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Abstract
Coronavirus disease 2019 (COVID-19) is a rapid-spread infectious disease caused by 
the SARS-CoV-2 virus, which can culminate in the renin-angiotensin-aldosterone 
(RAAS) and kallikrein-kinin (KKS) systems imbalance, and in serious consequences 
for infected patients. This scoping review of published research exploring the RAAS and 
KKS was undertaken in order to trace the history of the discovery of both systems and 
their multiple interactions, discuss some aspects of the viral–cell interaction, including 
inflammation and the system imbalance triggered by SARS-CoV-2 infection, and their 
consequent disorders. Furthermore, we correlate the effects of continued use of the 
RAAS blockers in chronic diseases therapies with the virulence and physiopathology of 
COVID-19. We also approach the RAAS and KKS-related proposed potential therapies 
for treatment of COVID-19. In this way, we reinforce the importance of exploring both 
systems and the application of their components or their blockers in the treatment of 
coronavirus disease.
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Background
SARS-CoV-2 is the virus responsible for the current devastating 
pandemic of coronavirus disease 2019 (COVID-19) [1–3]. This 
disease was first reported in Wuhan (China) in late 2019 and 
has spread worldwide with a high transmission rate that made 
COVID-19 be characterized as a pandemic, the first caused by 
a coronavirus, on March 11, 2020 [4]. Exceeding 5.0 million 
of deaths and 247 million of confirmed cases worldwide up to 
early November 2021, is inarguably that COVID-19 is the most 
challenging coronavirus outbreak in relation to the previous 
coronaviruses severe acute respiratory syndrome (SARS-CoV) 
and Middle East respiratory syndrome (MERS) [3,5]. 

COVID-19 was characterized as an acute respiratory disease 
that may turn into pneumonia with symptoms such as fever, 
cough and dyspnea, which can quickly progress to death. Multiple 
lines of evidence indicate that the COVID-19 pandemic has 
profound not only health effects, but also psychological, social 
and economic outcomes, which will probably persist for months 
and years to come [6,7]. Given the impact of the pandemic, we 
summarized the available updates on the multidisciplinary 
approaches for the therapeutic strategies for COVID-19 related 
with the renin-angiotensin-aldosterone system (RAAS) and 
kallikrein-kinin system (KKS) components. They are systems that 
may work coordinately to regulate blood pressure and electrolyte 
homeostasis, whose deregulation is related to numerous diseases.

Methods
A scoping review with a thorough systematic search and 
screening process was developed based on the preferred reporting 
items for systematic reviews and meta-analyses (PRISMA) 
[8,9]. The search was performed in the following databases: 
Medline/Pubmed, SciELO and Scopus from 1949 to October 
2020 publications. The selection of the papers was performed in 
a standardized manner by two authors independently. Possible 
discrepancies were analyzed by the third author and the search 
strategy was reviewed by all authors.

The articles were eligible for inclusion when they (a) brought 
the history of the discovery of the RAAS and KKS, (b) reported 
the components of the systems, namely protein precursors, 
enzymes and peptides, (c) were mainly focused in the basic 
principles of physiology systems, mechanisms of the diseases 
in which they are involved and the relevant treatments and (d) 
explored the relationship of both systems with COVID-19 in 
addition to its main characteristics and symptoms. The reviewers 
selected the 125 publications, discussed the results and had a 
consensus on the screening of the literature and consistency of 
the analysis. The final search results were exported into Zotero 
and duplicates were removed by the author.

Our work does not assess the quality of included articles, but 
aims to provide a preliminary picture of what has been published 
in the literature about the correlation between COVID-19 and 
the RAAS and KKS. 

Results

Renin-angiotensin-aldosterone system
The renin-angiotensin-aldosterone system is a cascade of 
hormones whose main function is to control blood pressure, 
through vasoconstriction in the smooth muscle of the vessels, 
and intravascular volume, in which there is a decrease in 
sodium excretion by the kidneys, mediated by aldosterone. 
There is a precursor, angiotensinogen, produced mainly in 
the liver, and in smaller amounts in several extrahepatic 
tissues, such as brain, heart and kidney. It is usually cleaved 
by renin, releasing angiotensin I (Ang I). In turn, this inactive 
decapeptide is processed by angiotensin I-converting enzyme 
(ACE), a dipeptidyl carboxypeptidase zinc-dependent releasing 
angiotensin II (Ang II), a peptide with important vasoconstrictive 
function. In addition, the ACE protease also participates in 
the metabolism of other peptides such as the conversion of 
angiotensin 1-7 (Ang 1-7) to angiotensin 1-5 (Ang 1-5), and also 
inactivates bradykinin (BK), a potent vasodilator of the KKS.

Ang II performs its main function by the angiotensin II 
receptors type 1 (AT1R) and type 2 (AT2R) activation, both of 
them belonging to the G protein-coupled receptor family. Most of 
the actions of Ang II are mediated by AT1R, such as promotion 
of hypertrophy, cellular proliferation and fibrosis. Both receptors 
are abundant in adults and are found mainly in vascular smooth 
muscle. However, in some pathological conditions, AT2 receptor 
shows an increased tissue expression and antagonizes the effects 
induced by AT1 receptor. The stimulation of AT2R provides 
vasodilation that can counterbalance the vasoconstrictor effects 
associated with the incitement of AT1 receptors.

Angiotensin converting enzyme 2 (ACE2), is a zinc 
metalloprotease that exists both as a membrane-associated 
form and as a secreted form, which is also known to regulate the 
RAAS. The name of ACE2 was given when it was discovered in 
2000, because of considerable homology with ACE, 42% sequence 
identity and 61% sequence similarity. Moreover, ACE2 contains 
a single zinc-binding domain HEXXH, which is homologous 
to the active sites of ACE; however, it is not inhibited by ACE 
inhibitors [10,11].

In turn, ACE2 is able to cleave Ang I and II into angiotensin 
1-9 (Ang 1-9) and Ang 1-7, respectively. Both are key elements 
related to cardiovascular protection, regulation of vascular tone, 
blood pressure, electrolyte balance and water intake [10,12], in 
addition to the important role in inflammation and fibrosis [13]. 
In this sense, ACE2 plays an important role in heart failure, in 
diabetic microvascular or macrovascular diseases [14] and in 
inflammatory lung disease [15].

Ang 1-7, which binds to the Mas receptor, exerts many positive 
effects on the cardiovascular system (e.g. increased endothelial 
function, reduced fibrosis, anti-proliferative effects on smooth 
muscle cells and anti-cardiac hypertrophy), as well as on other 
organs, such as the lungs, it exerts anti-fibrotic, anti-inflammatory 
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and anti-apoptotic effects [16–19]. Ang 1-7/Mas axisalso is related 
to reduction of proinflammatory cytokines and induction of IL-
10, an important anti-inflammatory cytokine [20]. 

Another axis that is modulated by the action of ACE2, 
which also shows beneficial biological effects is Ang 1-9/AT2R, 
resulting in cardioprotective effects [21,22]. Moreover, ACE2 also 
cleaves a single-terminal residue from several others bioactive 
peptides including neurotensin, dynorphin A (1-13), apelin-13, 
and des-Arg9  bradykinin, here named DABK [23,24]. Thus, 
the imbalance in ACE2 levels is closely related to heart failure, 
systemic and pulmonary hypertension, myocardial infarction, 
diabetic cardiovascular complications and gut dysbiosis [25–27].

Kallikrein-kinin system
The kallikrein-kinin system is a vasodilator system that also 
opposes the vasoconstrictor effects provided by the RAAS. The 
KKS is made up of kininogens, kallikreins (tissue and plasma), 
kinins, kininases and kinin-degrading enzymes. 

There are two forms of kininogens, high and low molecular 
weight kininogens (HMWK and LMWK, respectively). This 
inactive precursor, is synthesized primarily in the liver, then is 
secreted and transported in plasma, and processed by proteolytic 
action of kallikreins. Kallikreins are derived from inactive 
precursors, pre-kallikreins, they are synthesized predominantly 
in the liver and activated through the Hageman’s factor (factor 
XII). Due to the factor XII role in the KKS system, its modulation 
is linked to formations of thrombosis and fibrinolysis [28,29].

It has been found that kallikrein exists in two different forms, 
plasma kallikrein, which cleaves HMWK into BK and tissue 
kallikrein, which processes LMWK into Lys-BK, known as 
kallidin. Through kallikreins, kininogen is cleaved generating 
kinins, biologically active peptides with vasodilatory actions, 
which can be processed by kininases, becoming inactive peptides.

Bradykinin, the main kinin, was discovered by a Brazilian 
scientist, Rocha e Silva, in the 1940s [30]. In a few years later, 
additional studies of Rocha e Silva, Ferreira and Vane revealed 
that certain peptides found in Bothrops jararaca snake venom 
potentiated the effects of BK by inhibiting its degradation 
especially in the lungs. Then, Ferreira discovered the bradykinin 
potentiating factor, BPF, it was the beginning of the inhibition 
of the angiotensin converting enzyme [31–33].

Based on BPF, scientists developed captopril (under the 
pharmaceutical name Capoten), that was the first oral angiotensin 
converting enzyme inhibitor and one of the most common 
therapies against arterial hypertension. It was considered 
a breakthrough because of its mechanism of action and its 
structure-based drug design [34]. 

BK has the ability to increase vascular permeability and 
causes vasodilation of arteries and veins, in addition to having 
mechanisms that trigger the release of others mediators, such 
as nitric oxide in inflamed tissues [35]. BK is also a potent pain-
producing agent and its action is enhanced by prostaglandins. 

Other kinin product of the KKS is DABK, a stable and active BK 
metabolite originated by proteolytic action of carboxypeptidase 

M (CPM) and carboxypeptidase N (CPN), also known as 
kininase I. Increased DABK levels are responsible for increasing 
vascular permeability, thus promoting angioedema, and pro-
inflammatory repercussions, which may be blocked by the action 
of ACE2, as this enzyme is able to degrade it [23].

Kinins act on target cells through receptors coupled to protein 
G, kinin B1 and B2 receptors (B1R and B2R). B2 receptor is the 
main mediator of BK and kallidin, while B1 receptor mediates 
the actions of DABK and des-Arg10 kallidin. The B2 receptor is 
constitutive and is expressed at a low level in healthy tissues, 
while B1R is widely distributed, and upregulated in tissue 
damage mediated by various pre-inflammatory cytokines. 
B1R and B2R activation induces vascular permeability [36], 
as well as neutrophil recruitment, and thus contributes to the 
inflammatory state [37].

Interactions between RAAS and KKS
The RAAS and KKS represent two systems with a wide range of 
physiological and pathophysiological actions, and play effects 
that are often opposite to each other. In the RAAS, the main 
function of ACE, is the conversion of Ang I to Ang II, but this 
enzyme, also known as kininase II, even is responsible for 
the degradation of BK, the main peptide formed by the KKS 
activation [38]. ACE converts BK into the thrombin-induced 
platelet aggregation-inhibitory peptide, bradykinin 1-5 [39,40]. 
In this way, ACE is the prior connection point between both 
systems, the RAAS and KKS, exerting important effects on 
kidney function modulators, as shown in Figure 1. 

Another RAAS enzyme that also plays an important role in the 
KKS is ACE2. Although it is unable to cleave BK, ACE2 has its 
metabolite as substrate, DABK. Sodhi et al. [41] provided the first 
evidence that DABK is a substrate of pulmonary ACE2 in vivo 
and the attenuation of ACE2 activity leads to decrease of DABK 
inactivation. Consequently, improves DABK/B1R signaling, 
which releases proinflammatory chemokines from airway 
epithelia, promotes neutrophil infiltration, and exaggerated 
lung inflammation and injury [41].

Concerning renin, the first enzyme responsible for cascade 
RAAS activation, it is obtained from prorenin processing, 
and it can be activated by proteolytic action, from removal 
its propeptide, or by non-proteolytic way, which involves 
conformational arrangements induced by exposure to low 
pH and cold [42,43]. Trypsin and  plasmin,  as well as tissue 
and plasma kallikreins can all correctly process prorenin in vitro 
[44–46]. Kallikrein is generated from pre-kallikrein in plasma 
after destruction of the natural inhibitors of contact activation, 
by exposure to low pH or low temperature, and probably serves 
as a prorenin-activating enzyme [46,47], another connection 
point between the RAAS and KKS systems.

Although there are no compelling evidences for in vivo 
prorenin activation by kallikrein, some studies indicate a 
correlation between kallikrein variables or levels with active 
plasma renin [48–50]. Lieb et al. [51] performed a meta-analysis 
from cohorts of European and European-American ancestry 
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Figure 1. Pathways of interaction between the kallikrein-kinin and renin-angiotensin-aldosterone systems and mechanism of action of angiotensin converting enzyme 
(ACE) inhibitors (ACEI) and angiotensin type 1 (AT1) receptor blockers (ARB). Kininogen, the precursor of kallikrein-kinin system is cleaved by kallikrein-releasing 
bradykinin that acts mainly on B2R promoting the effects described in the box. Then, bradykinin is degraded by ACE or can be converted to DABK by CPM and 
CPN, DABK is an agonist of B1 receptor, subsequently ACE2 can inactivate DABK. In renin-angiotensin-aldosterone system, the precursor angiotensinogen is 
processed by renin-releasing angiotensin I, which can be cleaved by ACE to form angiotensin II that exerts its effects by binding to AT1 and AT2. Ang II is substrate 
for ACE2 generating angiotensin 1-7, an active peptide that exerts protective effects binding to Mas. ACEI acts by inhibiting ACE, consequently ACEIs inhibit Ang 
II formation and Ang 1-7 and BK degradation, these effects combined promote vasodilation. ARBs, blockers that act specifically on AT1R, inhibit Ang II binding to 
AT1R and its effects. Also, they possibly trigger intracellular acidification that can activate kallikrein and promote BK synthesis. B1R antagonists can block DABK-
induced pro-inflammatory signaling. ACE: angiotensin-converting enzyme; ACEI: angiotensin-converting enzyme inhibitors; ACE2: angiotensin-converting enzyme 2; 
ARB: angiotensin II receptor blockers; B1R: kinin B1 receptor; CPM: carboxypeptidase M; CPN: carboxypeptidase N; DABK: des-Arg9 bradykinin.

and found association between plasma renin activity and 
concentration with kininogen and pre-kallikrein genes. Their 
data add support to this concept by indicating that genetic 
variation in the KKS components influence interindividual 
variation of plasma renin activity [51].

Another factor that can modulate renin is the stimulation 
of B2R by BK, that induces renin synthesis and releasing, by 
collecting duct cells, through protein kinase C stimulation and 
nitric oxide release [52].In addition, PGE2 (prostaglandin E2), 
a product of BK stimulation, was described for releasing renin, 
mediated by EP2 and EP4 receptors in mouse kidneys[53],which 
support further the interactions between the RAAS and KKS.

Ang 1–7, which has augmented levels with increased levels 
of ACE2 or Ang I, can also improve BK effects. In addition to 
inhibiting ACE activity by binding to its active site, independently 
of blocking ligand hydrolysis, Ang 1-7 also is able to potentiate 
B2 receptor through direct or indirect interaction of its receptor 
with B2R after peptide stimulation [54,55]. 

Moreover, B2R forms dimers with several RAAS receptors 
that are important for several physiologic functions, including 
thrombosis risk regulation. The B2R also complexes with 
endothelial cell nitric oxide synthase (eNOS, NOS3), while 
B1R couples with cytokine‐inducible nitric oxide synthase 
(iNOS, NOS2) [56].

Recently, it was demonstrated that Ang II-mediated effects 
on neuroinflammation and oxidative stress are mediated by 
the stimulation of B1R, and its blockade prevents such effects 
in neurons in mouse neuronal cultures [57].

Although the relationship between angiotensin II receptors 
and the KKS has been poorly studied, it has been shown that 
stimulation of the AT2R by Ang II causes intracellular acidification. 
Since acidification is known to increase kininogenase activity, 
it is possible that AT2R mediates intracellular acidification and 
kallikrein activation, resulting in the KKS stimulation via BK 
releasing [58].

Coronavirus disease 2019 (COVID-19)
Besides ACE2 had distinct roles ranging from catalytic activities 
with various substrates to amino acid transporter, ACE2 also 
plays an important role as a receptor on severe acute respiratory 
syndrome (SARS) coronaviruses [59–63]. SARS-CoV-2 
transmission occurs through different routes (that is, fomites, 
air or fecal-oral route) from animal to human and human to 
human. COVID-19 has shown a wide variety of expression and 
severity of symptoms, from very mild or nonexistent symptoms 
to flu-like symptoms and, in more severe cases, pneumonia, 
severe acute respiratory syndrome and even death [64].
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In addition to the occurrence of acute injury and loss of 
renal function, chronic damage to the cardiovascular system 
is an important clinical complication of viral infection and is 
associated with increased rates of mortality and morbidity in 
these patients [65,66]. Manifestations of COVID-19 include 
other organs with symptoms at the digestive tract, sensory 
perceptions and at the central nervous system. 

A critical literature review suggests that the severity of SARS-
CoV-2 infection is also associated with loss of the immune 
regulation between protective and altered responses due to 
exacerbation of the inflammatory components, which in turn 
inhibits the development of protective immunity to the infection 
[67]. Such dysregulated inflammation results in a cytokine storm 
that is evident in sepsis as well as in patients with severe respiratory 
diseases caused by coronaviruses such as SARS-CoV, MERS-CoV 
and SARS-CoV-2 [68,69]. In an observational study with patients 
with severe COVID-19 symptoms it was related exacerbated 
systemic inflammation and signs of T cells exhaustion [70].

The causes for these variations in disease severity are probably 
multifactorial, encompassing complex factors such as the 
expression of key components in different organs, patient 
health conditions, in addition to genetic factors.

The new coronavirus depends on two human proteins: ACE2, 
as a human receptor for virus invasion in the host cell, through 
interaction with viral S protein (Spike protein); and TMPRSS2, 
a serine protease which is responsible for the correct priming of 
S protein [63]. It is known that an efficient interaction of viral 
S protein with human ACE2 a critical step in the replication 
cycle and it requires a certain level of affinity between the 
molecules. Furthermore, the efficiency of viral infection is 
strongly dependent on this process.

In this sense, Ortega et al. [71] suggest that mutations in the 
viral S protein sequence might be favoring human to human 
transmission. They observed changes that triggered significant 
effects on SARS-CoV-2 spike/ACE2 interaction and reduced the 
binding energy, compared to Bat-CoV spike/ACE2 interaction 
[71]. Therefore, specific changes, in the nature of residues or in 
the type of chemical interactions occurring between ligand and 
receptor, may be decisive. As it generates an improvement in 
this affinity, or even destabilize such interaction, which might 
play an imperative role in the differences in susceptibility to the 
disease and its symptoms.

It was reported that SARS-CoV-2 is able to bind to alveolar 
pneumocytes, which express ACE2 on its surface [72]. However, 
ACE2 mRNA is also found in a much broader distribution, 
including upper airways, heart, blood vessels, kidneys, liver, testis, 
gastrointestinal tract and eyes, which opens up the possibility of 
this virus infecting others tissues than the lung [10,73–75]. In 
severe conditions of COVID-19, the presence of the viral receptor 
in these others tissues may explain the failure of several organs 
occasionally described in clinical studies. Therefore, it is not 
surprising that the initial reports have suggested that hypertension, 
diabetes, cerebrovascular and coronary heart diseases are the 
most frequent comorbidities in COVID-19 [76,77].

The difference in responses to SARS-CoV-2 infection between 
different individuals and countries can also be explained by 
the decreased immune response in the elderly, the presence of 
comorbidities or smoking habits [78]. However, severe cases of 
COVID-19 have been observed in young people, apparently 
without risk factors, as well. It indicates that most of the factors 
that explain the severity of the disease are still unknown.

The role of RAAS and KKS in COVID-19
The correlation between the RAAS and KKS with COVID-19 
pathogenesis is suggested by several clinical features and 
symptoms observed in patients, given the close interconnection 
between both systems. While the RAAS controls vasoconstriction 
and vasodilation, the KKS regulates vasodilation and vascular 
permeability, which are also important in COVID-19.

It is known that the virus survival strategy is to elude and 
suppress host innate immune defenses through gene deactivation 
or inhibition [59,79]. In line, in coronaviruses as SARS-CoV, 
studies were observed a viral nonstructural protein (nsp1) 
binding to ribosomes and inhibiting host gene translation, a 
marked downregulation of ACE2 expression and inducing of 
ACE2 shedding from the cell surface [80–82].

Due to the important pathophysiological role of ACE2, 
Samavati and Uhal [83] state that the binding of the viral spike 
to ACE2 triggers a potential effect on the loss of the protective 
effect of the ACE2/ Ang 1-7/ Mas pathway on alveolar epithelial 
cells and other organs, in addition to causing increased levels 
of Ang II, which can amplify the systemic deleterious effects 
of the RAAS in the patients [83]. Although ACE2 allows viral 
entry at the epithelial surface, the ACE2/Ang 1-7/Mas axis can 
represent a potential target for therapeutic intervention, due to 
its role in protection in acute lung injury.

Compared to women, men with COVID-19 have more severe 
disease and higher mortality [84,85], it can be explained by several 
risk factors that are more frequent in men. Such as higher rates of 
preexisting comorbidities associated with COVID-19, as ischemic 
heart disease, hypertension, diabetes, chronic renal disease and 
cancer within 5 years, higher risk behaviors, as smoking and 
alcohol use, social isolation and certain occupational exposures; 
and lower innate immune response [86].Regarding the difference 
in ACE2 levels between genders, the ACE2 gene is located on the 
X chromosome and the testis have much higher levels of ACE2 
than the ovaries, which also suggests that women might have 
higher ACE2 levels and thus be protected against more severe 
disease compared to men [87,88]. 

In vivo, the enzyme that mediates the shedding of ACE2 
ectodomain is ADAM-17 (A- disintegrin and metalloproteinase 
17), also known as TACE (TNF-α-converting enzyme) due to 
its role to driven tumor necrosis factor-α (TNF-α) extracellular 
domain shedding and activation, a cytokine implicated in 
chronic inflammation [89,90]. In addition, ADAM 17 is related 
to the processing of other cytokines and receptors, among which 
many are correlated with the initiation and exacerbation of 
inflammatory process [91].
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After the binding of SARS-CoV-2 to ACE2, the complex is 
internalized by endocytosis and ACE2 shedding is induced, 
consequently, the diminished ACE2 availability impairs directly 
the protective roles of ACE2/Ang 1-7/Mas and Ang 1-9/AT2R 
axes. In turn, the increase in Ang II levels activates the AT1 
receptor, the overactivation of this signaling induces deleterious 
actions as progression of cardiovascular diseases, end-organs 
injury, cell growth, vascular contraction, fibrosis, inflammatory 
responses and salt and water retention, which undoubtedly, on 
its own, impairs the health of the infected patient [92]. 

Furthermore, other consequence of increased signaling via 
AT1R, is the activation of ADAM-17, which triggers the TNF-α 
releasing into extracellular region. In addition to the systemic 
cytokines, released due to SARS-CoV-2 infection, it can lead 
cytokine storm, besides to result in loss of ACE2 at the membrane 
due to its shedding function, leading a RAAS positive feedback 
cycle [92–94].

Regarding the KKS, Nicolau et al. [95] was the first group that 
linked bradykinin to COVID-19 context, correlating it with Sérgio 
Ferreira’s contributions from basic science to clinical ambit and 
this system. They hypothesized that targeting the KKS may be 
beneficial in SARS-CoV-2 infection, especially on early stages [95].

The interaction of kinins to their respective receptors will 
increase the activation of eNOS and iNOS. It ensues nitric oxide 
and prostacyclin (PGI2) releasing along with pro-inflammatory 
cytokines/chemokines responsible for acute inflammation, which 
cause vasodilation, pain, cell proliferation and fibrosis [96,97], 
typical symptoms of COVID-19.

A common feature for many patients that get severe COVID-19 
is serious lung damage caused by an overly vigorous immune 
response. It is characterized by the production of numerous 
inflammatory cytokines, the consequent cytokine storm. Ferreira 
et al. [98] demonstrated that BK production is an important 
step in the activation of a cascade of cytokines that participate 
in the inflammatory hyperalgesia [98]. 

COVID-19 patients can present with pulmonary edema early 
as symptom of the viral infection. Van de Veerdonk et al. [99,100] 
proposed that this disorder is caused by a local vascular problem 
due to activation of KKS receptors in lung endothelial cells. 
Since the coronavirus blocks ACE2 proteolytic activity for cell 
infection, the enzyme is unable to inactivate DABK, the potent 
ligand of B1R. Under this condition the lung environment is 
prone for a kinin-dependent local vascular leakage leading to 
angioedema via B1R and eventually B2R. Since this disorder is 
resistant to corticosteroids or adrenaline, this is an important 
feature of COVID-19 [99,100].

KKS appears to be involved in vascular leakage and 
inflammatory response observed during different viral infections 
[101]. Another symptom that has been highlighted in patients 
with COVID-19 and seems to be involved with this system is the 
formation of microthrombi, which can trigger thrombosis [102]. 
Since kallikrein, additionally, causes imbalance of coagulation 
system by activating factor XII and plasmin, the two mechanisms 
contribute to the formation of intravascular microthrombi, 
observed mainly in the lung tissue [95].

RAAS blockers and related COVID-19 therapies
RAAS blockers, as ACE inhibitors (ACEI) and angiotensin II 
receptor blockers (ARBs), are worldwide used for effectively 
reducing systemic vascular resistance in patients with 
hypertension, heart failure and chronic renal disease. There 
are animal models studies that demonstrated a substantial 
increase of ACE2 expression under ACE inhibitors or ARBs 
administration, which represents a potential mechanistic link 
between SARS-CoV-2 infection and these medications [103–105]. 

ACEI group (such as enalapril, ramipril, captopril, and 
lisinopril) acts by inhibiting ACE, making it unable to convert 
Ang I into Ang II, thus blocking vasoconstrictor properties, the 
activation of aldosterone and sodium reabsorption attributed to 
Ang II of the RAAS. In addition, the ACEI inhibits the conversion 
of active kinins (such as bradykinin and kallidin) in inactive 
peptides, promoting the vasodilating effect of the KKS cascade.

Evidences suggest that ACEI can also abolish the desensitization 
of the B2R or delay its sequestration, which also potentiates BK 
action [106]. Another effect of ACEI on KKS receptors was 
demonstrated by Ignjatovic et al. [107], they found that enalaprilat 
activates B1R directly in the absence of ACE. This inhibitor 
activates at the zinc-binding consensus sequence HEXXH in 
B1 receptor, which is present also in ACE but not in B2R [107].

While the ARB group (such as losartan, candesartan, 
valsartan, irbesartan, and telmisartan) blocks the AT1R. This 
blockade leads to increased Ang II levels, which stimulates 
the non-blocked angiotensin II receptor, AT2R, and triggers 
intracellular acidification by inhibiting the amiloride-sensitive 
Na+/H+ exchanger. 

Consequently, it is possible that this condition activates 
kallikrein, resulting in augmented BK production and endothelial 
B2R stimulation through a paracrine mechanism, activating the 
NO/cGMP system and causing vasodilation [55,58]. Therefore, in 
addition to blocking the classical harmful effects of Ang II through 
AT1R signaling, therapies that use ARBs also promote the beneficial 
effects of the KKS, even indirectly by kallikrein activation.

The RAAS blockers have been extensively used to treat 
cardiovascular disorders, reducing mortality and morbidity. 
Thus, researches on SARS-CoV-2 pathogenesis have been focused 
on discussions about these compounds, and how they could fit 
pathophysiological processes of COVID-19, since these pathways 
were substantially studied in SARS-CoV [76,108]. Due to the 
increased ACE2 expression caused by treatment with these 
popularly used classes of drugs in some experimental models 
and high number of infected hypertensive patients, questions 
such as whether continued use of RAAS blockers could increase 
virulence and severity of symptoms or whether such treatment 
should be stopped, have been frequently asked.

The relationship between hypertension and COVID-19 
mortality exists, but it is known that older ages strongly 
correlate with hypertension and have been associated with higher 
mortality rates from COVID-19 [85,109]. Thus, new analyses 
need to be done aiming an adjustment with age-stratified data 
for the hypertension and mortality association, to verify if this 
is a reliable finding [110].
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Evidences also supports the possibility that ACEIs and/or 
ARBs could reduce the severity of COVID-19 infection, since 
ACEI and/or ARB treatment could diminish effects of Ang II 
and increase Ang 1-7 effects, leading to attenuated inflammation 
and fibrosis [111]. Some studies, with animal models, support the 
idea that RAAS blockers use could be protective in conditions of 
viral pneumonia, including coronavirus infection [112,113]. In 
addition, a recent retrospective observational study from Wuhan 
linked the ACEIs/ARBs treatment of hypertensive subjects 
affected by SARS-CoV-2 with lower all-cause mortality [114].

Interrupting ACE inhibitors and ARBs treatments in 
asymptomatic and stable patients with heart failure, kidney 
disease, diabetes or hypertension will disrupt clinical care and 
strongly require additional medical visits [111]. However, this 
decision is not feasible in this pandemic context, given the 
recommendations of social isolation and overcrowded hospitals.

Taking into account chronic patients using ACEI/ARBs, 
who were infected by SARS-CoV-2, the medical community 
substantially recommends they should not discontinue the 
treatment, neither temporarily [111,115]. Unless there exist 
evidence-based indication and robust data to discontinue these 
important life-saving medications.

Functionally, there are two forms of ACE2, the full-length 
ACE2 that contains a structural transmembrane domain, which 
anchors its extracellular domain to the plasma membrane and 
soluble Angiotensin Converting Enzyme 2 (sACE2) that lacks the 
membrane anchor and circulates in small amounts in the blood 
[116], other RAAS-related therapy which has been approached 
for COVID-19 treatment. Increasing ACE2 activity in systemic, 
not tissue, by human recombinant sACE2 administration may 
provide a new therapeutic target in states of Ang II-dependent 
hypertension by enhancing Ang II degradation and increasing 
Ang 1-7 levels [116].

In vitro study showed that SARS-CoV replication was blocked 
by a soluble form of ACE2 in monkey kidney cell line, Vero-E6 
[59]. SARS-CoV-2 have limited potential to escape sACE2-
mediated neutralization, since its binding with the virus blocks 
S protein and prevents its interaction with full length ACE2. 
Consequently, coronavirus attachment and internalization 
in the host cells is impaired [108], an outcome that attenuates 
virulence [117].

Based on these findings, Batlle et al. [108] proposed that 
sACE2 may act as a competitive interceptor of SARS-CoV-2 and 
other coronaviruses by preventing binding of the viral particle 
to the surface-bound, full-length ACE2. They suggest that the 
use of sACE2 as a potential approach for coronavirus infection 
therapy should be urgently tested [108].

As already described, ACE2 enzymatic functions protect 
against organ injury by cleavage and disposal of Ang II and 
the formation of Ang 1-7, as well as cleaving DABK, which is a 
proinflammatory peptide. In line, there are pharmacokinetic 
studies regarding human recombinant sACE2 in healthy 
volunteers and clinical trials have been developed as treatment 
for acute respiratory distress syndrome [118–120]. Very recent 

cell-based assays using engineering human sACE2 have been 
developed to optimize its binding to SARS-CoV-2 [117]. Using 
human organoids models, Monteil et al. [121] demonstrated that 
SARS-CoV-2 can directly infect human blood vessel and kidney 
organoids, and human sACE2 can inhibit these viral infections 
[121]. There are no studies in vivo ensuring efficacy of sACE2 
human therapy yet. Furthermore, it is worth mentioning that 
there is a concern that blood pressure could fall excessively due 
to systemic inactivation of Ang II by sACE2 administration. On 
the other hand, increased levels of intrinsic sACE2 in COVID-19 
patients can represent an additional risk, as the ACE2 anchored 
in cell membrane would lacks its N-domain after shedding, thus 
ACE2 local effects mediated by its catalytic action may decrease.

In late phases of COVID-19 development, when antiviral 
treatments are not so effective and ACE2 is markedly 
downregulated, the administration of ACE2 activator agents 
becomes a daring therapeutic proposal. Diminazene aceturate 
is an old antiparasitic that has been substantially studied due to 
its ACE2 activators properties, which restore protective RAAS 
and KKS axes [122]. 

As this compound has anti-inflammatory and tissue protectant 
profile, in addition to be an FDA-approved drug [122,123], Nicolau 
et al. [124] hypothesized the use of diminazene aceturate as 
potential therapeutic strategy for late stage mainly in pulmonary 
complications provoked by SARS-CoV-2 infection. It could 
improve clinical outcomes by reduction of proinflammatory 
cytokines and augmenting surfactant proteins ACE2-dependent, 
consequent effects of ACE2 activation [124].

Taken together, the protective effects of RAAS blockers on 
the heart and blood vessels are at least partly mediated by the 
direct or indirect KKS activation, and reduction of Ang II/
AT1R signaling, due to decreased Ang II production or AT1R 
blockade, increase of Ang l levels and consequently augmented 
Ang 1-7 by the action of Neprilisin. Or in the case of sACE2 
therapy and ACE2 activators, there is a counterbalancing of the 
deleterious effects caused by downregulation of ACE2 in SARS-
CoV-2 infection, as shown in Figure 2. In this way, it occurs a 
direct increased formation of protective angiotensin, Ang 1-7 
from Ang II and Ang 1-9 from Ang I, in addition to reducing 
DABK levels and its inflammatory outcomes.

Potential therapeutic strategies related with the RAAS 
components also comprise the prevention of S protein SARS-
CoV-2/ACE2 interaction by viral receptor-binding domain 
blockade. Which may include the use of ACE2-derived peptides, 
small molecule inhibitors, ACE2 antibody or single chain 
antibody fragment against ACE2[92].

The enhancement of DABK/B1R signaling, caused by reduced 
ACE2 levels after coronavirus infection, triggers consequential 
events as fluid extravasation, leukocyte recruitment to the 
lung and may increase the risk of capillary permeability, acute 
respiratory distress syndrome and multiple organ failure [41]. 
Administration of B1R antagonists in experimental models 
of sepsis shown prevented hemodynamic derangement and 
attenuates the risk of multi-organ failure [125].
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Figure 2. Schematic of COVID-19 outcomes on the renin-angiotensin-aldosterone and kallikrein-kinin systems, and proposed therapies with RAAS blockers, B1R 
and recombinant sACE2. (I) SARS-CoV-2/ACE2 complex is internalized by endocytosis, (II) triggering viral replication and reduction of transmembrane ACE2, which 
provokes (IIIa) the imbalance of RAAS and KKS, with (IIIb) Ang II/AT1R and DABK/B1R pathway activation, respectively. (IVa) Ang II/AT1R upregulation induces 
ADAM-17 activation, which is responsible for (V) ACE2 shedding that can contribute to depletion of ACE2 local effects, in addition (IVb) Ang II/AT1R promotes 
inflammatory and fibrotic processes. (IVc) DABK/B1R upregulation also triggers pro-inflammatory cascades. It is pointed out the actions of RAAS blockers (ACEI 
and ARB), ACE2 activators and B1R antagonists, counterbalancing the deleterious effects of downregulation of ACE2 in SARS-CoV-2 infection. In detail, (VI) the 
effect of sACE2 recombinant as therapy, that act as a competitive interceptor of SARS-CoV-2 by preventing binding of coronavirus to the surface-bound, besides 
providing increased Ang 1-7 circulating levels. ACEI: angiotensin-converting enzyme inhibitors; ACE2: angiotensin-converting enzyme 2; ADAM-17: A-disintegrin and 
metalloproteinase 17; Ang 1-7: angiotensin 1-7; Ang II: angiotensin II; AT1R: angiotensin II receptor type 1; ARB: angiotensin II receptor blockers; BK: bradykinin; 
B1R: kinin B1 receptor; B2R: kinin B2 receptor; DABK, des-Arg9 bradykinin; KKS: kallikrein-kinin system; RAAS: renin-angiotensin-aldosterone system; sACE2: 
soluble angiotensin converting enzyme 2.

Regarding COVID-19 patients that present pulmonary edema 
early in disease, this condition added to enhancement of local 
immune cell influx and proinflammatory cytokines leading to 
damage, has been resulting in a very high number of intensive care 
unit admissions. It was hypothesized that blocking the B2R and 
inhibiting plasma kallikrein activity might have an ameliorating 
effect on early disorders caused by COVID-19 and might prevent 
acute respiratory distress syndrome [99,100], besides being able to 
collaborate with indirectly response to anti-inflammatory agents. 
Thus, there are indications that the KKS receptors antagonists 
can also be an option for symptoms COVID-19 treatment.

Conclusion
SARS-CoV-2 infection is intrinsically related to the RAAS, 
as the viral internalization apparatus is driven by ACE2, and 
indirectly linked to the KKS, due to the action of this enzyme 
on the degradation of DABK. Imbalance in the RAAS and KKS 
(caused primarily by loss of ACE2 activity in patients with 

COVID-19 are contributing factors to consequent deregulation 
of blood pressure), loss of protective effects, organ damage and 
exacerbated tissue and systemic inflammation, among others, 
are key factors that may explain the severity of the disease. These 
conditions make it tricky for the organism to react against the 
pathogenesis considering that, per se, it weakens the health 
conditions of patients.

Even with the proven increased ACE2 levels in continuous 
treatment with RAAS blockers, in view of its protective role, 
scientific communities strongly suggest a rationale for continuing 
this therapy in patients with COVID-19 infection. In addition, 
since it is responsible for metabolizing Ang II into Ang 1-7, a 
dominant mechanism for negative regulation on the RAAS, 
and for inactivating DABK, an inductor of pro-inflammatory 
repercussions of the KKS, ACE2 has relevant properties that have 
to be further explored as tools for the treatment of COVID-19 
patients. Taken together, there are gaps in knowledge that 
highlight the need for new studies to design more effective 
therapeutic and prophylactic strategies.
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