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SUMMARY

Unobserved environmental, demographic and technical factors can adversely affect the esti-
mation and testing of the effects of primary variables. Surrogate variable analysis, proposed to
tackle this problem, has been widely used in genomic studies. To estimate hidden factors that
are correlated with the primary variables, surrogate variable analysis performs principal com-
ponent analysis either on a subset of features or on all features, but weighting each differently.
However, existing approaches may fail to identify hidden factors that are strongly correlated with
the primary variables, and the extra step of feature selection and weight calculation makes the
theoretical investigation of surrogate variable analysis challenging. In this paper, we propose an
improved surrogate variable analysis, using all measured features, that has a natural connection
with restricted least squares, which allows us to study its theoretical properties. Simulation studies
and real-data analysis show that the method is competitive with state-of-the-art methods.
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1. INTRODUCTION

In regression analysis, the existence of unobserved factors can cause biases in estimating
parameters. Suppose that the true relationship in the data is

y = Xβ + Zδ + ε,

where y is a vector of outcome measurements, X is a matrix of the observed covariates including
the primary variables, and Z is a matrix of the unobserved factors. We are interested in estimating
the regression parameter β. Since Z is not observed, in practice we use the misspecified model

y = Xβ∗ + ε∗,

which can negatively impact inference on β.
With the development of high-throughput technologies in biomedical sciences, high-

dimensional data are routinely collected and analysed to find biologically meaningful features.
Unobserved factors can cause adverse effects, including inflation of Type I error and/or power
loss (Stegle et al., 2010). Although in practice great efforts are made to control confounders, such
efforts may be insufficient to avoid all confounding issues (Leek et al., 2010).

Principal component analysis on the original or residualized features after removing the effects
of observed dependent variables has often been used to identify hidden factors, and has been
successful in identifying and controlling for population stratification in genome-wide association
studies (Price et al., 2006). However, principal component analysis-based approaches are less
effective for gene expression studies, where the hidden factors can affect a subset of features with
relatively large effects (Leek & Storey, 2007). To overcome this limitation, surrogate variable
analysis has been proposed (Leek & Storey, 2007, 2008; Teschendorff et al., 2011; Chakraborty
et al., 2012) for microarray data. Leek & Storey (2007) initially developed a two-step approach
which involves first identifying a subset of features that may be affected by hidden factors but
not by primary variables, and then performing principal component analysis on the selected
features. Later, they modified the approach to a weighted principal component analysis, where
each feature is weighted according to its probability of being affected by the hidden factors only
(Leek & Storey, 2008). Surrogate variable analysis has been extended to factor analysis (Friguet
et al., 2009) and mixed-effect models (Listgarten et al., 2010). Recently, assuming that negative
control genes are known, Gagnon-Bartsch & Speed (2012) proposed a surrogate variable method.

Surrogate variable analysis has been successfully applied to many genomic studies (Dumeaux
et al., 2010; Teschendorff et al., 2010), but existing methods may fail to identify hidden factors.
Strong correlation between hidden factors and primary variables can prevent the two-step and
weighted principal component-based surrogate variable methods from identifying features that
are affected by hidden factors only. If negative control genes are affected by primary variables
or if the observed variation in negative control genes does not reflect unwanted variations in the
entire genome, the methods for removing unwanted variation can also fail to identify true hidden
factors.

In this paper, we propose a simple and straightforward method for identifying hidden factors
and adjusting for their effects. Our approach, called direct surrogate variable analysis, is based on
the observation that naïve estimators of the effects of the primary variables are biased when the
effects of hidden factors are ignored in the analysis, but the bias can be estimated and removed
using singular value decomposition on residuals. We derive the asymptotic properties of our
estimators using techniques recently developed for the ultrahigh-dimensional regime (Lee et al.,
2014) and the connection between our estimating procedure and the restricted least-squares
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method (Greene & Seaks, 1991).An R package (R Development Core Team, 2017) implementing
the proposed approach, dSVA, can be downloaded from the comprehensive R archive network.

2. METHODS

2·1. Direct surrogate variable analysis

Suppose that Y is an n×m matrix of measured features, where m is the number of features and
n is the number of samples. For gene expression data, Y represents RNA expression levels on m
genes. Further, suppose that X is an n × p matrix of observed covariates, including an intercept,
and Z is an n × q matrix of unobserved hidden factors. The following model represents the true
relationship between Y and (X , Z):

yi = Xβi + Zδi + εi, (1)

where yi denotes the ith column of Y , βi = (β1i, . . . ,βpi)
T is a p × 1 vector of regression

coefficients associated with X , δi = (δ1i, . . . , δqi)
T is a q × 1 vector of regression coefficients

associated with Z , and εi is an n × 1 random vector which follows N (0, σ 2
i I ). We further define

B = (β1, . . . ,βm) and � = (δ1, . . . , δm), which are p × m and q × m matrices of regression
coefficients associated with X and Z , respectively. In this model, βi and δi are assumed to be
fixed. Later, to generate large numbers of βi and δi values for the simulation studies, we use a
specified correlation between βi and δi. However, we emphasize that the proposed method is
frequentist: βi and δi are considered fixed and unknown.

In practice, since Z is not observed, we effectively use the misspecified model

yi = Xβ∗
i + ε∗i (2)

instead of (1). Under (2), the least-squares estimator of β∗
i is

β̂∗
i = (X TX )−1X Tyi = βi + (X TX )−1X TZδi + (X TX )−1X Tεi, (3)

with residual vector

ri = (I − M )yi = (I − M )Zδi + (I − M )εi, (4)

where M = X (X TX )−1X T is the projection matrix onto the column space of X . Equations (3) and
(4) indicate that β̂∗

i is a biased estimator of βi with bias (X TX )−1X TZδi. The conditional mean
of the residual vector given δi is (I − M )Zδi, which allows us to estimate Zδi via, for example,
singular value decomposition.

Suppose that singular value decomposition is performed on the residual matrix R =
(r1, . . . , rm), where R = UDV T, with D being a diagonal matrix of ordered singular values,
and U and V being matrices of left- and right-singular vectors. The first q left-singular vectors
can be viewed as estimators of linear combinations of the columns of (I −M )Z , which we denote
by (I −M )� where � = ZT , with T being a q×q orthonormal matrix. Letψi = T Tδi. For any T ,
the matrices � and Z have the same column space, so �ψi is identical to Zδi. With an additional
assumption that the row vectors of B and the row vectors of � are asymptotically orthogonal
after mean centring, we can estimate � and use it to remove the bias in β̂∗

i . The proposed method
is as follows.
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Step 1. Carry out singular value decomposition on the residual matrix R = UDV T. Let Uq be
the matrix comprising the first q columns of U that are equivalent to the q left-singular vectors
corresponding to the q largest singular values.

Step 2. Obtain β̂∗
i and ψ̂i from the model yi = Xβ∗

i +Uqψi+εi. Since X and Uq are orthogonal
to each other, β̂∗

i from this model equals that from model (3).

Step 3. Let B̂∗ = (β̂∗
1 , . . . , β̂∗

m) and 	̂ = (ψ̂1, . . . , ψ̂m). We propose to estimate the surrogate
variables � as

�̂ = Uq + X B̂∗(I − MJ )	̂
T{	̂(I − MJ )	̂

T}−1,

where MJ = J (J TJ )−1J T is a projection matrix with J = (1, . . . , 1)T.

Step 4. Estimate and test βi from the model

yi = Xβi + �̂ψi + εi. (5)

This method requires estimation of q, the number of surrogate variables, which can be
obtained by permutation (Buja & Eyuboglu, 1992) or by analytical-asymptotic approaches (John-
stone, 2001; Leek, 2011). In this paper, we use the method of Buja & Eyuboglu (1992) for all
numerical work. Since � and ψi can be always rescaled, they are not identifiable, so we set∑n

i=1
∑q

j=1 �
2
i,j = nq, where �i,j is the (i, j)th element of �, and adjust �̂ to satisfy this restric-

tion. In the Supplementary Material we show that B̂ = (β̂1, . . . , β̂m) from (5) in Step 4 is the
same as

B̂ = B̂∗ − B̂∗(I − MJ )	̂
T{	̂(I − MJ )	̂

T}−1	̂, (6)

in which B̂∗(I − MJ )	̂
T{	̂(I − MJ )	̂

T}−1	̂ is an estimate of the bias of the naïve estimator B̂∗.
In § 2·3, we show that (6) is related to the restricted least-squares method.

2·2. Consistency of the proposed estimators

Important questions are under what conditions does the proposed �̂ span the same column
space as Z , and whether β̂i is a consistent estimator of βi. For high-dimensional data, the number
of features, m, can be substantially larger than the number of samples, n, and thus asymptotic
results derived from the traditional low-dimensional setting where m is fixed are inappropriate
(Johnstone & Lu, 2009; Jung & Marron, 2009; Lee et al., 2010). Lee et al. (2014) considered a
regime in which both m and n increase to infinity with m/n = γm → ∞. This regime is well-
suited to high-throughput biomedical data, where the number of genes is in the tens of thousands
and the number of samples is in the range of several dozens to hundreds. We work in this regime
and investigate the asymptotic properties of the proposed method under the spiked-eigenvalue
model of Johnstone (2001).

Before presenting our main results, let us define some additional notation. Suppose that am and
bm are two sequences. We write am � bm if am = O(bm) and bm = O(am), and write am � bm if
am/bm = o(1). We also define ϕv(·) to be the function that returns the vth largest singular value
of an input matrix. Without loss of generality we assume that ‖Xi‖ � n and ‖Zi‖ � n, where Xi
and Zi are the ith columns of X and Z , respectively, and ‖·‖ is the vector norm. We introduce the
following conditions.
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Condition 1. Both m and n increase to ∞ with m/n = γm → ∞.

Condition 2. Let λv = ϕv{(I − M )Z�}, where � = (δ1, . . . , δm). Then λ1 � λ2 � · · · � λq,
λ1 > · · · > λq, and (nγm)

−1/2λv → ∞ for v = 1, . . . , q.

Condition 3. Let φ(k) = m−1 ∑m
i=1(σ

2
i − σ̄ 2)k , where σi is the standard deviation of εi

and σ̄ 2 = m−1 ∑m
i=1 σ

2
i . Then either of the following is satisfied: (i) φ(2) = o(n−2m); or

(ii) φ(2) = o(n−3/2m), φ(4) = O(1) and φ(4) = o(n−4m3).

Condition 4. Let An = (X , Z) be the matrix with p + q columns formed by concatenating X
and Z . Then AT

nAn is nonsingular with ϕ1(An) � n and ϕp+q(An) � n.

Condition 5. Suppose that βki and δki are the (k , i)th elements of B and �, respectively, and
that β̄k = ∑m

i=1 βki/m and δ̄k = ∑m
i=1 δki/m. For all (k , l),

1

m

m∑
i=1

(βki − β̄k)(δli − δ̄l) = op

{
1

m

m∑
i=1

(δli − δ̄l)
2

}
.

Condition 2 assumes the spiked-eigenvalue model (Johnstone, 2001), which ensures that the
effects of hidden factors are large enough to be identified by singular value decomposition.
Condition 3 comprises the sphericity conditions on nonspiked singular values (Lee et al., 2014).
The relative growth rates of m and n play a key role in this condition. For example, when
m−1 ∑m

i=1(σi − σ̄ )k is greater than zero, m must grow at a faster rate than n2 to satisfy the first
condition in Condition 3. The second part of Condition 3 relaxes the assumption on φ(2) but
adds an assumption on φ(4). Condition 5 requires that the row vectors of B and the row vectors
of � be asymptotically orthogonal after mean centring.

THEOREM 1. Suppose that Conditions 1–5 are satisfied. Then the columns of �̂ span the same
column space as the columns of Z with probability 1, and β̂i − βi = op(1) for i = 1, . . . , m.

Theorem 1 shows that the proposed method produces consistent estimates of βi and the hidden
factors. The proof can be found in the Supplementary Material.

2·3. Relationship to the restricted least-squares method

We now show the connection between the proposed method and the restricted least-squares
procedure of Greene & Seaks (1991). Suppose that Cβ = c is a linear restriction on β. The
restricted least-squares estimator β̂RLS of β is the solution of

minimize (y − Xβ)T(y − Xβ) subject to Cβ = c.

It can be shown that β̂RLS = β̂∗ − H (Cβ̂∗ − c), where β̂∗ = (X TX )−1X Tyi is the ordinary
least-squares estimator and H = (X TX )−1CT{C(X TX )−1CT}−1.

When estimating βi, we impose a restriction on β and δ, and hence on β and ψ , such that
they are asymptotically orthogonal after mean centring. While this is not a linear restriction as
in the restricted least-squares procedure, the similarity of the two approaches can be illustrated
as follows. Let vec(·) be a function on a matrix which stacks the columns of the matrix into one
long vector. Then model (2) for all m features can be re-expressed as

vec(Y ) = (Im ⊗ X )vec(B∗)+ vec(E∗),
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where B∗ = (β∗
1 , . . . ,β∗

m), ⊗ is the Kronecker product, and Im is the m × m identity matrix. We
further define C = 	(I − MJ )⊗ Ip and Ĉ = 	̂(I − MJ )⊗ Ip. The solution of

minimize {vec(Y )− (Im ⊗ X )vec(B∗)}T{vec(Y )− (Im ⊗ X )vec(B∗)}
subject to Ĉ vec(B∗) = 0

is vec(B̂RLS) = vec(B̂∗)− HĈ vec(B̂∗), where

HĈ = {(Im ⊗ X )T(Im ⊗ X )}−1ĈT[Ĉ{(Im ⊗ X )T(Im ⊗ X )}−1ĈT]−1Ĉ

= (I − MJ )	̂
T{	̂(I − MJ )	̂

T}−1	̂(I − MJ )⊗ Ip.

Now vec(B̂RLS) can be written as

vec(B̂RLS) = vec(B̂∗)− [
(I − MJ )	̂

T{	̂(I − MJ )	̂
T}−1	̂(I − MJ )⊗ Ip

]
vec(B̂∗),

which leads to

B̂RLS = B̂∗ − B̂∗(I − MJ )	̂
T{	̂(I − MJ )	̂

T}−1	̂(I − MJ ). (7)

Clearly, B̂ in (6) and B̂RLS in (7) are identical if 	̂(I −MJ ) = 	̂. Hence the proposed method and
the restricted least-squares method are identical if the row means of 	̂ are zero. Gene expression
data are commonly normalized so that the row means of Y are equal (Bolstad et al., 2003); this
makes the row means of the residual matrix R, and consequently the row means of 	̂, all zero.
Thus, this zero-mean condition is easily satisfied by gene expression data. If 	̂(I − MJ ) |= 	̂,
then B̂ and B̂RLS will be different.

Since Ĉ is a random matrix, our procedure is not the same as the restricted least-squares
procedure, which assumes that the restriction matrix C is fixed. However, the discussion above
highlights the similarity between the two approaches. The restricted least-squares estimator can
have smaller mean squared error than the ordinary least-squares estimator if the restriction is
satisfied (Greene & Seaks, 1991). From our simulations, we observe that our estimators tend to
have smaller mean squared errors than the estimators from the true regression model, where the
restriction is not utilized.

3. NUMERICAL STUDIES

3·1. Simulation studies

We performed simulations to compare the proposed approach with existing methods in a wide
range of scenarios. For each simulated dataset, 5000 features and 100 samples were generated
from the regression model

yji = βixj + zT
j δi + εji (j = 1, . . . , 100; i = 1, . . . , 5000),

where εji was generated from N (0, σ 2
i ) with σ 2

i following an IG(10, 9) distribution, which yields
E(σ 2

i ) = 1 and var(σ 2
i ) = 0·125.



Direct surrogate variable analysis 309

Table 1. Simulation parameters; the total number of simulation
settings is 864

Parameter Values

μz 0, 0·5, 1
Percentage of nonzero δ 10, 20, 40, 60
Percentage of nonzero β 5, 10, 20
Overlap among nonzero δ total overlap, independent
Number of hidden factors 2, 4
Type of X binary, continuous
Correlation between nonzero β and nonzero δ 0, 0·4, 0·7

A total of 864 simulation settings are summarized in Table 1. The binary and continuous xj
were simulated respectively from

xj =
{

0, j � 50,

1, j > 50,
xj =

{
N (−1, 0·5), j � 50,

N (1, 0·5), j > 50,

and the first two hidden factors were simulated from

zj1 ∼
{

N (μz, 1), j � 50,

N (−μz, 1), j > 50,
zj2 ∼ Ber(0·5).

When the number of hidden factors is four, i.e., q = 4, (zj3, zj4) were independently generated
from N (0, 1). The parameter μz determines the correlation between the primary variable, xj,
and the first hidden factor, z1. Three different values of μz were considered: 0, 0·5 and 1. The
regression coefficients β and δ were generated from the distribution

⎛
⎜⎜⎜⎜⎜⎝

βi
δi1
δi2

···
δiq

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

ai0ζi0
ai1ζi1
ai2ζi2

···
aiqζiq

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

ai0
ai1
ai2

···
aiq

⎞
⎟⎟⎟⎟⎟⎠ ∼ N

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0,

⎛
⎜⎜⎜⎜⎜⎝

1 ρ 0 · · · 0
ρ 1 0 · · · 0
0 0 1 · · · 0
··· ··· ··· · · · ···
0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

where ζil (l = 0, . . . , q) are indicator variables, ζil = 0 or 1, that determine which of the
β and δ have nonzero values. To mimic real biological data where the primary variables and
hidden factors are not associated with all features, we assumed that 5%, 10% or 20% of the βi
were nonzero and that 10%, 20%, 40% or 60% of the δik were nonzero. The value of ζi0 was
independently assigned. For ζil (l = 1, . . . , q), we considered situations in which nonzero δ
values were totally overlapping, ζi1 = · · · = ζiq, or independently selected. In the first situation,
each feature either had no associated hidden factors or was associated with all q hidden factors.
The correlation between the nonzero βi and the nonzero δi1, namely ρ, was set to ρ = 0, 0·4 and
0·7, representing scenarios in which Condition 5 ranged from being satisfied to severely violated.

Nine different methods were compared: direct surrogate variable analysis; regression model
(1), where the hidden factors are assumed to be known and included in the analysis; a no-
adjustment model, i.e., regression model (2), where the hidden factors are ignored in the analysis;
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the iteratively reweighted surrogate variable analysis of Leek & Storey (2008); the two-step
surrogate variable analysis of Leek & Storey (2007); principal component analysis on the resid-
uals; principal component analysis on the original measurements of the features; latent effect
adjustment after primary projection (Sun et al., 2012); and four-step remove unwanted variation
(Gagnon-Bartsch et al., 2017). Latent effect adjustment after primary projection uses an outlier
detection approach after initial data projection to adjust for hidden factors. We treated the second
method as a gold standard. In both principal component analyses, top principal components were
selected and treated as surrogate variables.

For the four-step remove unwanted variation method, we assumed that 6% of features were
negative control genes, close to the proportion of housekeeping genes in the genome (Gagnon-
Bartsch & Speed, 2012). We considered situations in which negative control genes were selected
only among features with βi = 0, i.e., high-quality control genes, or were randomly selected
among all features, i.e., poor-quality control genes. In the second case, the assumption of negative
control genes was violated. A method to estimate the number of surrogate variables for the four-
step remove unwanted variation method has been developed (Gagnon-Bartsch et al., 2017). We
used this method in conjunction with the method of Buja & Eyuboglu (1992) to estimate q for
the four-step remove unwanted variation method; for all other methods, the approach of Buja &
Eyuboglu (1992) was used to estimate q.

For each simulation set-up, 200 datasets were generated and the performance of each method
was evaluated based on (i) empirical false discovery rates, where the significant findings were
determined by the Benjamini & Hochberg (1995) procedure for a targeted false discovery rate
of 0·05; (ii) the mean squared errors of the βi; and (iii) the area under the receiver operating
characteristic curve. For calculation of the false discovery rate and the area under the receiver
operating characteristic curve, we define true and false positives as follows. If βi |= 0 and a
statistical test for βi = 0 is significant after applying the Benjamini–Hochberg procedure, it is a
true positive. If the test is significant when βi = 0, it is a false positive. In addition to the mean
false discovery rates, we calculated the proportion of datasets with an empirical false discovery
rate greater than 0·5.

Figure 1 shows simulation results from a scenario where Condition 5 was satisfied, i.e., ρ =
0. Direct surrogate variable analysis performed well, as the observed area under the receiver
operating characteristic curve and the mean squared errors are similar to those obtained from
the approach assuming that the hidden factors are known, and the observed false discovery rates
are only slightly inflated in a few simulation settings. Among 288 simulation settings, only four
had mean false discovery rates higher than 0·1. As expected, the no-adjustment and principal
component analysis-based approaches performed very poorly. When the negative control gene
assumption was satisfied, the remove unwanted variation method performed only slightly worse
than direct surrogate variable analysis: in ten of the simulation settings, the mean empirical false
discovery rates were larger than 0·1; however, when this assumption was violated, the remove
unwanted variation method had substantially inflated false discovery rates. The latent effect
adjustment after primary projection method had mean empirical false discovery rates above 0·3
in some simulation settings. Since this method was not developed to estimate β, we did not
obtain the mean squared errors. When the method developed for four-step remove unwanted
variation was used to estimate the number of surrogate variables, the overall performance of
the remove unwanted variation method declined substantially, indicating that the method of
Buja & Eyuboglu (1992) performs better in estimating the number of surrogate variables. We
compared different approaches to estimating q, and the method of Buja & Eyuboglu (1992)
outperformed the others; see the Supplementary Material. In Fig. 2, we directly compare the two
top-performing approaches: direct surrogate variable analysis and the four-step remove unwanted
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Fig. 1. Comparisons of the proposed and competing methods when ρ = 0. Each bar summarizes results from 288
different simulation settings, and in each setting 200 datasets were generated to calculate: (a) mean empirical false
discovery rates, FDR; (b) the proportion of datasets with empirical FDR higher than 0·5; (c) the mean area under
the receiver operating characteristic curve, AUC; and (d) the mean squared errors, MSE. The methods compared
are: dSVA, direct surrogate variable analysis; KnownZ, hidden factors known and included in the model; NoAdj,
no adjustment for hidden factors; IRW, iteratively reweighted surrogate variable analysis; 2-SVA, two-step surrogate
variable analysis; rPCA, principal component analysis on the residuals; PCA, principal component analysis on the
original measured features; LEAPP, latent effect adjustment after primary projection; RUV4-High, four-step remove
unwanted variation method with high-quality control genes; RUV4-Poor, four-step remove unwanted variation method
with poor-quality control genes; RUV4-High2, RUV4-High with q̂ from Gagnon-Bartsch et al. (2017); RUV4-Poor2,

RUV4-Poor with q̂ from Gagnon-Bartsch et al. (2017).

variation method with high-quality control genes. Direct surrogate variable analysis clearly does
better in controlling the false discovery rates.

To investigate the effect of each simulation parameter on the performance of the methods
when ρ = 0, we created plots for each parameter value. Since the no-adjustment and principal
component analysis-based methods performed substantially worse than the other methods, we
did not include them in these plots. Among the parameters, μz and the percentage of nonzero
δ had large effects on the performance of some methods. Figure 3(a) shows boxplots of the
false discovery rates with different μz values. The iteratively reweighted and two-step surrogate
variable analysis approaches had well-controlled false discovery rates when μz = 0 and 0·5, but
had inflated rates when μz = 1. Therefore, these two methods cannot efficiently estimate the
hidden factors in the presence of a strong correlation between X and Z . Figure 3(b) shows that
when the percentage of nonzero δwas 10%, direct surrogate variable analysis had slightly inflated
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Fig. 2. Comparison of direct surrogate variable analysis, dSVA, and the four-step remove unwanted variation method
with high-quality control genes, RUV4-High, when ρ = 0: (a) mean empirical false discovery rate; (b) mean area

under the receiver operating characteristic curve; (c) mean squared errors.
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Fig. 3. Comparison of mean empirical false discovery rates when ρ = 0 for: (a) μz = 0, 0·5 or 1; and (b) different
proportions of nonzero δ; 10%, 20%, 40% or 60%. In each simulation setting, 200 datasets were generated to obtain
the mean empirical false discovery rates. The methods compared are: dSVA, direct surrogate variable analysis; IRW,
iteratively reweighted surrogate variable analysis; 2-SVA, two-step surrogate variable analysis; LEAPP, latent effect
adjustment after primary projection; RUV4-High, four-step remove unwanted variation method with high-quality

control genes; RUV4-Poor, four-step remove unwanted variation method with poor-quality control genes.

false discovery rates, perhaps because direct surrogate variable analysis uses all features, instead
of selecting features with nonzero δ. Since the four-step remove unwanted variation approach
uses a small fraction of features to estimate the hidden factors, it had more inflated false discovery
rates when the percentage of nonzero δ was small. The performances of the different methods in
terms of areas under the receiver operating characteristic curves and mean squared errors were
largely similar.

Additional simulation results are presented in the Supplementary Material. Our proposed
approach was observed to perform well even when q was overestimated and Condition 5 was mod-
erately violated. Overall, our simulation study shows that the proposed method can outperform
existing methods in diverse scenarios.
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Table 2. Proportion of variability in year explained by the estimated sur-
rogate variables; for a fair comparison, the same number of surrogate

variables was used in all the methods
Type Number of surrogate variables dSVA IRW 2-SVA RUV4

EUR vs (JPT + CHI) 25 0·70 0·41 0·64 0·73
JPT vs (EUR + CHI) 25 0·78 0·68 0·72 0·78
CHI vs (EUR + JPT) 25 0·80 0·64 0·71 0·80
JPT vs CHI 16 0·86 0·79 0·79 0·86

EUR, JPT and CHI, individuals of European, Japanese and Chinese ancestry, respectively;
dSVA, direct surrogate variable analysis; IRW, iteratively reweighted surrogate variable
analysis; 2-SVA, two-step surrogate variable analysis; RUV4, four-step remove unwanted
variation method.

3·2. Application to real data

We downloaded the Hapmap dataset GSE5859 from the National Center for Biotechnol-
ogy Information gene expression omnibus website to investigate differentially expressed genes
between European and Asian populations (Spielman et al., 2007). This dataset contains 8793
genes, or features, and 208 samples from three continental populations: 102 European, 65 Chi-
nese, and 41 Japanese. The affy package (Gautier et al., 2004) was used for background correction
and quantile normalization (Bolstad et al., 2003). In the Supplementary Material we perform an
analysis without quantile normalization as a sensitivity analysis. Similar to the original study,
we restricted the analysis to 4044 reliably expressed genes in at least 80% of the samples in one
population (Spielman et al., 2007).

The original study showed that nearly 70% of genes were differentially expressed across the
European and Asian samples (Spielman et al., 2007), but it was subsequently discovered that
the calendar year in which each sample was processed was a strong confounding factor (Akey
et al., 2007; Leek et al., 2010), and many of the positive findings could potentially be false. In
this analysis, we considered a scenario where the researchers did not record the calendar year of
sample collection and investigated whether the proposed surrogate variable analysis could capture
the year effect. We treated year as a categorical response variable and estimated the proportion
of variability that can be explained by the surrogate variables.

Table 2 shows the proportion of the variability explained by surrogate variables estimated
by four different methods. Since the estimated variability would increase with the number of
surrogate variables, for a fair comparison we used q = 25 for all the methods, which was estimated
by the method of Buja & Eyuboglu (1992). Both direct surrogate variable analysis and the remove
unwanted variation method performed well, as 70% and 73% of the variability was explained
by the surrogate variables estimated from these respective methods. In contrast, the surrogate
variables from the iteratively reweighted and two-step surrogate variable analysis approaches
explained only 41% and 64% of the variability in year, respectively. We also considered different
combinations of the populations. Direct surrogate variable analysis and the four-step remove
unwanted variation method again consistently outperformed the other methods.

Without any hidden variable adjustment, 73% and 65% of genes were found to be differen-
tially expressed between the European and Asian populations at false discovery rates of 0·05
and 0·01, respectively. As pointed out elsewhere, it seems implausible that so many genes would
be differentially expressed between the two populations (Akey et al., 2007). When direct surro-
gate variable analysis was applied, only 29% and 18% of genes were found to be significant at
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false discovery rates of 0·05 and 0·01, respectively. Li et al. (2010) have reported that approxi-
mately 20% of genes in lymphoblastoid cell lines are differentially expressed between Hapmap2
European and African samples at a false discovery rate of 0·01. Given that the genetic differ-
ence between the European and African populations is greater than that between the European
and Asian populations, 18% of genes differentially expressed between the European and Asian
populations seems a reasonable estimate.

When we applied two-step surrogate variable analysis and the four-step remove unwanted
variation method to the Hapmap data, 15% and 18% of genes, respectively, were declared to
be differentially expressed between the European and Asian populations at false discovery rate
0·01. In contrast, 65% of genes were found to be significant by iteratively reweighted surrogate
variable analysis at the same false discovery rate, indicating that this method fails to identify the
effects of the hidden factors. When we included year as a covariate in the regression analysis,
only 28 genes, i.e., 0·7% of the tested genes, were significant at false discovery rate 0·01, because
year was nearly nested within each population. All Asian samples were processed in 2005 and
2006, but only three European samples were processed in those two years.Among these 28 genes,
15 were significant according to direct surrogate variable analysis. On the other hand, 12 and
14 genes, respectively, were significant by two-step surrogate variable analysis and the four-step
remove unwanted variation method.

We carried out an additional analysis using the same dataset to identify genes differentially
expressed by gender. Since genes in sex chromosomes can be used as positive control genes,
this additional analysis can be used to directly evaluate the performance of each method. The
results show that our method had comparable or slightly better performance than the competing
methods; see the Supplementary Material for details.

4. DISCUSSION AND CONCLUSION

Surrogate variable analysis was originally proposed for gene expression data, but it has since
been applied to epigenetic data as well (Teschendorff et al., 2011; Maksimovic et al., 2015).
Recently, surrogate variable analysis has been extended to prediction and clustering problems.
For example, Parker et al. (2014) developed frozen surrogate variable analysis to remove batch
effects for prediction problems, and Jacob et al. (2016) extended the remove unwanted variation
method to unsupervised learning. Direct surrogate variable analysis was mainly developed for
differential expression analysis, but it can be extended to other types of -omics data, as well as to
prediction problems, by adopting the approaches used in frozen surrogate variable analysis. We
leave such extensions for future research.

One key assumption of the proposed method is Condition 5, which requires that the vector of
β values across m genes and the vector of δ values across m genes be asymptotically orthogonal
after mean centring. We think that this is reasonable for many biomedical datasets. In our real-data
analysis, for example, batch effects are purely technical issues and their effect sizes would not be
correlated with those of population differences. Moreover, our method is robust with respect to
moderate violations of this condition. In simulation studies, for instance, our method shows better
false discovery rate control than the competing methods when ρ = 0·4. A similar assumption is
implicitly used in existing methods. For example, in their simulation studies, Sun et al. (2012)
generated β and δ independently. They also suggested that when β and δ are correlated, it will
be difficult to identify β.

Principal component analysis was used to correct for batch effects and the effects of hidden
confounders prior to the introduction of surrogate variable analysis. This approach has proven



Direct surrogate variable analysis 315

very successful for genome-wide association studies (Price et al., 2006). However, our simulation
results show that naïve use of principal components for hidden factor adjustment can result in
severe power loss, because the top principal components identified can be highly correlated with
the primary variables when the effects of the primary variables are not too weak. When this is
the case, principal component analysis should be avoided.
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