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Abstract 

Background: High emotional or psychophysical stress levels have been correlated with an increased 
risk and progression of various diseases. How stress impacts the gut microbiota to influence metabolism 
and subsequent cancer progression is unclear.  
Methods: Feces and serum samples from BALB/c ANXA1+/+ and ANXA1-/- mice with or without 
chronic restraint stress were used for 16S rRNA gene sequencing and GC-MS metabolomics analysis to 
investigate the effect of stress on microbiome and metabolomics during stress and breast tumorigenesis. 
Breast tumors samples from stressed and non-stressed mice were used to perform Whole-Genome 
Bisulfite Sequencing (WGBS) and RNAseq analysis to construct the potential network from candidate 
hub genes. Finally, machine learning and integrated analysis were used to map the axis from chronic 
restraint stress to breast cancer development. 
Results: We report that chronic stress promotes breast tumor growth via a stress-microbiome- 
metabolite-epigenetic-oncology (SMMEO) axis. Chronic restraint stress in mice alters the microbiome 
composition and fatty acids metabolism and induces an epigenetic signature in tumors xenografted after 
stress. Subsequent machine learning and systemic modeling analyses identified a significant correlation 
among microbiome composition, metabolites, and differentially methylated regions in stressed tumors. 
Moreover, silencing Annexin-A1 inhibits the changes in the gut microbiome and fatty acid metabolism 
after stress as well as basal and stress-induced tumor growth.  
Conclusions: These data support a physiological axis linking the microbiome and metabolites to cancer 
epigenetics and inflammation. The identification of this axis could propel the next phase of experimental 
discovery in further understanding the underlying molecular mechanism of tumorigenesis caused by 
physiological stress. 

Key words: 16S rRNA gene sequencing; gut microbiome; metabolic level; epigenetic signature; PICRUSt; differentially 
methylated regions; machine learning; restraint stress; serum metabolites; feces metabolites; WGBS; breast cancer; tumorigenesis 
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Introduction 
Breast cancer, among women alone, accounts for 

nearly 30% of all cancer diagnoses, with an estimated 
281,550 new cases and close to 43,600 deaths in 2020 
[1]. Epidemiological and clinical studies have 
provided strong evidence for links between chronic 
stress and breast cancer progression [2]. Stress is 
becoming an increasingly inevitable part of people’s 
lives in contemporary societies. An integrated 
definition describes stress as a constellation of events 
that involves a stimulus that precipitates a reaction in 
the brain and, in turn, activates physiological 
fight-or-flight responses in the body[3-5]. Stress has 
been proposed to modulate the metabolic, 
transcriptional, and epigenetic regulation of various 
diseases, including cancers [6-9], and affects cancer 
progression through the suppression of immunity 
and the exacerbation of chronic inflammation [10-12]. 

 Stress factors are also linked to the disruption of 
the commensal microbiome homeostasis. Given that 
the commensal microbiota is a host-intrinsic regulator 
of systemic immune functions [13], it is not surprising 
that stress alters microbiota diversity, via a process 
known as dysbiosis, influencing the systemic immune 
environment [14], which is associated with a poorer 
outcome in multiple diseases [15-17]. Perturbations in 
the diversity of the microbiome can affect the 
abundance of specific bacterial species and increase 
the risk of disease [18-20].  

 Epigenetic changes in tumors are emerging as 
fundamental regulators of breast cancer development 
and progression [21]. During carcinogenesis, 
chromatin structure alterations mainly include DNA 
chemical modification such as CpG methylation and 
post-translational modification of DNA bound 
proteins, including histones [22]. Together with 
subclonal mutations and signals from the 
microenvironment, methylation modulates the cancer 
cell phenotype and affects the metastatic propensity 
of the tumor [23-25]. The direct connections between 
metabolism and chromatin dynamics now present 
important conceptual challenges to explain many 
aspects of tumorigenesis [26]. Changes to intracellular 
metabolism can alter the expression of specific histone 
methyltransferases and acetyltransferases, conferring 
widespread variations in epigenetic modification 
patterns [27, 28]. 

 Direct connections between the microbiome, 
metabolism, and chromatin dynamics present 
important conceptual challenges to explain many 
aspects of tumorigenesis. Several components of the 
epigenetic machinery require intermediates of cellular 
metabolism for enzymatic function. Furthermore, 
changes to intracellular metabolism can alter the 

expression of specific histone methyltransferases and 
acetyltransferases, conferring widespread variations 
in epigenetic modification patterns.  

 Studies on one or two aspects of our analysis, 
such as microbiome, metabolism, or epigenetics in 
breast cancer, have been reported. However, systemic 
analysis of the effect of stress on breast cancer through 
multi-omic approaches has not been performed. The 
overall purpose of this study was to determine the 
links between stress and breast tumorigenesis via the 
gut microbiome, gut-serum metabolite levels, 
epigenetic signatures, and transcriptomic expression 
in tumors using integrated analysis and machine 
learning. Hereby, we hypothesize that stress 
hormones (e.g., cortisol) alert the gut microbiome 
composition via the brain-gut axis and causes changes 
in metabolites in the gut and blood. Stress will also 
further disturb epigenetic signatures and 
transcriptome profiling in mice tumors in a remote 
manner.  

 In particular, Annexin-A1 (ANXA1) is a 
glucocorticoid regulated gene which plays an 
essential role in breast cancer development both in 
vitro and in vivo. ANXA1 is implicated in multiple 
functions essential in cancer, including cell 
proliferation, apoptosis, chemosensitivity, metastasis, 
and invasion [55]. ANXA1 associates with, and 
regulates NF-κB, and increases c-Myc activity to 
promote breast cancer migration and metastasis [56, 
57]. Importantly, ANXA1 deficient mice exhibit 
reduced tumor growth and enhanced survival [58]. In 
this study, we hypothesized that ANXA1 is involved 
in stress-related promotion of breast cancer 
development and determined its role in the regulation 
of microbiome, gut-serum metabolites.  

To our knowledge, our study suggests a novel 
stress-microbiome-metabolite-epigenetic-oncology 
(SMMEO) axis that is induced by stress.  

Results 
Stress promotes breast tumor development 

BALB/c mice were subjected to 10 days of 
restraint stress with one day of rest before orthotopic 
injection of murine 4T1-luc breast cancer cells into the 
mammary gland (Figure 1A). Stressed mice exhibited 
higher levels of luciferase activity seven weeks after 
stress (Figure 1B), and tumor size was markedly 
increased after stress from days 34 to 47 after injection 
(Figure 1C) (p < 0.05). Plasma and feces corticosterone 
levels were measured at day 0 (before stress, BS), 4 
(during stress, S), and 14 (2 days after stress, AS) of 
the stress procedure (Figure 1A). Stress significantly 
increased (p < 0.05) the plasma and feces 
corticosterone levels on days 4 and 14 (Figure 1D). To 
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further study the effect of stress on tumor 
development, multi-omics analyses were performed 
to investigate the underlying molecular mechanism in 
the process (Figure S1). 

Stress alters gut microbiome composition in 
mice 

16S rRNA gene sequencing was used to 
investigate the restraint-stress-induced changes in the 
microbiome that could lead to increased tumor 
development in mice. Ace and chao1 analysis of the 
fecal microbiome of non-stressed (NS) vs. stressed (S) 
mice showed that the stressed group had higher 
microbial alpha-diversity, even though the difference 
was not significant (Figure 2A). Principal component 

analysis (PCA) demonstrated that the fecal 
microbiome in NS mice clustered separately from S 
mice (Figure S2A), suggesting both qualitative and 
quantitative differences in the two groups’ gut 
microbiomes. Increased bacterial loads at the phylum, 
class, order level were observed in stress stages in 
stressed mice (Figure S2B-G), implying that stress 
regulated the gut microbiota response and altered the 
gut microbiome. Stress decreased the Firmicutes/ 
Bacteroidetes (F/B) ratio (Figure 2B) in the S and AS 
stages. A Circos diagram shows the composition and 
abundance of the gut microbiome were different 
among the before stress, stress, and after stress stages 
(stress vs. non-stress) (Figure S2H). Compared with 
the even distribution of each OTU in the before stress 

 

 
Figure 1. Chronic stress promotes breast tumor development in vivo (A) Schematic of experimental design and sample collection protocol for stress and non-stress; 
n ≥ 6 mice in each group. The treatment and sampling time were indicated with Before stress (BS), Stress (S), End of stress (ES), and After stress (AS) stages. (B) In vivo images 
of tumor samples by Xenogen IVIS imaging system in week seven after stress. The left mice were non-stressed; the right mice were stressed by restraining. 4T1 cells were 
injected after stress. The tumor area is shown in red. (C) Growth curve of tumors seven weeks after stress. #p = 0.0216. (D) Fecal and serum corticosterone levels at different 
stages of acute restraint stress when compared with the non-stressed group. Data are representative of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 in 
one-way ANOVA with Tukey’s post hoc test. 
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group, OTU61 (o_Rhodospirillales), OTU59 (Clostri-
diales), and OTU62 (o_Clostridiales) were of highest 
abundance in the stress and after stress groups. The 
taxonomy of the differently distributed OTUs is listed 

in Table S1, while the microbial composition and 
disease link in stress is shown in Table S2. Three 
major taxonomic units, Clostridiales, Rhodospirillales, 
and Gastranaerophilales, are closely related to cancer. 

 

 
Figure 2. Altered gut microbiome composition and metabolome in stress (A) Alpha-diversity (ace and chao1) between the NS and S groups at three stages (D0, D4 
and D14). (B) The ratio of Firmicutes and Bacteroidetes in NS and S groups at three stages. (C) Linear discriminant analysis effect size (LDA) between the NS and S groups at 
D4 stage. Red, bacterial taxa statistically overrepresented in NS samples; green, bacterial taxa overrepresented in S samples. The length of the bar represents log10 transformed 
LDA score. The absolute values of the effect size provide an interpretation of the scale of the difference between two groups for a certain taxon. (D) Taxonomic cladogram 
obtained from LEfSe analysis showing differentially abundant bacteria taxa between NS and S groups at D4 stage. Green represents increased abundance in the S group; red is 
increased abundance in the NS group. (E) COGs of PICRUSt analysis between NS and S groups at three stages. In this figure and below, BS, S, and AS were used to indicate the 
three stages when the S group compared with the NS stages (D0, D4, and D14). n ≥ 6 mice in each group. 
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A linear discriminant analysis (LDA) effect size 
(LEfSe) was applied to compare the microbiomes, 
demonstrating fine-scale differences in the bacterial 
taxon abundances between the non-stress and stress 
groups. We found seven differentially abundant 
clades (α = 0.05), including g_Parabacteroides in the 
stress mice and one differentially abundant clade in 
non-stress mice (Figure 2C). The cladogram (Figure 
2D) summarizes the LEfSe associations by 
representing the taxonomic relationships and 
abundances between the two groups. Five taxa (a, b, 
d, e, f), in particular, significantly represent two 
certain phylogenies in the stress group. Stress mice 
exhibited a high abundance of Lachnospiraceae 
UCG-001, Mucispirillum, and Rikenellaceae RC9 gut 
group. In contrast, the non-stress group showed high 
levels of Anaeroplasma and Ruminococcaceae UCG-014 
(Figure S2I). 

After sequencing, we predicted the functional 
genes in the fecal samples using Phylogenetic 
Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt) analysis. The 
differences in the clusters of orthologous genes and 
pathways between the microbial communities were 
analyzed using the Clusters of Orthologous Genes 
(COG) database and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis. After 
normalization, protein function classification 
demonstrated that stress stage samples had a lower 
abundance of all 24 COG gene families compared to 
the before stress microbial communities, but the 
abundance was restored in the after-stress stage. For 
example, COGs involved in chromatin structure and 
dynamics were more highly abundant in the 
regression period (after stress) (Figure 2E). Three 
COGs, (RNA processing and modification, cell 
motility, and the cytoskeleton), gradually decreased 
during stress from before stress to after stress.  

Stressed microbiota were involved in diverse 
pathways at all three KEGG orthology levels (levels 1, 
2, and 3). As shown in Figure S2J, metabolism was 
significantly enriched during stress compared to 
before stress and after stress stages in the level 1 
category. A heatmap obtained from the level 2 
analysis (Figure S2K) shows that pathways involved 
in carbohydrate metabolism, environmental adaption, 
cell motility, membrane transport, and transcription 
were highly enriched in samples taken before stress, 
while pathways classified to the digestive system and 
excretory system were more enriched in stress and 
after stress stages, and pathways involved the 
endocrine system, cancers, immune system, cell 
growth and death, were highly enriched after stress. 
Level 3 category results indicated that most annotated 

pathways were evenly distributed among all samples, 
with some outliers indicated (Figure S2L). Ether lipid 
metabolism was significantly enriched before stress, 
while a significantly greater proportion of genes 
involved in Parkinson’s disease; various types of 
N-glycan biosynthesis and apoptosis was observed in 
after stress. Collectively, these results suggest that 
stress not only altered the composition of the gut 
microbiome but also changed the intestinal 
microbiome response which may lead to enhanced 
tumor growth. 

Stress alters fecal and serum metabolome  
Next, we wished to understand the metabolite 

status in feces and serum after stress and to study the 
relationship between changes in the composition of 
the microbiome and metabolism. First, untargeted 
profiling GC-MS analysis of the metabolites from fecal 
and serum samples of the stress group was 
performed. A total of 45 and 44 different metabolites 
were identified from the fecal and serum samples, 
respectively (Table S3 and Table S4). PCA analysis 
demonstrates the obvious clustering and separation of 
the before stress, stress, and after stress stages 
according to the fecal and serum samples (Figure 
3A-B).  

The different fecal and serum metabolite levels 
in before stress, stress, and after stress, between the 
NS and S groups were compared using metabolite 
cluster analysis [29]. In the fecal samples (Figure 3C), 
the majority (35/45, 77.8%) of metabolites (Feces 
Cluster 1) increased during stress but reduced after 
stress, demonstrating a normal stress response. 
Approximately one-fourth (12/45, 26.6%) of the 
metabolites exhibited an adaptation response to stress 
(Feces Cluster 2), increasing from before stress to 
stress and remaining elevated after stress. In 
particular, some monounsaturated fatty acids, e.g., 
palmitoleic acid, linolenic acid, lactic acid, were up 
regulated in the stress and after stress fecal samples. 
Similarly, in the serum samples, the majority of 
metabolites showed the Cluster 1 pattern (33/44, 
75.0%) (Figure 3D), while 11 (25.0%) metabolites 
followed the Cluster 2 pattern. Seven metabolites 
were common to the Cluster 2 patterns in both the 
serum and feces samples (Figure 3E), which 
suggested that these altered metabolites exhibited a 
conserved pattern between feces and serum samples 
during stress. KEGG pathway analysis revealed that 
these metabolites are enriched in biosynthesis of 
unsaturated fatty acids, galactose metabolism, fatty 
acid biosynthesis, and linoleic acid metabolism 
(Figure 3F).  
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Figure 3. Altered metabolome in stress (A, B) PCA analysis of fecal and serum samples at three stages between NS and S samples. (C) Cluster analysis of fecal metabolites 
of S vs. NS samples at BS, S and AS stages; p < 0.01 Numbers in Parenthesis stand for the numbers of metabolites in the given cluster. (D) Cluster analysis of serum metabolites 
of S vs. NS samples at BS, S and AS stages; p < 0.01 (E) Venn diagram showing the overlap between Cluster 2 metabolites from fecal and serum samples. (F) KEGG analysis of 
the overlapping metabolites of Cluster 2 from fecal and serum samples according to MetaboAnalyst 5.0 [30]. The pathway whose p-value was below 0.05 was chosen as a 
potential target pathway. n ≥ 6 mice in each group. 

 

The gut microbiome and metabolites show a 
positive correlation during stress 

A correlation matrix was generated to explore 
the functional correlation between the gut 
microbiome and fecal metabolite changes. Clear 
correlations were identified between the perturbed 
gut microbiome and altered metabolite profiles (p < 
0.01). As shown in Figure S3A, the relative abundance 
of Cluster 2 fatty acids positively correlated with 
g_Candidatus Saccharimonas and g_Parabacteroides, (p < 

0.05), while it negatively correlated with 
g_Ruminiclostridium 6, g_Anaeroplasma (p < 0.05) 
(Table S5). The high correlation indicates that these 
specific bacterial taxa may enhance fatty acid 
metabolism pathway during stress. Further, the 
metabolites in feces and serum are well conserved in 
terms of function and expression (Figure S3B). In 
particular, the fatty acid metabolites (Cluster 2 
pattern) in feces were positively correlated with fatty 
acid metabolites in serum samples from stress mice (p 
< 0.01) (Figure 4A-B and Table S6). 
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Figure 4. Correlation analysis between the microbiome and metabolites (A-B) Correlation analysis between fecal fatty acids and serum metabolites. There was a high 
degree of statistically significant concordance between fecal fatty acids and serum fatty acids, with p < 0.01. (C-E) Variable importance of metabolites from S serum samples using 
three machine learning approaches. (C) Coefficient magnitudes generated by generalized linear modeling (GLM) with 3-fold cross-validation; training AUC = 1 and testing AUC 
= 0.96. (D) Scaled importance generated by gradient boosting machine (GBM) with 3-fold cross-validation; training AUC = 1 and testing AUC = 1. (E) Scaled importance 
generated by distributed random forests (DRF) with 3-fold cross-validation; training AUC = 1 and testing AUC = 0.96. 
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Three machine learning methods, namely 
generalized linear modeling (GLM), gradient boosting 
machine (GBM), and distributed random forests 
(DRF), were used to predict potential metabolite 
markers in serum samples from S and NS mice. All 
three methods reasonably predicted that 
L-methionine, sucrose, alanine 1/2, L-ornithine, 
threonine, and glucose are candidate biomarkers for 
the stress response (training area under the curve 
[AUC] = 1 and testing AUC ≥ 0.96) (Figure 4C-E). 
Therefore, stress exposure induced a significant 
taxonomic perturbation in the gut microbiome via the 
brain-gut axis, which substantially altered the 
metabolomic profile of the gut/feces metabolites and, 
thus, the serum metabolites.  

Stress affects the epigenetic signature in 
mammary tumors  

Genome-wide mCpG site analysis 
As the gut microbiome is distant from the site of 

breast tumors, we propose that a potential systemic 
influx of microbiome-regulated metabolites from the 
feces to the blood may affect the epigenetic signature 
in tumors during stress by chromatin dynamics, 
whose activity is directly dependent on metabolites 
[26, 31]. Bisulfite sequencing enabled the acquisition 
of the genome-wide DNA methylation landscape at 
the single-base resolution in tumors from NS and S 
mice. There were three contexts of C bases on the 
genome, CG, chlorhexidine gluconate (CHG), and 
CHH, where H represents any base of A, T, C. We first 
identified the percentage of methylated cytosines in 
each context. The average ratios of methylated mCG 
to total CG were 68.2% and 65.7% in the NS and S 
samples, respectively (Figure S4A). Dramatically low 
methylation statuses were found for the CHG and 
CHH sites. Among these detected mC sites, mCHH 
represented the highest proportion (~50%), mCpG 
(CG sites) made up a moderate proportion (~35%) 
and mCHG accounted for the smallest proportion 
(`15%) of methylation sites (Figure S4B). We observed 
significant differences (p < 0.05) between non-stressed 
and stressed samples for all three mC contexts. 

Next, we calculated the methylation density and 
average methylation level in each gene segment or 
transcript in the promoter, 5′UTR, exon, intron, and 
3′UTR areas. A higher density of mCHG and mCHH 
methylation was found in the five genomic areas in 
the S group, particularly in exons (Figure S4C). In 
comparison, a higher mCG methylation density was 
observed in almost all five genomic regions in the NS 
group. Compared with mCHG and mCHH, mCG 
showed the highest average methylation level in all 
five regions in both groups (Figure S4D). A 
significantly higher average CpG site methylation 

level was observed in the NS group compared to the S 
group (p < 0.0001) (Figure 5A). 

Differentially methylated regions (DMR) and Gene 
(DMG) analysis 

A total of 2,225 DMRs were identified under the 
CG context that included 254 significant DMGs (p < 
0.01, |Log2FC| ≥ 1) (Table S7) in NS vs S tumors. 
Among these DMGs, 106 had down-regulated 
methylation levels, and 148 had up-regulated 
methylation levels in the S tumors. The volcano plot 
in Figure 5B provides a general overview of the 
DMGs between the two groups of samples. We next 
investigated the number of mC sites in each given 
DMG. Lurap1l, Ick, Plxna2, Eva1a, Nos1, Nfatc1, Klf4, 
Syngap1, Inpp4b, and Gm37564 had the highest 
numbers of mC sites (Figure 5C). The distribution of 
DMRs in each genomic feature is presented in the 
Sankey diagrams (Figure S4E), which show the 
genomic region and chromosome distributions of the 
DMGs.  

We divided these DMGs genes into those that 
were up or downregulated in the S group and 
performed separate GO category and KEGG pathway 
analyses. The genes of the up and down-regulated 
groups were enriched to very different functional 
categories. MAPK signaling pathway, pathways in 
cancer, and breast cancer were associated with 
upregulated DMGs (Figure 5D), while arginine and 
proline metabolism and arginine biosynthesis were 
associated with down-regulated DMGs in S tumors. 
In terms of GO enrichment analysis, histone 
methyltransferase complex was key in the 
upregulated group, and another methylation-related 
GO item, m7G (5') pppN diphosphatase activity, was 
associated with a down-regulated DMG set 
(NUDT10) from S tumors. Our data suggest that DNA 
methylation changes are involved in regulating 
metabolism, histone methyltransferase, and other 
critical breast cancer signaling pathways. 

Stress induces genome-wide gene expression 
changes in tumors 

We performed RNA-seq analysis on NS and S 
breast tumor samples to identify the functional 
consequences underlying the negatively and 
positively altered DMGs under stress. We obtained 
930 DEGs, including 676 significantly up-regulated 
genes and 254 significantly down-regulated genes, in 
the S vs. NS tumors. A volcano plot is used to 
visualize the results, in which the top 13 significantly 
changed genes were plotted (Figure 5E). A heatmap is 
also used to compare the levels of DEGs between 
non-stress and stress groups (Figure S4F). 
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Figure 5. Stress affects the epigenetic signature and gene expression changes in mice breast tumors. (A) Distribution of the methylation rate of mCpG sites on 
the whole genome. (B) Summary of DMR-related gene (DMG) results. Volcano plot representation of DMGs in the S and NS tumor samples. The X-axis shows Log2fold-changes 
in methylation level, and the y-axis is the -Log 10 p-value of a DMG. (C) The top 10 DMGs for mC count. (D) GO and KEGG enrichment analysis of DMGs in the S tumor 
samples. Biological processes (BP), cellular components (CC), and molecular function (MF) (E) Venn diagram showing the co-expression and up/down-regulation of genes in NS 
and S tumor samples (top). Volcano plot of RNA-seq transcriptome data displaying significantly differentially expressed genes (DEGs) from tumor samples with or without stress 
(bottom). Significant DEGs (FDR-corrected P ≤ 0.05) are highlighted in blue, with the grey lines representing the boundary for identification of up- or down-regulated genes (Log2 
FC>1). Selected top high-expression genes related to stress response are indicated. (F, G) KEGG pathway analysis of up- and down-regulated DEGs significantly enriched in 
functional categories (P ≤ 0.05). The gene ratio is the ratio of the DEG number and the number of all genes in a certain enrichment pathway. The dot size denotes the number 
of DEGs, while colors correspond to the adjusted p-value range. All transcriptome experiments were performed in biological triplicate. One-way analyses of variance (ANOVA) 
were used to determine the inter-group differences between two groups for one or two variables (***p < 0.001). 
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To further analyze the functional variation in the 
DEGs, we used GO and KEGG analyses. The most 
significantly enriched GO terms in the BP, CC, and 
MF categories in the up-regulated DEGs were 
regulation of membrane potential, cell-cell junction, 
and inorganic cation transmembrane transporter 
activity. Downregulated DEGs were significantly 
enriched in pathways related to inflammation (Figure 
S4G-H). KEGG pathway enrichment analysis showed 
that the up-regulated DEGs were mainly involved in 
fatty acid biosynthesis and metabolism and cancer 
(Figure 5F), while the down-regulated DEGs were 
again enriched in pathways and diseases related to 
inflammation (Figure 5G). In addition, gene set 
enrichment analysis (GSEA) revealed that the 
relatively high-ranking pentose and glucuronate 
interconversions, fat digestion and absorption, and 
steroid hormone biosynthesis gene sets were 
positively associated with stress; while three gene 
sets, cytokine-cytokine receptor interactions, 
glycosaminoglycan biosynthesis chondroitin sulfate 
dermatan sulfate, and primary immunodeficiency, 
were negatively associated with stress (Figure S5). 

DNA methylome and transcriptome analyses 
reveal the correlated regulation of hub genes 
in stress-promoted tumorigenesis  

DNA methylation at gene regulatory regions is 
usually considered to influence transcript expression 
levels [32]. We merged the DMGs and DEGs and 
identified 13 genes that showed significantly 
differential methylation and gene expression (Figure 
6A). According to the methylation and gene 
expression patterns, the overlapping genes between 
the DMGs and DEGs were classified into three 
distinct groups (denoted G1, G2, and G3). Genes in G2 
(Tbc1d9) and G3 (Cdh10, Lrrc4c) followed the canonical 
model (a negative correlation between promotor 
methylation and gene expression) (R = −1, p = 0.027) 
(Figure 6B) [33], with Tbc1d9 downregulated and 
Cdh10 upregulated in stress tumors, implying that 
methylation may play a direct role in the regulation of 
transcriptomic-level phenotypes in stress-induced 
tumor development. In contrast, genes in G1 showed 
a non-canonical and weak correlation pattern (R = 
0.44, p = 0.2) (Figure S6A). KEGG pathway analysis 
demonstrated that G2 and G3 genes are enriched in 
cancer (Figure 6C). G1 genes were enriched in the 
MAPK signaling pathway and the oxytocin signaling 
pathway (Figure S6B). We validated the expression of 
Cdh10 and Tbc1d9 in breast cancer subsets using the 
TCGA dataset (http://tcgaportal.org/TCGA/Breast_ 
TCGA_BRCA). Cdh10 expression was not different 
throughout the subsets, while a lower expression of 
Tbc1d9 (p < 0.001) was observed in the ER-negative 

basal-type and HER2+ breast cancers (p < 0.05) 
(Figure 6D-E). Using Kaplan-Meier survival curves 
(https://kmplot.com/analysis/) for distant meta-
stasis free survival (DMFS) for breast cancer, higher 
expression of Cdh10 was associated with worse DMFS. 
In contrast, lower expression levels of Tbc1d9 were 
associated with prolonged DMFS (p < 1e-16) (Figure 
6D-E and Figure S7). Similarly, higher expression of 
Cdh10 was associated with significantly worse 
post-progression survival (PPS, p < 1e-16) in gastric 
cancer datasets and progression free survival (PFS) in 
lung cancer patients, while lower expression levels of 
Tbc1d9 in gastric cancer and lung cancer patients 
resulted in better PPS and PFS, respectively (Figure 
6D-E and Figure S7). This clinical data demonstrates 
a positive correlation to our mouse stress studies, 
linking stress to DNA methylated genes Cdh10 and 
Tbc1d9, related to cancer prognosis and survival.  

Integrated analysis of multi-omics data reveals 
the regulation network in stress-enhanced 
tumorigenesis 

We next performed intergraded network 
analysis combined with metabolites with the 
DMGs/DEGs data. The metabolite-gene-disease 
interaction network showed that the list of 
metabolites identified, such as ornithine, linoleic acid, 
l-alanine, are involved in Alzheimer disease and lung 
cancer, amongst others. 25 significantly differently 
expressed hub genes in the network indicated that 
this new emergent network is composed of 
metabolites, genes, and related disease pathways 
(Figure S8). Neuronal diseases and cancer pathways 
share some of the same metabolites and genes, 
showing a strong brain-cancer link. A more detailed 
gene-metabolite network analysis revealed the 
relationships between fatty acid metabolism and 
cancer pathways. Five metabolites and 18 hub genes 
were identified, and the correlation networks were 
constructed (Figure 6F). The up-regulated DEGs 
mainly contributed to the activation of palmitic acid 
and oleic acid metabolism or synthesis pathways. 
Two forked family genes (Foxl2 and Foxp2) 
contributed to L-alanine synthesis pathways, 
suggesting that the DMGs/DEGs are involved in 
stress-induced fatty acid biosynthesis during 
tumorigenesis.  

 These hub genes are enriched in the 
inflammatory response, neuroactive ligand-receptor 
interactions, and glycine, serine, and threonine 
metabolism pathways (KEGG, Figure S9A). 
Seventeen hub genes were significantly enriched in 
GO classes for terms such as positive regulation of 
metabolic processes, glutathione transmembrane 
transporter activity (GO, Figure S9B). Interestingly, 
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all the metabolites mentioned above were also 
directly connected to brain disorders, such as 
Alzheimer’s disease, as well as hyperglycinemia. 
These results further confirm the concept that the 
brain-gut axis is a leading player in stress-enhanced 
tumorigenesis. In addition to the fatty acid metabolic 
changes in tumorigenesis after stress, the 

downregulated DEGs were significantly enriched in 
the inflammation pathways. Based on our current 
results and our previous findings that ANXA1 is 
involved in breast cancer growth, we hypothesized 
that ANXA1 may also play a role in stress-induced 
tumor development. 

 

 
Figure 6. Integrated gene-metabolite network analysis. (A) Venn diagram comparing DMGs and DEGs. A total of 13 genes were identified from up- and down-regulated 
DMGs and DEGs. There were three groups identified: G1 (n = 10) genes were hypermethylated in the promoter with high gene expression level in tumor; G2 (n = 1) genes were 
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hypermethylated in the promoter with low expression in tumor; G3 (n = 2) genes were hypomethylated in the promoter with high expression in S tumors. (B) Pearson 
correlation analysis of G2 and G3 genes; R = −1, p = 0.027. Epi and RNAseq stand for the fold change of given genes in methylation levels and RNA expression in S samples. (C) 
KEGG pathway analysis of G2 and G3 genes; p > 0.05. (D-E). Kaplan-Meier survival curves show the correlation between marker gene expression and distant metastasis free 
survival (DMFS), post progression survival (PPS), and progression free survival (PFS) in breast, lung, and gastric cancer. Gene expression in different breast cancer types on the 
top. FPKM: fragments per kilobase of transcript per million fragments mapped. (F) Metabolite-gene interaction network analysis related to fatty acid metabolism and cancer 
pathways. The correlation network is composed of five metabolite compounds combined with 18 genes. Metabolites are represented by blue diamonds and genes by circles. 
Yellow: up-regulated DEGs. Grey: down-regulated DEGs. Red: hypermethylated DMGs. Green: hypomethylated DMGs. Metabolites with KEGG annotations from the merged 
data set were mapped to KEGG reference pathways, and interaction networks were generated in MetaboAnalyst5.0 (p < 0.005).  

 

ANXA1 deficiency reshapes the murine gut 
microbiome 

ANXA1 knockout (ANXA1-/-) mice were 
subjected to restraint stress conditions, and fecal and 
serum samples were collected for microbiome and 
metabolism analyses (Figure 7A). ANXA1 deficiency 
significantly reduced tumor growth to non-existent 
levels in the NS mice and S mice (p = 0.0051). Even 
with stress, the ANXA1-/- mice exhibited significantly 
smaller tumor volumes (Figure 7B) than wild-type 
(ANXA1+/+) mice (Figure 1C). We performed 
identical analyses in ANXA1-/- feces as described in 
Figure 2A. ANXA1-/- exhibited significantly lower α 
diversity under NS conditions, suggesting that the gut 
microbiome in ANXA1-/- were more sensitive to stress 
(Figure 7C). β-diversity composition of the fecal 
microbiome was significantly affected by ANXA1 
deficiency (p < 0.001) (Figure 7D). The changes in the 
fecal microbiota after stress in ANXA1-/- were 
explored at different taxon levels (Figure S10A-F). At 
the phylum level, the F/B ratio in BS ANXA1-/- feces 
samples was significantly lower than ANXA1+/+ BS 
feces and did not change upon stress (Figure 7E). The 
enrichment in gut microbiota functions of 
metabolism, cell growth and death; metabolic 
diseases; cancers; and immune system diseases in 
response to stress in the ANXA1+/+ mice was 
abolished in the ANXA1-/- mice (Figure 7F).  

A cladogram representative of the structure of 
the fecal microbiota and their predominant bacteria in 
NS and S ANXA1-/- feces is shown in Figure S11A-B, 
in which the greatest differences in taxa between the 
two communities are displayed using LEfSe. In 
addition, tracking individual OTU abundances 
revealed different dynamics within the dominant 
microbiota in ANXA1-/- mice to those of ANXA1+/+ 
samples (Figure S11C, Table S8). Microbiota species 
in the S ANXA1-/- feces mainly belonged to 
Saccharimonadia, Lachnospiraceae, and Bacteroidales. 
These microbes, different from those in the ANXA1+/+ 
sample, are lowered in many diseases, including 
colorectal cancer, obesity and type 2 diabetes (Table 
S9). Collectively, these changes in the fecal microbiota 
revealed that deleting ANXA1 expression attenuated 
the stress-induced gut microbiome dysbiosis. 

ANXA1 deficiency influences metabolism and 
methylation 

Using a clustering algorithm to classify the levels 
of metabolites in all stress stages (as described in 
Figure 3C-D), two major distinct clusters (C1 and C2) 
of patterns representing differentially regulated 
metabolites from fecal and serum samples of the 
ANXA1-/- mice. Combined with the clustering data 
shown in Figure 3C-D, 11 metabolites from 
ANXA1+/+ -C2 (enhanced at S and AS, Figure 3C) 
were suppressed to ANXA1-/- -C2 (reduced at S and 
AS), while 15 metabolites from ANXA1+/+ -C1 
(enhanced at S only, Figure 3C) were increased to 
ANXA1-/- -C2 in the ANXA1-/- fecal samples (Figure 
8A). The suppressed metabolites in ANXA1-/- were 
enriched in the biosynthesis of unsaturated fatty 
acids, linoleic acid metabolism, and fatty acid 
biosynthesis, suggesting that ANXA1 alters fecal 
microbiome metabolism by enhancing fatty acid 
metabolism during stress (Figure 8B). Moreover, the 
increased metabolites in ANXA1-/- included amino-
acyl-tRNA biosynthesis, phenylalanine, tyrosine and 
tryptophan biosynthesis, and phenylalanine 
metabolism, suggesting that these pathways may be 
involved in tumor suppression in ANXA1-/- (Figure 
8C). Similarly, we observed clear differences in the 
clusters between the ANXA1+/+ and ANXA1-/- serum 
samples (Figure 8D). Four metabolites were 
suppressed in ANXA1+/+ -C2 to ANXA1-/- -C1 in 
serum samples, and 12 metabolites from ANXA1+/+ 
-C1 to ANXA1-/- -C2 were increased in ANXA1-/- S 
serum. Similarly, the suppressed serum metabolites 
were enriched in fatty acid biosynthesis, while the 
increased serum metabolites were enriched in alanine, 
aspartate, and glutamate metabolism pathways 
(Figure 8E-F). When these differentially regulated 
metabolites in the feces and serum were compared, 
three pathways: biosynthesis of unsaturated fatty 
acids, fatty acid biosynthesis, and alpha-linolenic acid 
metabolism, were commonly suppressed. Three other 
pathways, aminoacyl tRNA biosynthesis, glycerolipid 
metabolism, and glycolysis/gluconeogenesis, were 
commonly increased). Moreover, correlation analysis 
further demonstrated that all the metabolites in the 
fecal samples were strongly connected to those in the 
serum samples from the ANXA1-/- mice (Figure S12 
A). 
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Figure 7. ANXA1 deficiency alters gut microbiome structure under stress (A) Schematic of experimental design and sample collection protocol for 
ANXA1-knockout mice. n ≥ 6 mice in each group. (B) Orthotopic tumor weight 36 days after injection of 4T1 cells. Results were obtained in three independent experiments. 
The data are shown as the mean ± SD; **p < 0.01. (C-D) Alpha-diversity and PCA analysis of bacteria varied across ANXA1+/+ and ANXA1-/- fecal samples; ***p < 0.001 (E) Ratio 
of Firmicutes and Bacteroidetes in ANXA1+/+ and ANXA1-/- fecal samples. (F) KEGG analysis of ANXA1+/+ and ANXA1-/- feces samples under stress conditions. (WT, 
ANXA1+/+; AKO, ANXA1-/-). 
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Figure 8. ANXA1 deficiency changes feces and serum metabolites (A, D) Metabolite clustering results (time-series line) based on metabolite expression levels. The 
horizontal axis denotes stress procedure timepoints (BS, S and AS) at which fecal (A) and serum (D) samples of ANXA1+/+ and ANXA1-/- mice were collected. The vertical axis 
denotes the levels of the metabolites relative to the internal standard. Numbers in brackets indicate the number of metabolites in each cluster. (B) KEGG analysis of the 11 
suppressed metabolites transferred from ANXA1+/+ -C2 to ANXA1-/- -C2 in fecal samples. (C) KEGG analysis of the 15 increased metabolites transferred from ANXA1+/+ -C1 
to ANXA1-/- -C2 in fecal samples. (E) KEGG analysis of the 4 suppressed metabolites transferred from ANXA1+/+ -C2 to ANXA1-/- -C1 in serum samples. (F) KEGG analysis of 
the 12 increased metabolites transferred from ANXA1+/+ -C1 to ANXA1-/- -C2 in fecal samples. (G) Interaction network constructed with GeneMania for highly altered hub 
genes and Anxa1. The color of the lines connecting the genes depicts the type of interaction (purple for co-expression, yellow for predicted, blue for co-localization, and pink for 
physical interaction). The colors in the circles indicate the functions (see key).  
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Machine learning analysis showed consistent 
results among three approaches that L-5-Oxoproline, 
L-Methionine, and Mannose represent the high AUC. 
The prediction analysis demonstrated the S ANXA1-/- 
mice would have a different metabolite composition 
compared to the ANXA1+/+ (Figure 4C-E, Figure 
S12B-D). The machine learning prediction results 
further demonstrated that ANXA1 deficiency changes 
the levels of the potential metabolite markers in the S 
serum samples. Accordingly, ANXA1 deficiency may 
alert the gut microbiome and regulate fatty acid 
metabolism in the feces and serum, leading to the 
remote inhibition of tumorigenesis.  

To further investigate the role of ANXA1 in fatty 
acid synthesis, the expression of fatty acid synthase 
(Fasn) and the upstream protein-ATP citrate lyase 
(Acly) were assessed. ANXA1 deficiency suppressed 
the protein expression of Fasn and Acly, but not 
mRNA (Figure S13A, B). Furthermore, the effect of 
ANXA1 deficiency on DNA methylation was 
assessed. DNA methyltransferase (cytosine-5) 
1(Dnmt1) mRNA and protein expression were not 
significantly different between WT and ANXA1 -/- 
4T1 cells (Figure S14A). However, mRNA and protein 
expression of lysine (K)-specific demethylase 1A 
(Lsd1) was significantly lower in 4T1 cells deficient in 
ANXA1 (Figure S14B).  

Correlation of ANXA1 with hub genes to 
regulate tumor development 

Finally, as no tumors developed in the ANXA1-/- 
mice, we next determined if ANXA1 interacts with 
hub genes to enhance oncogenesis based on the 
RNA-seq and epigenetic analysis of the ANXA1+/+ 
tumor samples. The correlation network results 
showed that Anxa1 is involved in vascular processes 
in the circulatory system, rhythmic processes, enzyme 
inhibitor activity, and fatty acid derivative transport 
via interactions with Ocln, Cbs, Ptgds, Pkia, Prok2, Gja1, 
Kcnma1, Oaz3, and Oxt (Figure 8G). In addition, two 
upregulated hub DEGs, Plin1 and Oxt, were positively 
correlated with Anxa1 expression in breast cancer 
patients (Figure S15A-B). Plin1 was found to function 
as a modulator of adipocyte lipid metabolism, and 
Oxt is involved in cognition, tolerance, adaptation, 
and stress responses [34, 35].  

Therefore, we here propose a model that 
illustrates the entire process through which stress 
promotes tumorigenesis via modulation of the 
microbiome composition and regulation of 
metabolism and resulted in the alteration of 
epigenetic signatures in our mouse model of breast 
cancer. ANXA1 deficiency suppresses tumor growth 
by altering the gut microbiome, regulating serum 
metabolite levels, and interacting with hub genes. All 

these changes involved fatty acid metabolism, the 
inflammatory stress response, and changes to 
neuro-hormone levels (Graphical Abstract). We have 
defined this microbiome-mediated metabolite and 
epigenetic interactions that caused breast cancer cell 
proliferation and collective feedback loops as the 
SMMEO axis. Brain (stress)-gut-tumor crosstalk, 
especially in non-gastrointestinal cancers, remains a 
crucial area of discovery. 

Discussion 
Humans are increasingly exposed to 

environmental factors that influence cancer 
development as the intensities of their lifestyles 
increase. Many studies have investigated the impact 
of stress in the promotion of cancer. Moreover, 
researchers have also tried to illustrate the impact of 
the gut microbiota on treatment responses to cancer 
[36, 37]. To our knowledge, our study is the first to 
systematically evaluate the role of stress in breast 
tumorigenesis through a multi-omics approach. This 
study will assist our understanding in determining 
how relevant the gut microbiome, metabolism, and 
tumor epigenetic signatures are to human breast 
cancer and what interventional strategies could be 
employed to improve patient outcomes.  

Our study has demonstrated that exposure to 
stress prior to the initiation of mammary cancer 
contributes to increased tumor growth, and that 
perturbations in the gut microbiome caused by stress 
can affect tumor growth at a distant site, which is in 
line with previous findings that suggest the gut 
microbiome has endocrine functions [18, 38, 39]. A 
number of metabolites associated with particular gut 
bacterial species correlated with DMG expression 
changes. Therefore, stress signals can disrupt the gut 
microbiome composition via the brain-gut axis and 
change gut and blood metabolites. Subsequently, 
these blood metabolites can mediate epigenetic and 
gene expression changes in the breast tumor 
microenvironment (Graphical Abstract).  

 The F/B ratio is regarded to be of significant 
relevance in human gut microbiota composition [40], 
where a lower F/B ratio was observed in breast cancer 
survivors [41]. Our results showed that stress 
decreased the F/B ratio, which is consistent with 
previous studies [42-44]. Interestingly, the profile and 
abundance of the microbiome may return to the 
baseline after stress, or the microbiome may adapt to a 
new state. This latter pattern may continuously affect 
downstream pathways to promote disease and 
tumorigenesis. Hence, the composition of the gut 
microbiome exists in a dynamic equilibrium that 
becomes more complex after stress [38].  
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An early study showed that the abundance of 
Clostridiales is closely related to steroidal estrogen 
production, contributing to breast carcinogenesis and 
stimulating tumor growth [45]. More detailed studies 
demonstrated that Clostridiales increases bile acid 
degradation in breast cancer patients [46]. A 
secondary bile acid, lithocholic acid (LCA), reduced 
breast tumor cell proliferation, aggressiveness, and 
metastatic potential of primary tumors through 
mesenchymal-to-epithelial transition and enhancing 
antitumor immune response [47]. Moreover, 
Faecalibacterium prausnitzii, a member of 
Clostridium cluster IV, suppressed the proliferation 
and invasion and promoted the apoptosis of breast 
cancer cells via inhibition of the secretion of IL-6 and 
the phosphorylation of JAK2/STAT3 in MCF-7 cells 
[48, 49]. The collagenase enzyme of the bacterium 
Clostridium histolyticum (CCH) was shown to reduce 
cell proliferation and wound healing in breast cancer 
MDA-MB-231 cells [50]. In addition, dietary fat affects 
Clostridiales level while smoking increases 
Rhodospirillales abundance and impacts the tumor 
microbiome in lung cancer [51]. Accordingly, different 
lifestyles, including stress may contribute to the gut 
microbiome composition and may thus be linked to 
cancer development. 

 Besides gut microbiota, breast microbiome can 
differ between healthy and cancer patients and 
contributes to the pathology of cancer via regulation of 
lipid signatures [52]. Accumulating evidence suggests 
that the microbial composition of breast tissue plays 
an important effect in cancer development [53-57]. It 
has been proposed that the endogenous and 
exogenous microbiome from the breast contributes to 
the maintenance of normal function of breast tissue 
either by stimulating resident immune cells or 
regulating metabolism [58]. Moreover, cholesterol 
(and lipid) metabolism has been implicated in breast 
cancer carcinogenesis [59-61]. In addition, cholesterol 
is a risk factor for breast cancer, through its impact on 
membrane fluidity and signaling pathways [62]. High 
plasma cholesterol levels can enhance the 
proliferation of tumor cells and tumor growth in 
mouse models [63]. Cholesterol and other lipid 
metabolites may act as biomarkers for breast cancer 
development and provide a novel target for cancer 
therapy. 

 Short-chain fatty acids (SCFAs) are known to 
play crucial roles in immune regulation and 
inflammatory diseases [64-66]. However, the 
underlying mechanisms of how long-chain fatty acids 
(LCFAs) influence brain physiology, gut microbiota, 
gut-brain communication, and tumor development 
have not been fully elucidated [67]. Cancer cells have 
an exuberant ability to synthesize fatty acids to 

maintain and promote cell growth and cancer 
progression [68]. In our study, stress significantly 
altered the levels of fatty acids in the feces and serum, 
which indicates that stress may promote breast tumor 
development via fatty acid metabolism and 
biosynthesis. A number of metabolites were directly 
shown to correlate with different microbiome 
taxonomic levels and DEGs/DMGs. Notably, the 
up-regulated DEGs mainly contribute, via the 
gut-metabolite-gene network, to the biosynthesis of 
LCFAs palmitic acid and oleic acid. Palmitic acid and 
oleic acid bridge the link between fatty acid 
biosynthesis, metabolism and cancer pathways, 
further supporting the notion that the brain-gut axis 
plays a vital role in tumorigenesis. Four hub genes, 
Npffr, Gpr132, Prok2, and Ptgds were commonly 
connected with palmitic acid and oleic acid, 
suggesting the functional conservation of these genes 
in fatty acid metabolism.  

 Bioactive metabolites such as short-chain fatty 
acids, amino acid metabolites, or secondary bile acids 
secreted from the gut microbiome play an essential 
role in regulating breast cancer development [69]. The 
fatty acids highlighted in Figure S3A have previously 
been shown to be involved in breast cancer 
development. Epidemiological studies have shown 
that elevated serum concentrations of oleic acid 
together with low levels of stearic acid are associated 
with an increased breast cancer risk [70, 71]. High 
levels of palmitoleic acid to palmitic acid 
concentrations are associated with an increased breast 
cancer risk and can enhance cancer development 
[72-74]. The influence of stearic acid on the inhibition 
of tumor cells in vitro and tumor development in vivo 
has been reported [75]. Stearate induces apoptosis 
preferentially in breast cancer cells this may be 
protein kinase C dependent [76]. The protective 
association provided by stearic acid has been 
previously reported in premenopausal women in a 
meta-analysis of fatty acids in biological samples and 
BC risk [77]. In a meta-analysis of 12 prospective 
studies, both linoleic acid intake and serum levels of 
linoleic acid were associated with decreased breast 
cancer risk. However, none of the associations was 
statistically significant [78]. In animal studies, 
α-linolenic acids have been shown to suppress the 
growth and proliferation of cancer cells and promotes 
breast cancer cell death [79-81]. α-linolenic acid 
reduces growth and inhibits the migration of both 
triple-negative and luminal breast cancer cells in high 
and low estrogen environments [82, 83]. Our results 
have confirmed that fatty acids play an essential and 
complex role in breast cancer development.  

 Similar to SCFAs [84], blood-borne microbial 
metabolites, including lithocholic acid (LCA) [85, 86], 
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deconjugated estrogens [87], and amino acid 
degradation products can remotely execute their 
physiological function. Anaerobic bacteria, such as 
Clostridiales, are responsible for bile acid 
transformation from gut origin to breast [88, 89]. The 
synthesis of LCA from the microbiome was vastly 
reduced in the advanced stage of breast cancer, 
pointing towards an antineoplastic role of LCA. LCA 
inhibited epithelial-to-mesenchymal transition and 
metastasis formation in breast cancer cells [85], and a 
high concentration of LCA inhibits fatty acid 
biosynthesis which could promote cell death [86, 90]. 
Interestingly, a large-scale metabolomics analysis 
demonstrated that a high level of microbiome-derived 
deoxycholate was found in breast tumors which was 
inversely associated with the cell proliferation in 
breast tumors, suggesting that this bile acid 
accumulation in the breast could be used for breast 
cancer survival prediction. [91]. In terms of amino 
acid degradation, bacteria synthesize cadaverine from 
lysine using the enzymes LdcC and CadA[92]. Similar 
to LCA, the cadaverine expression in gut microbiome 
is decreased in the later stages of breast cancer[93]. 
Moreover, cadaverine inhibits cell proliferation, cell 
growth and invasion, and tumor infiltration to the 
surrounding tissues by changing metabolism or 
reducing the proportion of ALDH1+ cancer stem cells 
[93]. Cadaverine exerts its function through the trace 
amine-associated receptor-1, 2, 3, 5, 8, 9 (TAAR1, 2, 3, 
5, 8, 9), of which TAAR1 has tumor suppressive roles 
[94]. These metabolites secreted from the microbiome 
are critical constituents of the tumor microenviron-
ment involved in breast cancer development. The 
dysregulation of the same metabolic pathways in 
tumors and the breast tumor microbiome therefore 
suggest an interconnection between the tumor and the 
corresponding microbiome. 

Previous reports have shown that microbiota can 
directly affect fatty acid metabolism levels. Multiple 
metagenomes analyses have demonstrated that 
g_Candidatus Saccharimonas can negatively regulate 
short-chain fatty acids metabolism [95]. Candidatus_ 
Saccharimonas were significantly inhibited with 
high-fat diets (HFDs) treatment in C57BL/6J mice[96]. 
On the other hand, the abundance of Parabacteroides 
was elevated after HFD feeding 4-weeks, which 
suggested that fatty acid level regulated microbe 
abundance [97]. A strong correlation between gut 
microbiota and fatty acids has been reported in 
autistic rats [98]. In terms of specific fatty acid, mice 
injected with valproic acid showed higher abundance 
of Candidatus_Saccharimonas which suggests a direct 
link between gut microbiota and fecal metabolites 
[99]. In line with our results, a positive regulation 
between Parabacteroides and SCFAs has been 

demonstrated in human fecal microbiota identified by 
in vitro fermentation [100]. In addition, high levels of 
SCFAs promote Parabacteroides bacteria abundance 
[101].  

The essential amino acid L-alanine, which is 
related to alanine, aspartate, and glutamate 
metabolism, is an ingredient of protein synthesis and 
inflammation [102]. Alterations can cause an 
imbalance in the energy metabolism and 
inflammatory responses involved in stress-induced 
tumorigenesis [103]. In addition to L-alanine, sucrose 
also showed strong correlations with DEGs and 
DMGs. A higher total sugar intake increases the risk 
of breast cancer development was associated with a 
poorer prognosis after breast cancer diagnosis [104, 
105]. These findings suggest that carbohydrate and 
amino acid metabolism are also involved in 
stress-enhanced tumor growth. 

Finally, our DMG/DEG combined analysis 
identified 2 genes, CDH10 and TBC1D9, which were 
upregulated, and downregulated in stressed tumors, 
respectively. CDH10 is the gene for cadherin 10, 
which is associated with autism[106]. CDH10 is 
shown to be highly mutated in colorectal cancer and 
associated with better survival[107]. However, our 
study showed that stress enhances CDH10, and a 
higher expression of CDH10 in breast, gastric and 
lung tumors is associated with poorer survival. 
TBC1D9 is a gene implicated as a long-term survival 
gene in breast cancer [108], its expression can 
differentiate TNBC (low) from non-TNBC (high) 
breast cancer samples, and overexpression leads to 
better prognosis [109], which is similar to our study. 
This shows that CDH10 and TBC1D9 are important 
genes in cancer and stress. 

 Immune-modulatory AnxA1 possesses multiple 
functions essential to cancer pathogenesis, including 
cell proliferation, apoptosis, metastasis, and invasion 
[110, 111]. AnxA1 -deficient mice exhibit reduced 
tumor growth and enhanced survival in vivo [112], 
and AnxA1 expression is correlated with the high 
metastatic ability[113], and ANXA1 modulates the 
immune response in cancer [114]. Recently, evidence 
has shown that ANXA1 could be used as a possible 
new therapeutic avenue via repairing blood-brain 
barrier damage in metabolic disease [115]. In addition, 
ANXA1 inhibits obesity, suggesting that ANXA1 
improves metabolism in models of metabolically 
stressed animals [116]. Our current study further 
demonstrated that silencing ANXA1 slows tumor 
growth and reverses the effects of stress on the 
changes in the gut microbiome and fatty acid 
metabolism. This has not been previously reported 
and may explain the multiple functions of ANXA1 in 
cancer.  
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In conclusion, combining multi-omics analysis 
with machine learning has led us to define the 
SMMEO axis that results from the stress induction of 
microbiome-mediated metabolite and epigenetic 
interactions that eventually lead to the enhancement 
of tumorigenesis. One limitation of this study is we 
did not present the direct relationship between 
microbiota composition / metabolomic profile 
changes and tumor growth. Other host-related 
changes may also play an important role in stress. An 
additional work showing that microbiota depletion or 
supplementation orally with the metabolites of 
interest can induce similar changes in tumor growth 
would benefit this multi-omics study. The novel 
microbiome and epigenetics markers are potential 
therapeutic avenues to preventing cancer in women 
facing stress and thus have enormous potential for 
improving treatment outcomes.  

Materials and Methods 
Mice, Stress exposure and Bioluminescence 
imaging of 4T1 tumor 

All animal work was approved by the NUS 
Institutional Animal Care and Use Committee 
(IACUC) and was in accordance with the National 
Advisory Committee for laboratory Animal Research 
(NACLAR) Guidelines (Guidelines on the Care and 
Use of Animals for Scientific Purposes). BALB/c 
ANXA1+/+ and ANXA1-/- mice were housed under a 
12-h light/dark cycle with food and water provided 
ad libitum under pathogen-free conditions in the 
animal housing unit of the Comparative Medicine 
Department of the National University of Singapore.  

Mice (ANXA1+/+ and ANXA1-/- ) were allocated 
to the NS control or tube-restraint stress groups (n ≥ 6 
per group). Mice in the tube-restraint stress group 
were placed in a ventilated 50 mL polypropylene 
conical tube (Corning Inc.) and subjected to restraint 
stress for two h per day (9:00 AM to 11:00 AM), while 
the NS group mice were left undisturbed in their 
cages. Mice in the stress group were restrained for 10 
consecutive days. The mice were then subcutaneously 
injected with 50 µL of stably transfected 4T1-luciferase 
cell suspension (104 cells per mouse) into the 
mammary fat pad, and mice were monitored for up to 
40 days. The size of the tumours and tissue metastasis 
was measured and analyzed via a bioluminescence 
imaging assay using the Xenogen IVIS Spectrum 
Imaging System, along with the machine’s software 
(Comparative Medicine facility at NUS). Mice were 
injected with 150 µL of luciferin (150mg/kg) 
VivoGlo™ Luciferin, Promega) intraperitoneal. 
Tumour volumes were measured manually using a 
digital caliper and were calculated using the equation: 

V (mm3) = length (mm) × width (mm) × width 
(mm)/2). Mice were euthanized either at the end of 
the study or earlier if they displayed significant 
weight loss, signs of distress, or palpable tumours 
≥2.0 cm in diameter. 

16S ribosomal rDNA sequencing and 
microbiome analysis 

The QIAamp DNA Stool Mini Kit was used for 
fecal DNA extraction in accordance with the 
manufacturer’s protocols, and the DNA (20-30 ng) 
was used to generate amplicons libraries. To analyze 
the taxonomic composition of the bacterial 
community, amplicons containing the V3 and V4 
regions of the prokaryotic 16S RNA gene obtained 
with the primers were selected for the subsequent 
pyrosequencing (16S Amplicon PCR Forward Primer: 
5'-CCTACGGRRBGCASCAGKVRVGAAT-3'; 16S 
Amplicon PCR Reverse Primer: 5'- GGACTACNV 
GGGTWTCTAATCC-3'). Then, the library was 
purified with magnetic beads, the concentration was 
detected on a microplate reader, and fragment size 
was detected by agarose gel electrophoresis. The 
library was quantified to 10 nM, and PE250/FE300 
paired-end sequencing was performed according to 
the Illumina MiSeq/Novaseq (Illumina, San Diego, 
CA, USA) manual. MiSeq Control Software 
(MCS)/Novaseq Control Software (NCS) was used to 
read sequence information.  

After quality filtering, VSEARCH clustering 
(1.9.6) sequence (sequence similarity was set to 97%) 
was used for OTU clustering. Then the Ribosomal 
Database Program (RDP) classifier Bayesian 
algorithm was used to analyze the OTU species 
taxonomic representative sequences and the different 
species classification levels. Shannon and Chao1 
analyses and PCA results were displayed based on 
the sample OTU abundances table. 

Intergroup difference analysis at the phylum, 
class, order, family, genus, and species levels in each 
cluster were analyzed with the LEfSe method with 
default settings in Galaxy workflow framework 
(https://huttenhower.sph.harvard.edu/galaxy/root)
[117]. LEfSe used the two-tailed nonparametric 
Kruskal-Wallis test to evaluate the significance of 
differences between OTUs in the non-stress and stress 
groups. A set of pairwise tests was performed using 
the unpaired Wilcoxon test. Finally, LDA was 
performed to estimate the effect size of each 
differentially abundant OTU. The results are 
expressed as the mean ± SEM. The gut microbiotas 
were considered significantly different if their 
differences had a p-value of < 0.05 and an LDA score 
of |log10| > 2[118]. 
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The functions from the prokaryotic clades were 
first predicted using FAPROTAX [119] and visualized 
by ImageGP (http://www.ehbio.com/ImageGP/ 
index.php/Home/Index/index.html). In addition, 
we used Phylogenetic Investigation of Communities 
by Reconstruction of Unobserved States (PICRUSt) 
software (v1.0.0) [120] to characterize the functional 
genes in the sample through a comparison of the 
bacterial composition information obtained from the 
16S RNA gene sequencing data. The three following 
steps were performed in the analysis: (1) The selection 
of closed-reference OTUs from the obtained 16S rRNA 
gene sequences, comparison of the sequences with the 
Greengenes database, and the use of “nearest 
neighbor” in the database as the reference OTU. (2) 
Normalizing the OTU abundance matrix using the 
“nearest neighbor” rRNA gene sequence counts as 
reference. (3) Calculating and predicting the overall 
COG functions and pathways based on the “nearest 
neighbor” function profile derived from the 
KEGG/COG database. Next, we used the G-test and 
Fisher exact test to test the significance of the 
difference between two samples and t-test to compare 
between two groups. 

Disbiome database was used to uncover the 
microbial composition changes in different kinds of 
diseases, managed by Ghent University [121]. The 
major taxonomic units in the S group were searched 
and returned the information related to the 
experiment (related disease/bacteria, abundance 
subject/control, control type, detection method, and 
related literature). 

Metabolomics Analysis 
Chemicals and reagents. Methanol (MeOH, MS 

grade), pyridine (anhydrous grade), N-(9- 
fluorenylmethoxycarbonyl)-glycine (FMOC-glycine), 
methoxyamine hydrochloride, and N-methyl-N- 
trimethyl-silyl-trifluoroacetamide (MSTFA) were 
purchased from Sigma-Aldrich (St. Louis, Missouri, 
USA). Deionized water was obtained from Milli-Q 
purification system (Bedford, MA, USA).  

Sample preparation. The serum/feces sample 
preparation method was similar to one we used 
previously [122]. Briefly, 40 μL of serum was extracted 
with 280 μL of cold MeOH (FMOC-glycine as internal 
standard) to precipitate the proteins. Feces samples 
were extracted in an ice-cold methanol/water mixture 
(7:1, FMOC-glycine as internal standard) after by 
placing in a TissueLyser LT (QIAGEN, Germany) for 
10 min and sonicating at 25 Hz for 10 min. The 
mixture was then centrifuged for 20 min at 14,000 rpm 
and 5 °C, and the resulting supernatant was filtered 
through a micro-centrifugal filter (Thermo Scientific 
750-µL micro-centrifugal filter, PTFE membrane, 

0.2-µm pore size, non-sterile). The sample was 
vacuumed-dried (CentriVap concentrator, Labconco, 
USA) and derivatized with 100 µL of methoxyamine- 
pyridine solution (5 mg/mL) for 2 h at 60 °C, and then 
with 100 µL of MSTFA (40 °C, 16 h) for GC-MS 
analysis. Pooled quality control (QC) samples were 
prepared by mixing a certain amount of each 
serum/feces sample. The QC samples were analyzed 
at the beginning, the end, and randomly throughout 
the whole assay to evaluate the stability and 
reproducibility of the GC-MS analytical system.  

GC-MS analysis. GC-MS analysis was performed 
on an Agilent 7683B Series Injector (Agilent, Santa 
Clara, CA, USA) coupled with an Agilent 7890A 
Series gas chromatography system and a 5977B mass 
detector (Agilent). A fused silica capillary column 
HP-5MSI (60 m × 0.25 mm i.d., 0.25-μm film thickness) 
was used, and the injector was kept at 250 °C. A 1-μL 
aliquot of the sample was pulsed-split injected for 
each individual analysis. Helium was used as the 
carrier gas at a constant flow rate of 2 mL/min 
through the column. The GC oven temperature was 
maintained at 50 °C for 1 min, then increased to 250 °C 
at a rate of 8 °C/min, and further increased at 25 
°C/min to 300 °C and held for 7 min. The transfer line 
temperature was kept at 280 °C. Detection was 
achieved using MS in electron impact mode (70 eV) 
and full-scan monitoring (m/z 50 to 650). The 
temperature of the ion source was set at 230 °C, and 
that of the quadrupole was set at 150 °C.  

Metabolite Identification: The spectral data were 
exported as mzData files and pretreated with the 
online open-source XCMS (https://xcmsonline. 
scripps.edu/) for peak detection and peak alignment. 
Peak area normalization in each dataset was 
calculated by comparison with the internal standard. 
All identified metabolites were confirmed with 
standards or matched to the NIST library in GCMS 
(>80%, p < 0.05). The low relative standard deviation 
filtration was less than 30%, and the detection 
frequency was more than 100%. 

Metabolite cluster and metabolomics data analysis: 
The identified metabolites were clustered by using 
Cluster Trend tools in Hiplot (https://hiplot.com.cn), 
a comprehensive web platform for scientific data 
visualization. The biomarker analyses, enrichment 
analysis, integrated metabolic pathway analysis, and 
network analysis were performed by 
MetaboAnalyst5.0 [123].  

Whole-Genome Bisulfite Sequencing (WGBS) 
Next-generation sequencing libraries were 

constructed following the manufacturer’s protocol 
(Illumina, San Diego, CA, USA). For each tumor 
sample in the NS and S groups, 1 μg of genomic DNA 
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was randomly fragmented to < 500 bp by sonication 
(Covaris S220). The fragments were treated with End 
Prep Enzyme Mix for end repairing, 5′ 
phosphorylation, and dA-tailing in a single reaction, 
followed by T-A ligation to add methylated adaptors 
to both ends. Size selection of the adaptor-ligated 
DNA was then performed using VAHTS DNA Clean 
Beads (Vazyme, China), and fragments of ~410 bp 
(with the insert of approximately 350 bp) were 
recovered. Then bisulfite conversion was performed 
using EZ DNA Methylation-Gold™ Kit (Zymo 
Research, CA, USA). Each sample was then amplified 
by PCR (ETC811 Thermal Cycler (EASTWIN, China)) 
for 10 cycles using the P5 (5' AAT GAT ACG GCG 
ACC ACC GA 3’) and P7 (5' CAA GCA GAA GAC 
GGC ATA CGA GAT 3') primers, with both primers 
carrying sequences that can anneal with patterned 
flow cell technology (Illumina) to perform bridge 
PCR, and P7 primer carrying a six-base index that 
allows for multiplexing. The PCR products were 
cleaned up using VAHTS DNA Clean Beads (Vazyme, 
China), validated using an Qsep100 DNA analyzer 
(Bioptic, China), and quantified on a Qubit3.0 
Fluorometer (Invitrogen, Carlsbad, USA). Then, 
libraries with different indices were multiplexed and 
loaded onto an Illumina instrument (NovaSeq 6000) 
according to the manufacturer’s instructions (VAHTS 
Universal Pro DNA Library Prep Kit for Illumina, 
Catalog# ND608). Sequencing was carried out using a 
2 × 150 paired-end configuration, and image analysis 
and base calling were conducted using the Illumina 
pipeline (image control software [HCS/MCS] + OLB 
+ GAPipeline-1.6).  

Data analysis with Cutadapt (V1.9.1) was 
performed to remove the sequences for adaptors, PCR 
primers, those containing more than 10% N bases, and 
bases of a quality lower than 20. Bismark (V0.7.12) 
was used to map clean data to a reference genome and 
determine the number of mC sites with the 
coverage2cytosine command. Differentially 
methylated cytosines between the S and NS groups 
were detected by methylKit (V0.9.5), and swDMR 
(V1.0.7) was used to reveal a set of DMRs. Enrichment 
for target genes was completed with the GO/KEGG 
database. We obtained 2.48-2.49 × 109 uniquely 
mapped reads among all the samples to ensure 
concordant coverage. The average ratios of uniquely 
mapped reads for the NS and S tumor samples were 
91.21% and 91.35%, respectively. The methylation 
level was calculated as an average of 100,572,417 and 
113,164,957 methylated cytosines (mCs) in the NS and 
S samples, respectively. 

RNA-sequencing 
Library preparation for transcriptome sequen-

cing. A total of 1 μg of RNA per tumor sample from 
the NS and S groups were used as input material for 
RNA sample preparation. Sequencing libraries were 
generated using the NEBNext Ultra RNA Library 
Prep Kit from Illumina, following the manufacturer’s 
recommendations. Briefly, mRNA was purified from 
total RNA using poly-T oligo-attached magnetic 
beads. RNA strand fragmentation was carried out 
using divalent cations under an elevated temperature 
(42 °C) in NEBNext First Strand Synthesis Reaction 
Buffer (5X) or using sonication with the Diagenode 
Bioruptor Pico. Second-strand cDNA synthesis was 
subsequently performed using DNA Polymerase I 
and RNase H. In the reaction buffer, the dTTP in the 
dNTPs was replaced with dUTP. To preferentially 
select cDNA fragments of 250-300 bp in length, the 
library fragments were purified with the AMPure XP 
system (Beckman Coulter, Beverly, USA). Then 3 μL 
of USER enzyme (NEB, USA) was used with 
size-selected, adaptor-ligated cDNA at 37 °C for 15 
min followed by 5 min at 95 °C before PCR. The PCR 
was performed with 0.2 µl Phusion High-Fidelity 
DNA polymerase (Catalog # M0530S, NEB), universal 
oligo-dt primer [d(T)23VN]. Lastly, the products were 
purified with the AMPure XP system, and library 
quality was assessed on the Agilent Bioanalyzer 2100 
system. 

Data analysis 
After cluster generation, the prepared libraries 

were sequenced on an Illumina platform, and 
paired-end reads were generated. Raw data (raw 
reads) of FASTQ format were first processed using 
fastp. In this step, clean data (clean reads) were 
obtained by removing reads containing adapter and 
poly-N sequences and low-quality reads from the raw 
data. Paired-end clean reads were aligned to the 
reference genome using Spliced Transcripts 
Alignment to a Reference (STAR) software 
(https://github.com/alexdobin/STAR). 

Differential expression and enrichment analysis. 
Differential expression analysis between the NS and S 
groups (three biological replicates per condition) was 
performed using the DESeq2 R package. DEGs were 
identified using the DESeq2 R package based on the 
read counts at the transcriptional level, which were 
identified using the absolute log2FC value ≥1 and 
adjusted p-value of < 0.05 as the statistical standards. 
DESeq2 provides statistical routines for determining 
differential expression from digital gene expression 
data using a model based on the negative binomial 
distribution. The resulting p-values were adjusted 
using Benjamini and Hochberg’s approach for 
controlling the false discovery rate (FDR). Genes with 
an adjusted p-value of < 0.05 found by DESeq2 were 
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assigned as differentially expressed.  
GO enrichment analysis and biological pathway 

analysis were carried out using REACTOME 
(http://www.reactome.org/PathwayBrowser) and 
Enrichr (https://maayanlab.cloud/Enrichr/#) [124]. 
MetaboAnalyst 5.0 [123] was used for functional 
pathways, and the default setting was used for 
enrichment analysis of metabolites. The gene 
interaction network was created using highly altered 
hub genes with the GeneMania Prediction Server 
[125]. 

ELISA 
Feces and blood samples collected from the NS 

and S groups were kept at −80 °C till use. The 
Corticosterone ELISA Kit (Cayman,501320, Ann 
Arbor, USA) was used to measure corticosterone 
levels according to the manufacturer’s instructions. 
Samples were extracted before use in ELISA. Briefly, 
ELISA buffer (100 µl) and a corticosterone standard 
were added to a 96-wells plate, followed by 50 µl of 
sample per well at a minimum of two dilutions. After 
that, 50 µl each of AChE tracer and ELISA antiserum 
were added to the wells, except for the blank control. 
The plate was covered with plastic film and incubated 
overnight at 4 °C. To develop the color reaction, 
Ellman’s reagent was added, followed by wash buffer. 
Lastly, the color in the plate was read at 412 nm 
wavelength.  

Correlation and survival analysis 
Correlation analysis between the microbiome 

and metabolites was performed using the OmicStudio 
tools at https://www.omicstudio.cn/tool/62. R 
version 3.6.1 (Pearson and spearman, 2019-07-05), 
ggplot2 (3.3.2), and heatmaply (http://talgalili. 
github.io/heatmaply/)[126]. Machine learning was 
performed by h2o-genmodel (https://docs.h2o.ai/ 
h2o/latest-stable/h2o-docs/flow.html). The General 
Linear Model (GLM is just the sum of the coefficient 
times the value and then adjusts the threshold. 
Gradient boosting machine (GBM) and distributed 
random forests (DRF) takes the mean of 40 forests, 
then compare with threshold and decide 1 or 0. 
Correlations in the expression of selected DMGs and 
DEGs were revealed by the interactive web tool 
GEPIA [127]. Overall survival based on gene 
expression was analyzed with GEPIA (http://gepia. 
cancer-pku.cn/) and Kaplan Meier plotter 
(http://kmplot.com/analysis/index.php?p=backgro
und). 

Data Analysis 
Samples sizes were calculated using practical 

meta-analysis effect size calculator (https://www. 
campbellcollaboration.org/escalc/html/EffectSizeCa

lculator-Home.php) and G*Power version 3.1.9.7 
(https://stats.idre.ucla.edu/other/gpower/#) 
(power > 0.8)[128]. Three independent experiments 
were performed, and a two-tailed Student’s t-test was 
used to determine the statistical significance of 
pro-inflammatory gene expression between the 
control and treated mice. Pearson correlation 
coefficient for significant DMGs and DEGs was 
calculated based on their respective intensity values 
using the CorrelationCalculator v1.0.1, in MetScape 
3.1[129]. One-way and two-way analyses of variance 
(ANOVA) were used to determine the inter-group 
differences between more than two groups for one or 
two variables. The level of statistical significance was 
taken to be p < 0.05 throughout the study.  
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