cells were incubated with 0, 0.5,
2.5, or 5 mM L-Arg and 0.2 mg/mL LPS for 24 h. Data are presented as mean ± SEM of at least six
independent experiments, different letter (a, b, c, d, and e) in A and B denotes significant difference
(p < 0.05), ** p < 0.01, significantly different from control cells (L-Arg (-) and LPS (-)); ## p < 0.01,
significantly differently from cells treated with LPS only.

3.2. L-Arg Mitigated LPS-Induced Oxidative Stress in Myotube Cells

To determine whether L-Arg could exert a protective effect against LPS-induced
oxidative stress, the ROS level was detected by fluorescence staining. As present in
Figure 2A,B, L-Arg addition significantly inhibited the increased ROS production induced
by LPS treatment in myotube cells. Furthermore, the activities of T-AOC, T-SOD, CAT, GSH-
px, and the content of MDA were measured. As expectedly, L-Arg significantly increased
T-AOC, T-SOD, CAT, and GSH-px activities in LPS-induced myotube cells (Figure 2C–E).
In addition, L-Arg blocked the LPS-induced increase in MDA content in cells (Figure 2F).
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Figure 2. L-Arg reduced LPS-induced oxidative stress in mice C2C12 myotube cells. The myotube cells were treated
with and without 0.2 mg/mL LPS in the absence or presence of 0.5, 2.5, and 5 mM L-Arg for 24 h. (A) Representative
microphotographs showing intracellular ROS content. (B) Relative fluorescence density of DCFH-DA. (C–F) T-SOD, CAT,
and GSH-px activities and MDA content in myotube cells. The data represent the mean ± SEM of at least three independent
experiments, ** p < 0.01, significantly different from control cells (L-Arg (-) and LPS (-)); # p < 0.05, ## p < 0.01, significantly
differently from cells treated with LPS only; ns, no significantly; scale bar: 50 µm.

To further confirm the mechanism by which L-Arg acted against LPS-induced oxida-
tive stress, the expression of antioxidant-related genes and proteins were measured using
RT-PCR and Western blot analysis. As shown in Figure 3A,B, L-Arg treatment significantly
inhibited the Keap1 mRNA level and increased the mRNA levels of MnSOD, CAT, GSH-px,
Nrf2, and Akt. Western blot analysis revealed that LPS incubation reduced the protein
ratio of p-Akt/Akt (Figure 3C,D) and the nuclear protein level of Nrf2 (Figure 3C,E), which
were significantly reversed by 2.5 and 5 mM L-Arg treatment. The protein expression of
Keap1 showed an opposite trend to that of Nrf2 (Figure 3C,F).

Figure 3. L-Arg attenuated LPS-induced oxidative stress by Akt-Nrf2 signaling pathway in mice C2C12 myotube cells. The
myotube cells were treated with and without 0.2 mg/mL LPS in the absence or presence of 0.5, 2.5, and 5 mM L-Arg for
24 h. (A) The MnSOD, CAT, and GSH-px mRNA levels were detected by RT-PCR. (B) The Akt, Nrf2, and Keap1 mRNA
levels were also detected using RT-PCR. (C) Representative Western blot images of p-Akt, Akt, Nrf2, and Keap1 in the
cells. (D–F) The protein expression and quantitation of p-Akt, Akt, Nrf2, and Keap1 in the nucleus and cytoplasm. All data
represent the mean ± SEM of at least three independent experiments, * p < 0.05, ** p< 0.01, significantly different from
control cells (L-Arg (-) and LPS (-)); # p< 0.05, ## p< 0.01, significantly differently from cells treated with LPS only; ns, no
significantly.
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3.3. L-Arg Mitigated LPS-Induced Apoptosis in Myotube Cells

To characterize apoptotic profiles induced by LPS, myotube cells were incubated with
0.5, 2.5, and 5 mM L-Arg for 1 h, followed by incubation with 0.2 mg/mL LPS for 24 h. As
the results presented in Figure 4A,B, flow cytometry analysis revealed that the percentage
of cells with apoptotic features in the LPS-treated group was visibly higher than that of
the control. L-Arg addition significantly decreased the percentage of apoptotic cells after
LPS treatment.

Figure 4. L-Arg suppressed LPS-induced apoptosis in mice C2C12 myotube cells. The myotube
cells were pretreated with L-Arg (0, 0.5, 2.5, 5 mM) for 1 h and LPS (0.2 mg/mL) was added for
an additional 24 h. (A) The apoptosis of cells was detected by flow cytometry analysis. (B) The
percentages of apoptotic cells were counted. (C) RT-PCR was performed to detect the mRNA levels of
FOXO3a, Bcl-2, BAX, Caspase-9, and Caspase-3. (D) Western blot analysis confirmed the expressions
of FOXO3a, Bcl-2, Caspase-9, and Caspase-3. (E–H) The bar graph showed the quantification
of p-FOXO3a/FOXO3a, Bcl-2, Cleaved-Caspase-9/Caspase-9, and Cleaved-Caspase-3/Caspase-3,
respectively. The data represent the mean ± SEM of at least three independent experiments, * p< 0.05,
** p< 0.01, significantly different from control cells (L-Arg (-) and LPS (-)); # p< 0.05, ## p< 0.01,
significantly differently from cells treated with LPS only; ns, no significantly.

To further demonstrate the possible mechanism of L-Arg in anti-apoptosis underlying
LPS-induced cells, the anti-apoptosis related genes and proteins were measured using
RT-PCR and Western blot analysis. As shown in Figure 4C, L-Arg addition dramatically
increased FOXO3a and Bcl-2 mRNA levels. In contrast, L-Arg administration significantly
decreased the mRNA expressions of BAX, Caspase-9, and Caspase-3. Western blot analysis
indicated that the decreased protein levels of p-FOXO3a/FOXO3a and Bcl-2 in LPS-induced
cells were markedly increased by L-Arg administration (Figure 4D–F). Moreover, the
increased protein levels of cleaved Caspase-9/3 in LPS-induced myotubes cells were
dramatically reversed by L-Arg treatment (Figure 4D,G,H).
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3.4. L-Arg Increased the Expression Levels of SIRT1 in Myotube Cells

SIRT1 have been demonstrated to play a crucial role in many pathophysiological
processes including oxidative stress and apoptosis in mammal [30]. So, the expression
level of SIRT1 was detected by RT-PCR and Western blot. As shown in Figure 5, after
administration with LPS for 24 h, the SIRT1 mRNA and protein levels were significantly
decreased. However, the decrease was attenuated by L-Arg treatment.

Figure 5. L-Arg increased the expression of SIRT1 in mice C2C12 myotube cells. The myotube
cells were pretreated with L-Arg (0, 0.5, 2.5, 5 mM) for 1 h and LPS (0.2 mg/mL) was added for an
additional 24 h. (A) RT-PCR was performed to detect the mRNA level of Sirt1. (B) Western blot
analysis confirmed the expression of Sirt1. (C) The bar graph showed the quantification of Sirt1.
The data represent the mean ± SEM of at least three independent experiments, * p< 0.05, ** p< 0.01,
significantly different from control cells (L-Arg (-) and LPS (-)); # p < 0.05, ## p < 0.01, significantly
differently from cells treated with LPS only; ns, no significantly.

3.5. L-Arg Alleviated LPS-Induced Myotube Cells Oxidative Stress through SIRT1

To investigate the involvement of SIRT1 in the protective effect of L-Arg in LPS-
explored cells, we used a specific inhibitor (EX527) to inhibit SIRT1. From the results of
Western blot analysis, exposure to EX527 for 24 h significantly decreased SIRT1 protein lev-
els. As shown in Figure 6A, 5 mM L-Arg up-regulated myotube cells viability, which could
be reversed by EX527, further confirming that L-Arg alleviated LPS-induced cytotoxicity
through activating SIRT1.

To further explore the mechanism of SIRT1 alleviating oxidative stress in LPS-induced
myotube cells by L-Arg, the intracellular ROS levels were measured using a DCFH-DA
probe. As shown in Figure 6B,C, the addition of 5 mM L-Arg significantly alleviated the
LPS-induced ROS increase and EX527 significantly inhibited the beneficial effect of L-Arg.
We also examined the effect of EX527 on antioxidant-related enzymes’ activities and genes’
expressions in myotube cells (Figure 6D–G). L-Arg increased T-AOC, T-SOD, CAT, and
GSH-Px activities, which were significantly abolished by EX527. The mRNA levels of
MnSOD, CAT, and GSH-px were significantly up-regulated after L-Arg and LPS treatment,
while EX527 significantly inhibited the upregulation (Figure 7A). To determine whether
SIRT1 alleviates LPS-induced oxidative stress by L-Arg via Akt-Nrf2 signaling pathway
in myotube cells. The expressions of Akt, Nrf2, and Keap1 were detected by RT-PCR
(Figure 7B) and Western blot (Figure 7C–F). What the increases in Akt and Nrf2 mRNA
levels induced by L-Arg were significantly eliminated by the EX527, while the mRNA levels
of Keap1 was opposite to that of Nrf2. In addition, SIRT1 inhibitors significantly abolished
the inhibitory effect of L-Arg on the LPS-induced decrease in p-Akt/Akt protein levels.
Meanwhile, EX527 significantly eliminated the nuclear accumulation of Nrf2 induced by
L-Arg. However, L-Arg, LPS, and EX527 co-incubated cells significantly abolished the
down-regulation effect of L-Arg on Keap1 protein level.
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Figure 6. L-Arg ameliorated LPS-induced oxidative stress through SIRT1. The myotube cells were pretreated with 25 µM
EX527 for 24 h, then 5 mM L-Arg was added to cell culture for 1 h prior to LPS (0.2 mg/mL) stimulation for an additional
24 h. (A) Cell viability was detected using a CCK-8 assay. (B) Cells were stained with DCFH-DA. The fluorescence intensity
was tested using fluorescent microscopy (Scale bar = 50 µm). (C) Quantitative analysis of relative fluorescence intensity of
DCFH-DA. (D–H) The MDA content and the activities of T-SOD, CAT, and GSH-px in myotube cells. Data are presented
as the mean ± SEM of at least three independent experiments, * p < 0.05, ** p < 0.01 versus the Control group; # p < 0.05,
## p < 0.01 versus the LPS group; $ p < 0.05, $$ p < 0.01 versus the LPS + L-Arg group; ns, no significantly.

Figure 7. L-Arg attenuated LPS-induced oxidative stress by SIRT1-Akt-Nrf2 signaling pathway in mice C2C12 myotube
cells. The C2C12 myotube cells were pretreated with 25 µM EX527 for 24 h, then 5 mM L-Arg was added to cell culture for
1 h prior to LPS (0.2 mg/mL) stimulation for an additional 24 h. (A) The MnSOD, CAT, and GSH-px mRNA levels were
detected by RT-PCR. (B) The Akt, Nrf2, and Keap1 mRNA levels were also detected using RT-PCR. (C) Representative
Western blot images of p-Akt, Akt, Nuclear Nrf2, and Keap1 in the cells. (D–F) The protein expression and quantitation of
p-Akt, Akt, Nrf2, and Keap1 in the nucleus and cytoplasm. All data represent the mean ± SEM of at least three independent
experiments, * p < 0.05, ** p < 0.01 versus the Control group; ## p < 0.01 versus the LPS group; $ p < 0.05, $$ p < 0.01 versus
the LPS + L-Arg group; ns, no significantly.
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3.6. L-Arg Alleviated LPS-Induced Myotube Cells Apoptosis by SIRT1

The persistently high level of intracellular ROS would cause mitochondrial dysfunc-
tion, then activate the mitochondria-related apoptosis pathway and eventually cause cell
and tissue damage [8,31]. MMP levels were detected with JC-1 staining (Figure 8A). As
expected, EX527 significantly abolished the effects of L-Arg on MMP in LPS-treated my-
otube cells (Figure 8B). Furthermore, the apoptosis cells were detected by flow cytometry
(Figure 8C). The apoptosis rate of cells was shown in Figure 8D. EX527 significantly
abolished the down-regulation effect of L-Arg on apoptosis rate.

Figure 8. L-Arg relieved LPS-induced apoptosis via SIRT1-FOXO3a signaling pathway in mice C2C12 myotube cells. The
C2C12 myotube cells were pretreated with 25 µM EX527 for 24 h, then 5 mM L-Arg was added to cell culture for 1 h prior to
LPS (0.2 mg/mL) stimulation for an additional 24 h. (A,B) Mitochondrial membrane potential levels of cells were detected
by JC-1 staining and the percentages of cells were counted. (C,D) Apoptosis of cells was detected by flow cytometry analysis
and the percentages of apoptotic cells were counted. (E,F) RT-PCR was performed to detect the mRNA levels of SIRT1,
FOXO3a, Bcl-2, BAX, Caspase-9, and Caspase-3. (G) Western blot analysis confirmed the expression of SIRT1, FOXO3a,
Bcl-2, BAX, Caspase-9, and Caspase-3. (H–M) The bar graph showed the quantification of SIRT1, p-FOXO3a/FOXO3a,
Bcl-2, BAX, Cleaved Caspase-9/Caspase-9, and Cleaved Caspase-3/Caspase-3, respectively. The data represent the mean ±
SEM of at least three independent experiments, * p < 0.05, ** p < 0.01 versus the Control group, # p < 0.05, ## p < 0.01 versus
the LPS group, $ p < 0.05, $$ p < 0.01 versus the LPS + L-Arg group.

In order to determine whether SIRT1 is involved in L-Arg alleviating LPS-induced
apoptosis via the FOXO3a-mediated mitochondrial apoptosis signaling pathway in my-
otube cells, the expression levels of SIRT1, FOXO3a, BAX, Bcl-2, Caspase-9, and Caspase-3
were detected by RT-PCR (Figure 8E,F) and Western blot (Figure 8G–M). L-Arg increased
the SIRT1, FOXO3a, and Bcl-2 mRNA levels, which were significantly inhibited by the



Antioxidants 2021, 10, 1957 11 of 18

EX527. In contrast, the mRNA levels of BAX, Caspase-9, and Caspase-3 were opposite to
that of Bcl-2. In addition, SIRT1 inhibitors significantly abolished the inhibition of L-Arg
on LPS-induced SIRT1 and p-FOXO3a/FOXO3a protein level decrease. At the same time,
EX527 significantly eliminated the L-Arg-induced decrease in BAX protein levels. However,
co-incubation with L-Arg, LPS, and EX527 significantly eliminated the down-regulation
effects of Cleaved Caspase-9/Caspase-9 and Cleaved Caspase-3/Caspase-3 protein levels
by L-Arg.

4. Discussion

Over the past decades, it has been accepted that muscle could exert a spontaneous
immune behavior response to external pathogen stimulation [2]. LPS is the main compo-
nent of the cell wall of Gram-negative bacteria, and as the main virulence factor, it causes
serious pathological reactions in animals [5,32]. However, how to effectively mitigate
muscle damage caused by LPS has become a thorny issue in the farming industry. L-Arg
is a semi-essential amino acid with a wide range of effects, and a variety of studies have
shown that an appropriate amount of L-Arg can effectively improve the body’s immu-
nity [33]. Oxidative stress and apoptosis are considered to be among the most effective
mechanisms of animal’s immune defense [5]. Previous studies showed that L-Arg could
induced C2C12 myoblasts differentiation. Therefore, in this study, we used differentiated
C2C12 cells [34,35]. The different concentrations of L-Arg were used to treat LPS-induced
C2C12 myotube cells, to explore the mechanism of L-Arg alleviating oxidative stress and
apoptosis, and to provide a new idea for alleviating muscle injury.

Cell viability is the most direct indicator of cell growth and the level of cell viability
directly reflects the survival state of cells [36]. The results of this study showed that
different concentrations of LPS reduced C2C12 myotube cells viability in a dose-dependent
manner. Similarly, Shang et al. also found that treatment with 0.1 mg/mL LPS for 24 h
significantly reduced cell viability in C2C12 myoblast cells [37]. The decline in cell viability
is usually accompanied by severe oxidative stress and apoptosis. This result also confirmed
that LPS treatment for 24 h resulted in a significant increase in intracellular ROS levels
and apoptosis rates. Consistent with the results of this study, the intracellular ROS level
of C2C12 myoblast cells was increased by 40% after being treated with LPS for 6 h [38].
Thus, it could be concluded that LPS-induced muscle injury might be caused by increasing
ROS and apoptosis levels, reducing cell viability, and ultimately leading towards cell and
tissue damage. This further indicated that the LPS-induced muscle injury model was
successfully constructed.

Muscle is the main organ of energy metabolism and homeostasis maintenance of the
body [1,39]. During the growth and development of animals, muscle is also particularly
vulnerable to invasion by pathogenic microorganisms [2]. As a result, muscle tissue is
vulnerable to a high risk of oxidative stress. Excessive oxidative stress is often accompanied
by excessive accumulation of ROS and MDA [40]. The present study showed that LPS
significantly increased ROS levels and MDA contents in myotube cells, while L-Arg with
appropriate concentration significantly reduced the levels of ROS and MDA. This was
similar to studies on pig intestinal epithelial cells (IPEC-J2) [21] and mouse vascular
endothelial cells [29]. Previous studies have shown that persistently high ROS levels lead
to the imbalance of oxidative and antioxidant systems in the body [6,39]. Among them,
antioxidant enzymes (SOD, CAT, and GSH-Px), as the main antioxidant substances, can
resist excessive ROS attacks and maintain redox homeostasis [41]. The SOD could convert
superoxide free radicals to H2O2, which was degraded to O2 by CAT and GSH-px [42]. The
present study confirmed that the activities of antioxidant enzymes significantly decreased
after LPS treatment, while L-Arg pretreatment significantly increased the enzymes activities.
These results indicate that L-Arg effectively protected against LPS-induced oxidative stress
by increasing antioxidant enzymes activities.

The activities of antioxidant enzymes are closely related to the transcriptional level
of corresponding genes. In the present study, L-Arg increased MnSOD, CAT and GSH-px
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mRNA levels, suggesting that L-Arg increased antioxidant enzymes activities in LPS-
induced myotube cells, which might be related to the corresponding mRNA levels. Similar
results have been found in rat liver [33] and IPEC-J2 cells [23]. These results suggest that
L-Arg preconditioning could protect myotube cells from LPS-induced oxidative stress by
increasing antioxidant genes expressions. A large number of studies have shown that
the Nrf2-Keap1 signaling pathway performs the function of anti-oxidative stress [43,44].
Under normal circumstances, Nrf2 binds to Keap1 and localizes in the cytoplasm, leading to
ubiquitination-proteasomal degradation mediated by the E3 ubiquitin ligase complex [45].
When cells are subjected to oxidative stress, the degradation of Nrf2 is reduced, and
the Nrf2 protein dissociates from Keap1, and the former enters the nucleus to activate
relevant antioxidant reaction elements and exerts its antioxidant function [46,47]. In the
present study, we found that LPS-induced oxidative stress in myotube cells, significantly
decreased the mRNA level of Nrf2, and significantly increased the mRNA level of Keap1.
Meanwhile, L-Arg also significantly promoted the expression of Nrf2 gene in LPS-induced
myotube cells, and significantly down-regulated the mRNA level of Keap1. Consistent
with the mRNA level, L-Arg significantly increased the protein expression level of Nrf2
in the nucleus and significantly decreased the protein expression level of Keap1 in the
cytoplasm. These results suggest that activation of Nrf2 is crucial for L-Arg to alleviate
LPS-induced oxidative stress in myotube cells. Previous studies have also shown that
L-Arg is a potential regulator of Nrf2 in the body. After feeding the rats with L-Arg, it
was found that the appropriate concentration of L-Arg could activate Nrf2 in the liver
and inhibit Keap1 mRNA and protein levels [33]. Zhang et al. found that L-Arg could
alleviate oxidative damage of sheep intestinal epithelial cells induced by LPS by increasing
the protein expression of Nrf2 [25]. These results suggest that L-Arg reduced LPS-induced
oxidative stress in myotube cells by activating the Nrf2-Keap1 signaling pathway.

Although the present study has confirmed that L-Arg activated the Nrf2 signaling
pathway and improved the antioxidant capacity in myotube cells, how L-Arg regulates the
nuclear translocation of Nrf2 is still unclear. Parallel studies have found that Akt activates
the expression of Nrf2 to inhibit oxidative stress [10,12,48]. In addition, phosphorylated
Akt enhances Nrf2 nuclear translocation and protects against AlCl3-mediated oxidative
stress in PC12 cells [9]. Resveratrol can protect IPEC-J2 cells from H2O2-induced oxidative
stress through the Akt-Nrf2 signaling pathway [49]. Our results showed that LPS inhibited
the activation of Akt, while L-Arg increased the phosphorylation level of Akt, thereby
activating the Akt signaling pathway in myotube cells. Barbosa et al. found that L-Arg
increased the phosphorylation level of Akt in a NO-dependent manner, thereby enhancing
glucose and lipid metabolism in rat L6 myotubule cells [22]. According to these results,
L-Arg enhanced the expression of antioxidant genes by activating an Akt-Nrf2 signaling
pathway and alleviating the LPS-induced oxidative damage in myotube cells.

Under physiological and pathological conditions, ROS and mitochondria play an
important role in the process of apoptosis [13,31,50]. Mitochondria is the main site of ROS
production and an important target of ROS [8]. Previous studies have shown that excessive
ROS-induced oxidative stress, led to change in mitochondrial outer membrane perme-
ability and the MMP, and eventually induced cell apoptosis in a mitochondria-dependent
manner [8,51]. The permeability of the mitochondrial outer membrane is associated with
the recombination of the Bcl-2 protein family [52]. When subjected to external stimulation,
the binding of BAX, originally distributed in cytoplasm, and the BH3 binding domain
distributed in mitochondrial Bcl-2, is altered, leading to the accumulation of BAX protein
in the outer membrane of mitochondria and the change in MMP [53,54]. The altered mito-
chondrial membrane permeability is accompanied by the transformation of MMP, inducing
Caspase cascade activation and eventually leading to cell apoptosis [55]. The present
results show that LPS significantly increases the apoptosis rates of myotube cells, while
L-Arg significantly decreases the apoptosis rates of myotube cells. Consistent with previ-
ous studies, LPS induced the apoptosis of rat adipocytes [56], mouse osteoclasts [57], and
mouse kidney cells [7] by activating mitochondria-related apoptosis signaling pathways.
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However, L-Arg has been reported to inhibit apoptosis in mouse Leydig cells [26], human
endometrial cells [27], and sheep intestinal epithelial cells [58]. In this study, we found that
LPS down-regulated MMP, and L-Arg treatment significantly reversed this phenomenon.
These results suggest that L-Arg alleviated LPS-induced apoptosis by changing the MMP
of myotube cells. Furthermore, the mRNA levels of BAX, Caspase-9, and Caspase-3 were
significantly up-regulated, while Bcl-2 mRNA levels were significantly down-regulated in
the LPS-treated group. Consistent with transcription levels, LPS treatment also significantly
increased cleaved Caspase-9/3 protein expressions and down-regulated Bcl-2 protein ex-
pression. L-Arg treatment significantly reversed the changes in mRNA and protein levels
of mitochondrial apoptosis-related genes induced by LPS. Similar results were found in
mouse lung tissue [59] and sheep epithelial cells [25]. From these results and the present
study, it was concluded that L-Arg alleviated LPS-induced apoptosis by regulating the
mRNA and protein levels of mitochondria-related apoptosis pathway in myotube cells.

Although the current and previous studies have found that L-Arg can regulate
mitochondria-related apoptosis pathways to alleviate apoptosis, further studies are also
needed to ascertain how L-Arg mediates the expression of related genes and how it affects
mitochondrial pathways. FOXO protein is an evolutionally-conserved transcription factor
family with functions of controlling cell cycle, differentiation, and resistance to oxidative
stress and apoptosis [60]. A large amount of evidence has shown that FOXO3a not only
plays an important role in the regulation of skeletal muscle atrophy [61,62], but also plays
a key role in autophagy and apoptosis [16]. In general, FOXO3a is the downstream of Akt
and controlled by Akt phosphorylation, leading to nuclear transfer [14]. FOXO3a resides
in the nucleus and controls the transcription of target genes in the absence of external
stress and Akt activation. However, in response to external stimulation and Akt activation,
FOXO3a is activated by phosphorylation at Thr32, Ser253, and Ser315, leading to extracel-
lular migration and inhibition of transcription [63]. In mice muscle with chronic resistance
to exercise, phosphorylated activated FOXO3a was found to alleviate senescence-induced
apoptosis of muscle cells by reducing mitochondrial Cyt C release and cleaved Caspase-3
protein levels [16]. In this study, it was found that FOXO3a mRNA level and the ratio of
p-FOXO3a/FOXO3a were significantly down-regulated in the LPS-treated group, while
FOXO3a mRNA and p-FOXO3a protein levels were up-regulated in a dose-dependent
manner after L-Arg supplementation. These results indicated that L-Arg significantly alle-
viated LPS-induced inactivation of FOXO3a signaling pathway and reduced the occurrence
of cell apoptosis. The positive effects of L-Arg on the activation of FOXO3a signaling
pathway may be partly ascribed to a metabolite of Arg. Fan et al. reported that spermi-
dine, a metabolite of Arg, could activate the FOXO3a signaling pathway and alleviate
the apoptosis of skeletal muscle induced by type D Galactose in rats [15]. These results
indicate that administering L-Arg exerts a protective effect against LPS-induced apoptosis
via the FOXO3a-mitochondrial apoptosis signaling pathway in myotube cells. However,
how L-Arg regulates FOXO3a to alleviate the activation of mitochondrial apoptosis-related
signaling pathways is not particularly clear at present, and further studies are needed.

SIRT1 is a component of class III histone deacetylases, which has been reported
to be involved in a variety of biological processes, and also plays an important role in
oxidative stress and apoptosis [30,64]. The present study showed that the mRNA and
protein levels of SIRT1 were significantly down-regulated in the LPS group. However, with
the increase in L-Arg concentration, the mRNA and protein levels of SIRT1 increased in
a dose-dependent manner. Studies have shown that LPS treatment significantly down-
regulated the expression of SIRT1 in PC12 cells [65], RAW264.7 cells [66], and mouse
myocardium [67]. Similar to the results of this study, L-Arg up-regulated the expression
of SIRT1 in human vascular endothelial cells [29]. Chen et al. also found in C2C12 cells
that L-Arg could promote the transformation of muscle fibers by increasing the SIRT1
protein level [28]. These results suggest that L-Arg and SIRT1 might interact with each
other in LPS-induced oxidative stress and apoptosis, thereby enhancing SIRT1-mediated
downstream biological functions.
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Studies have confirmed that EX527 can significantly inhibit the expression level of
SIRT1 in different cells and tissues [68,69]. Therefore, we selected EX527 to further in-
vestigate whether L-Arg could inhibit LPS-induced cell damage by regulating oxidative
stress via SIRT1 in myotube cells. The results of this study show that compared with
LPS+L-Arg group, ROS levels were significantly up-regulated after pretreatment with
EX527 in myotube cells. Similarly, Zhao et al. found that EX527 significantly increased
the oxidative stress of the cerebral cortical nerve cells in mice [68]. Another study showed
that treatment with EX527 significantly blocked melatonin-alleviated oxidative stress in
mouse testicular stromal cells [64]. Notably, this study found that the L-Arg-mediated
high phosphorylation level of Akt and high expression of Nrf2 in the nucleus, as well as
the expression of downstream antioxidant genes, were significantly inhibited by EX527.
Similarly, the EX527 group significantly abolished the beneficial effects of resveratrol on al-
leviating Nrf2 protein levels and the activities of SOD, CAT, and GSH-Px in rats myocardial
ischemia-reperfusion injury [70]. However, Yang et al. found that treatment with EX527
significantly reduced the activation of Nrf2 in the kidney of diabetic rats, but had no effect
on the phosphorylation level of Akt [71]. Lu et al. found that DiDang Tang alleviated AlCl3-
induced oxidative damage in PC12 cells by activating SIRT1-mediated Akt-Nrf2 signaling
pathway [9]. Existing evidence indicated that there was an interaction between SIRT1
and Akt. Previous studies have shown that SIRT1 can increase the membrane localization
and activation of Akt by deacetylation of Akt [72], and can also activate the Akt signaling
pathway by interacting with the upstream PTEN of Akt [73]. These results indicate that
L-Arg mediated the Akt-Nrf2 signaling pathway in a SIRT1-dependent manner. Even so,
how L-Arg alleviates oxidative stress by regulating SIRT1 and Akt-Nrf2 signaling pathway
remains to be further studied.

Previous reports and our present study have found that reducing the expression of
SIRT1 significantly increases ROS levels, where the accumulation of ROS in cells changes
mitochondrial permeability, impacts the normal membrane potential level, and eventually
triggers mitochondrial apoptosis pathway [74,75]. In order to understand the role of SIRT1
in L-Arg-alleviated myotube cell apoptosis, we further treated the cells with EX527 in
combination with L-Arg. In the present study, EX527 significantly reversed the L-Arg-
induced increase in MMP and decrease in apoptosis rate of myotube cells. Consistent
with the results of this study, in a model of alveolar epithelial cell injury induced by
cigarette smoke, it was found that treatment with NaHS increased the level of MMP
and decreased the rates of cell apoptosis. However, inhibition of SIRT1 weakens the
protective effects of NaHS [76]. Tian et al. found that EX527 significantly increased the
low level of mitochondrial membrane potential and apoptosis of cardiomyocytes induced
by ethanol [69]. Interestingly, mRNA levels and protein levels of genes in mitochondrial
apoptosis-related pathways corresponding to MMP levels and apoptosis rates were also
affected by EX527 treatment, which significantly reversed the effect of L-Arg. This is
parallel to the fact that EX527 treated A459 cells can aggravate the changes in mitochondrial
apoptosis pathway genes induced by cigarette smoke [76]. These results suggest that L-Arg
can regulate the mitochondrial apoptosis-related signaling pathway by regulating the
expression of SIRT1, and thus alleviate LPS-induced apoptosis in myotube cells.

5. Conclusions

In summary, this study first demonstrated that L-Arg and SIRT1 alleviated LPS-
induced oxidative stress and apoptosis in C2C12 myotube cells. Moreover, L-Arg was
found as a potent molecule that rescued the myotube cells from LPS-induced oxidative
stress and apoptosis by regulating SIRT1-Akt-Nrf2 and SIRT1-FOXO3a-mitochondrial
apoptosis-related pathways.
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