
RESEARCH ARTICLE

Video summarization using line segments,

angles and conic parts

Md Musfequs Salehin*, Manoranjan Paul, Muhammad Ashad Kabir

School of Computing and Mathematics, Charles Sturt University, Bathurst, NSW-2795, Australia

* msalehin@csu.edu.au

Abstract

Video summarization is a process to extract objects and their activities from a video and rep-

resent them in a condensed form. Existing methods for video summarization fail to detect

moving (dynamic) objects in the low color contrast area of a video frame due to the pixel

intensities of objects and non-objects are almost similar. However, edges of objects are

prominent in the low contrast regions. Moreover, to represent objects, geometric primitives

(such as lines, arcs) are distinguishable and high level shape descriptors than edges. In this

paper, a novel method is proposed for video summarization using geometric primitives such

as conic parts, line segments and angles. Using these features, objects are extracted from

each video frame. A cost function is applied to measure the dissimilarity of locations of geo-

metric primitives to detect the movement of objects between consecutive frames. The total

distance of object movement is calculated and each video frame is assigned a probability

score. Finally, a set of key frames is selected based on the probability scores as per user

provided skimming ratio or system default skimming ratio. The proposed approach is evalu-

ated using three benchmark datasets—BL-7F, Office, and Lobby. The experimental results

show that our approach outperforms the state-of-the-art method in terms of accuracy.

Introduction

Due to the advancement of technology, video surveillance has been used widely in emerging

places to help ensure a safe and secure life style. Government, public safety organizations, and

transportation agencies mainly rely on real-time video surveillance systems for security, traffic

management, and emergency operations. Surveillance video cameras are setup in offices, rail-

way stations, bus stops and other places. These cameras are used to monitor the activities

within these places by trained professionals who always observe video from the monitoring

centre. To investigate a crime or to find any specific events from a long video recording, it can

take many work hours [1]. Furthermore, to store long videos require a huge memory space

[1]. Therefore, it is essential to develop a method for extracting the most informative video

frames from the long consecutive video stream.

Video summarization (VS) is a process to extract the most informative set of frames known

as key frames or a set of video fragments from the original video. The main purpose of VS is to

generate a short video so that an observer can get a complete idea about all the high priority
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entities and events. VS must be as concise as possible and should contain all significant con-

tents of the entire video. It should also maintain continuation of information and be free of

repetition without losing any important video data. To summarize a video stream by consider-

ing all these properties, it is necessary to extract some important features of the video. These

features are later applied to construct a very short version of the original video. Objects and

people within a video play an important role for video summarization [1]. The reason is that

events in a video are usually represented by objects/people and their activities [2]. Moreover,

objects/people in a video carry the high-level semantic information [3]. In addition to this,

human beings usually pay more attention to moving (dynamic) objects in a video [4] [5].

Therefore, objects/people and their activities in a video are mainly extracted for generating

video summarization.

It remains a challenging problem to extract dynamic objects from a video with low contrast,

illumination change, noise, and multimodal dynamic environment [6] [7]. However, edges of

objects are prominent in the low contrast regions [6] and less sensitive to illumination change

and the multimodal environment [8]. Moreover, the problems of the methods based on edge

pixels are sensitive to variation of shape and position [8]. To overcome these problems, edge-

segments (groups of connected sequential edge pixels) can be applied. However, edge-segments

based methods are not robust to local shape distortion and shape matching [9] [10]. To repre-

sent objects, geometric primitives (such as lines, arcs) are higher level and more distinguishable

descriptors than edge-pixels or edge-segments [9] [10]. These primitives have some special

properties. They are independent of object size, efficient for comparisons and matching, and

invariant to scale and viewpoint changes. Therefore, these geometric primitives have the capa-

bility to represent objects with complex shapes and structures effectively. Furthermore, they

often play a major role in the human cognitive system due to their discriminative power [11].

The existing methods for object detection apply complete circles or ellipses to represent

curve fragments [10]. However, sometimes complete circles or ellipses may not be found for

part of an object due to the actual shape of the part, low color contrast, illumination changes,

or camera motion. Moreover, in the real world, part of an object can be a circular, elliptical,

parabolic, or hyperbolic curve. As a result, the object detection methods proposed with the cir-

cular arc do not fit accurately with an elliptical, or a parabolic or a hyperbolic curve. On the

other hand, the elliptical arc does not fit perfectly with a parabolic or a hyperbolic curve. How-

ever, a conic part can easily be fitted for any type of curves (circular, elliptical, parabolic or

hyperbolic).

In this paper, a novel approach is introduced for extracting dynamic objects applying geo-

metric primitives such as line segments, angles and conic parts, and for generating a summary

of a long video. The straight contours, corners, and curved contours of an object are presented

by line segments, angles, and conic (circle, ellipse, parabola, and hyperbola) parts respectively.

For this purpose, an edge image is generated from a video frame by applying the Canny edge

detection method. After that, lists of connected edge-segments and line segments fitted with

each edge-segment are obtained from the edge image by applying the method developed by

Kovesi [12]. A single line segment is considered as a straight line. Line segments with two

lines are modelled as angles. Edge segments and line segments with more than two lines are

matched with conic parts using Pascal’s Theorem [13] [14]. After constructing geometric

primitives, their displacements between two consecutive frames are calculated by applying a

new method for measuring the positional dissimilarity to include the activities of objects

within a video. A probability score is assigned to each frame based on the displacements of

geometric primitives. The frames are sorted based on their higher probability score. Finally, a

set of key frames is selected from this sorted list based on the default skimming ratio or user

preferred skimming ratio.

Video summarization using line segments, angles and conic parts
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There are several advantages of using Pascal’s theorem for detecting curve segments. This

method does not require calculating the center, major or minor axes for detecting conic shape

objects. Furthermore, a one-step process can detect any type of conics (circle, ellipse, parabola,

and hyperbola) or conic parts. Moreover, it does not require any parameter for conic part con-

struction. To construct conic, Hough Transform (HT) requires higher dimensional parameter

space. For example, an ellipse can be defined by five parameters, such as its center, the major

axis, the minor axis and the orientation. Therefore, O(N5) space is required for an ellipse to

accumulate the parameter space, where N is the size of each dimension of the parameter space.

Moreover, finding an optimal threshold for selecting an ellipse from high dimensional space is

another problem [15]. A large threshold may have a poor influence on accurate ellipse detec-

tion while a small threshold may lead to missing the true ellipses. Furthermore, conic detection

methods based on the algebraic equation present some problems. The main disadvantages are

that this method is numerically unstable [16] and it does not have any geometric interpretation

[17]. To overcome these problems, a conic part is constructed based on Pascal’s theorem in the

proposed method. To construct a conic part using Pascal’s theorem, two tangents at two end-

points of a curve are necessary. The existing methods for tangent estimation construct a tan-

gent on a digital curve based on a parameter [18] [19]. However, finding an optimal parameter

value is one of the main problems of these methods. To solve this problem, a new parameter-

free tangent estimation method based on Pascal’s theorem is proposed. The advantage of

applying Pascal’s theorem is that it does not require any parameters to construct tangents on

the unsmoothed digital curves.

The key contributions of the proposed method for video summarization are as follows:

1. A new parameter-less tangent estimation method is proposed for conic part construction;

2. Conic parts are applied to model curve contour for object detection instead of circular or

elliptical arcs;

3. A new method for dissimilarity measure of geometric primitives is proposed for recogniz-

ing the activity of objects;

4. Geometric primitives, such as line segments, angles and conic parts are applied for extract-

ing objects in a video with low contrast or illumination changes.

The remaining of this paper is organized as follows. Section II describes the related work

proposed in the literature on video summarization methods in recent years. A brief description

of Pascal’s theorem is provided in Section III. The detail of the proposed method is discussed

in Section IV. Extensive experimental results as well as an analytical discussion are provided in

Section V and concluding remarks are presented in Section VI.

Related work

Objects/people play the most significant role in a video for summarization. In [20], a set of

similar objects is trained to build a model and similar objects are extracted using this model

for summarization. A part-based object movement framework is proposed in [21] for video

synopsis generation. Object bank and object-like windows are applied to extract objects and

are then utilized to detect objects for story-driven egocentric video summarization in [22]. A

complementary background model is proposed in [23] to extract moving objects and video

summarization. Pixel-based motion energy and edge features are combined in [24] to detect

object and to summarize video. A background subtraction method is applied in [25] to detect

foreground objects for video summarization. Eye tracking data is applied in [26] for important

object detection from a video. In [27], important objects from a video are detected using

Video summarization using line segments, angles and conic parts

PLOS ONE | https://doi.org/10.1371/journal.pone.0181636 November 9, 2017 3 / 22

https://doi.org/10.1371/journal.pone.0181636


features and object segmentation. Aggregated Channel Features (ACF) detection and a back-

ground subtraction technique are applied for object detection in [28] for surveillance video

synopsis generation. The non-parametric background model is employed to extract moving

objects in [29] for producing a condensed version of a surveillance video. A background sub-

traction method is also used in [30] for object detection. In [2], robust motion and cluster anal-

ysis are utilized for object location detection for summarizing rushes video. For generating

storyboard, important objects are detected by a min-cut method in [31].

In addition, a Bayesian foraging strategy is applied in [32] for objects and their activities

detection to summarize a video. The grid background model is applied in [33] for object detec-

tion. In [34], a key-point matching based video segmentation method is employed to locate

the visual objects in a video. Spatio-temporal slices are applied in [5] to select the states of the

object motion for video summarization. J Value Segmentation (JSEG) algorithm is applied in

[35] for object detection to extract key frames from a wildlife video. Latent Dirichlet Allocation

(LDA) is applied in [36] for detecting objects and their activities for video summarization. The

background subtraction method is applied in [37] for human objects detection. Objects in a

video are described by Histograms of Optical Flow Orientations (HOFO) in [38] and their

activities are detected by the Support Vector Machine (SVM) classifier. In [39], moving object

and motion information calculated in spatial and frequency domain are combined for video

summarization.

Moreover, image signature is applied for foreground object detection and then fused with

motion information to summarize egocentric video in [40]. A modularity cut algorithm is

employed in [41] to track objects and use this information for summary generation. Faces of

human objects are applied for movie summarization in [42]. Moving objects are detected in

[43] using the forward/backward frame differencing method. Foreground object and saliency

map difference are applied in [44] for surveillance video summarization.

Recently, a surveillance video summarization method is proposed in [1]. Single view sum-

marization is generated in the approach for each sensor independently. For this purpose,

MPEG-7 color layout descriptor is applied to each video frame and an online-Gaussian mix-

ture model (GMM) is used for clustering. The key frames are selected based on the parameters

of cluster. As the decision of selecting or neglecting a frame is performed based on the continu-

ous updates of these clustering parameters, a video segment is extracted instead of key frames.

The video summarization technique using a single type descriptor (i.e., color descriptor) in

frame-level with on-line learning (i.e., GMM) strategy provides very good performance if

the video has uni-modal phenomenon, however, the technique may not perform well if the

video has multi-modal phenomena such as illumination change, variation of local motion, or

occlusion.

To the best of our knowledge, existing approaches for video summarization did not apply

geometric primitives (line segments, angles, and conic parts) although they have the capabili-

ties to represent objects with complex shapes and structures effectively in challenging environ-

ments such as video with low contrast and illumination change. These geometric primitives

have several important properties as mentioned in the introduction section. For example, they

are independent of object size, efficient for comparisons and matching, and invariant to scale

and viewpoint changes. Thus, in this paper a new video summarization method utilizing geo-

metric primitives is proposed.

Pascal’s theorem

In this work, the curve segments (conic parts) are extracted using Pascal’s theorem [13] [14].

Therefore, a brief introduction about Pascal’s theorem is provided in this section. Pascal’s
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theorem states that when a hexagon (no three points are co-linear and no parallel lines) is

inscribed in a conic, the three pairs of opposite sides meet three points of intersection. These

three points are collinear. This line is called Pascal line [13] [14]. In Fig 1, p1, p2, p3, p4, p5,

and p6 are six vertices of a hexagon inscribed in a conic (green dotted ellipse) where no three

vertices are co-linear and sides of the hexagon are not parallel. The pair of opposite sides is rep-

resented with the same color. The point q1 is the intersection between opposite sides p6p1

(black line) and p4p3 (black line). The intersection of opposite sides p1p2 (light green line) and

p5p4 (light green line) is q2. The opposite sides p2p3 (magenta line) and p6p5 (magenta line)

meet at q3 point. According to Pascal’s theorem, the intersecting points (q1, q2 and q3) are co-

linear and the line connecting these points is Pascal line (blue line).

Pascal’s theorem can also be applied when five vertices from a hexagon are provided. The

sixth vertex can be calculated using the provided five vertices. This sixth vertex will also be on

the conic sections and satisfy the property of co-linearity. Interested readers are referred to

[45] for more details regarding conic construction using five points by Pascal’s theorem.

Fig 1. Explanation of Pascal’s theorem. A hexagon (p1p2p3p4p5p6) is inscribed in a conic represented by green dotted curve. The three

pairs of opposite vertices of the hexagon intersects at q1, q2, and q3. The line connecting q1, q2, and q3 is Pascal line.

https://doi.org/10.1371/journal.pone.0181636.g001
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The proposed approach

The introduced method has four main steps. They are as follows- (i) Geometric primitives

extraction, (ii) Measure the displacement of geometric primitives, (iii) Assignment of probabil-

ity score, and (iv) Key frame selection. The main steps of the proposed method are shown in

Fig 2. The details of each section is presented in subsequent sub-sections.

Geometric primitives extraction

In the proposed method, objects in a video frame are represented by geometric primitives,

such as line segments, angles and conic parts. The motivation is that these primitives are

independent of object size, efficient for comparisons and matching, and invariant to scale

and viewpoint changes. Moreover, they are an effective feature in a challenging environ-

ment. To extract geometric primitives, the conventional Canny edge detection method is

applied to obtain a binary edge image from a video frame. In Fig 3a, a binary edge image

of frame (number 4721) from the bl-3 video of BL-7F dataset [1] is shown. After obtaining

the binary edge image, lists of connected edge points (edgelists) without any branch and fit-

ted straight line segments to connected edge points are obtained by applying the method

developed by Kovesi [12]. Each line segment may contain single or multiple lines. The con-

nected edge points and the corresponding fitted line segments are shown in Figs 3b and 3c

respectively obtained from the binary edge image of Fig 3a. Different color is applied to

edgelists and line segments for better visualization. Later, sharp turn and inflection points

are identified and line segments are split at these points as per the method proposed in [46].

The connected edge contours after splitting at sharp turn and inflection points are shown in

Fig 3d.

A single line segment is considered as a straight line (F) (red lines in Fig 3e). Line segments

with two lines are modeled as corners (O) (yellow lines in Fig 3e). The connected edge seg-

ments whose corresponding line segments have more than two lines are matched with conic

(circle, ellipse, parabola, and hyperbola) parts using Pascal’s theorem [13] [14].

To validate an edge segment as a conic part, tangents are drawn first at each endpoint

of an edge segment and an arbitrary point on the edge segment is required. The existing

methods for tangent estimation construct a tangent on a digital curve based on a parameter

[18] [19]. However, finding an optimal parameter value is one of the main problems for

these methods. Therefore, a new parameterless tangents estimation method is proposed

based on Pascal’s theorem [13] [14]. Consider p1, p2, p3, p4 and p5 are five points of a

circle (Fig 4a), an ellipse (Fig 4b), a parabola (Fig 4c) and a hyperbola (Fig 4d). To avoid an

exceptional case of Pascal’s theorem, these five points are selected in such a way that no

three co-linear and no parallel lines can be formed using these points. The point q1 is the

intersection of line p1p2 and line p5p4, and q2 is the intersection of p5p1 and p3p2 respec-

tively. Accordingly, p4p3 and q1q2 must meet at point q3. The line (q1q2q3) is Pascal line

and is represented by a blue line. The expected tangent line (t) of the conic at point p1 is

obtained by connecting p1 and q3. Similarly, we can get a tangent line at any point of the

conics. In this way, two tangents (t1 and t2) are constructed at each end point (p1 and p5) of

the edge segment.

These tangents are then used to construct a conic part using Pascal’s theorem. In our

method, five points are obtained from an edge segment so that these points can divide it into

four equal parts. We follow this approach as it represents the conic more accurately than ran-

dom sampling.

Video summarization using line segments, angles and conic parts
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Fig 2. The framework of the proposed method.

https://doi.org/10.1371/journal.pone.0181636.g002
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Fig 3. The steps to extract geometric primitives. (a) an edge map of frame number 4721 of the bl-3 video of BL-7F dataset obtained

by Canny edge detector; (b) and (c) connected edge contours and corresponding line segments of (a) (different color is applied to

edgelists and line segments for better visualization); (d) connected edge contour after splitting at sharp turn and inflection points; and (e)

geometric primitives to represent objects (lines, angles, and conic parts are represented by red, yellow, and green).

https://doi.org/10.1371/journal.pone.0181636.g003
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Fig 4. The construction of tangent (red line) on a point of the conic sections (green dotted curve) using Pascal’s theorem;

p1, p2, p3, p4, and p5 are five points on the conic sections. Tangents (t) are drawn on the point p1 of (a) a circle, (b) an ellipse,

(c) a parabola and (d) a hyperbola. The Pascal line (blue line) is represented by q1q2q3.

https://doi.org/10.1371/journal.pone.0181636.g004
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Algorithm 1 getTangent(p1, p2, p3, p4, p5)
Begin
Find the intersecting point q1 between p1p2 and p5p4
Find the intersecting point q2 between p5p1 and p3p2
Find the intersecting point q3 between p4p3 and q1q2
Draw the tangent t on p1 by connecting p1 and q3

End

In the real world, part of an object can be a circular or an elliptical or a parabolic or a hyper-

bolic curve. As a result, the object detection methods proposed with the circular arc does not

fit accurately with an elliptical or a parabolic or a hyperbolic curve and vice versa. Therefore,

an innovative conic part construction method is introduced.

Using two tangents (t1 and t2) and a selected point (p3) from the edge segment, a conic

part is constructed based on Pascal’s theorem. Consider, tangents t1 and t2 at p1 (start point)

and p5 (end point) of a circle (Fig 5a), an ellipse (Fig 5b), a parabola (Fig 5c) and a hyperbola

(Fig 5d). These tangents (t1 and t2) intersect at point q1. The tangent t1 and p5p3 meet at

point r. The point q2 is selected from line p5r. The intersecting point (q3) is obtained from

q1q2 and p1p3. The line q1q2q3 is Pascal line (blue line in Fig 5). Finally, a point (p6) on the

conic is obtained by intersecting p1q2 and q3p5. If the point q2 is moved from r to p5, the

conic part p1p3p5 is obtained. Following this process, a conic part is obtained for the corre-

sponding edge segment. The edge segments are fitted with the corresponding conic parts

using the Least Square Fitting (LSF) method with residual two pixels.

Algorithm 2 getConicPart(p1, p3, p5, t1, t2)
Begin
Find the intersecting point q1 between t1 and t2
Find the intersecting point r between t1 and p5p3
Select a point q2 from p5r
Find the intersecting point q3 between q1q2 and p1p3
Find the intersecting point p6 between p1q2 and q3p5
Move q2 from r to p5, p6 will move from p1 to p5 and conic part p1p3p5

will be constructed connecting p1, p3 and q5
End

If the connected edge segments fit with conic parts obtained by Pascal’s theorem, these

conic parts represent curve segments (C) of objects in a video frame (see green curve in Fig

3e). Otherwise, connected edge segments are represented by the corresponding line segments.

The points of F, O and C are provided with a value of one, two, and three respectively to dis-

tinguish them separately.

Measure the displacement of geometric primitives

Object activities are indicators of events within a video [2]. Furthermore, human beings pay

more attention to dynamic objects than those that are static [4]. Therefore, a new approach is

proposed to measure the activities of objects.

To obtain the activities of objects pixel wise comparison is performed between geometric

primitives of the current frame and the previous frame. Suppose, current frame (Fn) and pre-

vious frame (F(n − 1)) with geometric primitives are denoted by Gn and G(n − 1) respectively

where n = 2, 3, . . .., N (total number of frames in a video). The pixel values of Gn or G(n − 1)

are between zero and three where zero, one, two and three represent background, F, O and C

respectively. The pixel locations of each F, O and C of the current frame are compared with

those of the previous frame. Consider a line segment Fi
n, (where i = 1, 2, 3, . . .., I total number

of line segments in Gn and n represents that it belongs to nth number of frame with geometric

primitives, Gn) contains A×2 array of (row Fi
n (a, 1), column Fi

n(a, 2)) coordinates of pixels

Video summarization using line segments, angles and conic parts
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Fig 5. Conic part construction using Pascal’s theorem. Two tangents t1 and t2 (red lines) are constructed on start point p1 and

end point p5 respectively and a point (p3) is taken from (a) a circle, (b) an ellipse, (c) a parabola and (d) a hyperbola. the line

q1q2q3 is Pascal line (blue line). The point p6 is another point on conic sections obtained by Pascal’s theorem. If the point q2

moves from point r to p5 along the rp5 line, the conic part p1p3p5 (solid green curve) is constructed. The conic sections are

represented by dotted green color.

https://doi.org/10.1371/journal.pone.0181636.g005

Video summarization using line segments, angles and conic parts

PLOS ONE | https://doi.org/10.1371/journal.pone.0181636 November 9, 2017 11 / 22

https://doi.org/10.1371/journal.pone.0181636.g005
https://doi.org/10.1371/journal.pone.0181636


where a = 1, 2, 3, . . ., A total number of pixels in Fi
n. The value of Gn (Fi

n (a, 1),Fi
n (a, 2)) is

one as the pixel value of the line segment is set to one. If a pixel location (Fi
n (a, 1),Fi

n (a, 2)) of

Fi
n from Gn is also a pixel of a straight line from the previous frame with geometric primitives

G(n − 1), the pixel (Fi
n (a, 1),Fi

n (a, 2)) is considered as a stationary pixel. Otherwise, it is

considered as a dynamic pixel. To obtain this information, the pixel value at Fi
n (a, 1),Fi

n (a, 2)

in the previous frame with the geometric primitives G(n − 1) is calculated. If the value of

G(n − 1) (Fi
n (a, 1),Fi

n (a, 2)) is also one (as pixel value one denotes a straight line), the pixel

(Fi
n (a, 1),Fi

n (a, 2)) is regarded as a similar pixel and is assigned value zero. Otherwise, it is

consider as a dissimilar pixel and assigned value one. Therefore, the positional dissimilarity D
of Fi

n in Gn with respect to G(n − 1) is calculated by the following equation:-

DðaÞ ¼
1 if GnðF

i
nða; 1Þ;F

i
nða; 2ÞÞ 6¼ Gðn� 1ÞðF

i
nða; 1Þ;F

i
nða; 2ÞÞ;

0 otherwise

8
<

:
ð1Þ

where a = 1, 2, 3, . . ., A total number of pixels in Fi
n, and D is A×1 array as it contains either 0

or 1.

In Fig 6, a straight line segment Fi
n (i = 1) (light blue color) and background (white color)

are represented by pixel value one and zero respectively. The total number of pixels in F1

n is

four (a = 1, 2, 3, 4 (A = 4)). In Fig 6b, the pixel coordinates of F1

n in the current frame with

geometric primitives Gn are (F1

n (1, 1), F1

n (1, 2)), (F1

n (2, 1), F1

n (2, 2)), (F1

n (3, 1), F1

n (3, 2)),

(F1

n (4, 1), F1

n (4, 2)) = ((2, 3), (3, 3), (4, 3), (5, 3)) respectively. The pixel values of these coor-

dinates in Gn are Gn(2, 3), Gn(3, 3), Gn(4, 3), and Gn(5, 3) = 1, 1, 1, and 1 (Fig 6b). The pixel

values of these coordinates in Gn − 1 are Gn − 1(2, 3), Gn − 1(3, 3), Gn − 1(4, 3), and Gn − 1(5, 3)

= 1, 1, 1, and 1 (Fig 6a). Therefore, the dissimilarity D(1), D(2), D(3), and D(4) = 0, 0, 0, and

0 (Fig 6c). Similarly in Fig 6e, the pixel coordinates of F1

n in the current frame with geomet-

ric primitives Gn are (F1

n (1, 1), F1

n (1, 2)), (F1

n (2, 1), F1

n (2, 2)), (F1

n (3, 1), F1

n (3, 2)), (F1

n (4,

1), F1

n (4, 2)) = ((2, 5), (3, 5), (4, 5), (5, 5)) respectively. The pixel values of these coordinates

in Gn are Gn(2, 5), Gn(3, 5), Gn(4, 5), and Gn(5, 5) = 1, 1, 1, and 1 (Fig 6e). The pixel values of

these coordinates in Gn − 1 are Gn − 1(2, 5), Gn − 1(3, 5), Gn − 1(4, 5), and Gn − 1(5, 5) = 0, 0, 0,

and 0 (Fig 6d). Therefore, the dissimilarity D(1), D(2), D(3), and D(4) = 1, 1, 1, and 1

(Fig 6f).

The dissimilarity score E of Fi
n in Gn is measured as follows:-

E ¼
PA

a¼1
DðaÞ

A
ð2Þ

If the dissimilarity score E is greater than a threshold τ, Fi
n is considered as a part of a dynamic

object. Otherwise, Fi
n is selected as part of a stationary object and it is neglected. Similarly, the

dissimilarity score E for all geometric primitives (F, O and C) in Gn with respect to G(n − 1) is

measured and categorized into a part of stationary or dynamic objects based on the threshold

τ. The line segments (F), angles (O) and conic parts (C) in Gn that belong to dynamic objects

are denoted by dFn, dOn, and dCn respectively where d represents dynamic objects. The sta-

tionary geometric primitives are neglected.

The geometric primitives of frame number 4720 and 4721 from the bl-3 video of BL-7F

dataset [1] are shown in Fig 7a and 7b. The dissimilar geometric primitives of frame number

4721 with respect to frame number 4720 are shown in Fig 7c.
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Assignment of probability score

In the proposed method, each frame is assigned a probability score to become a key frame.

The total lengths of dFn, dOn, and dCn of Gn obtained by the previous step are measured. The

probability score Wn of the current frame Fn is assigned by the following equation:-

Wn ¼
P

dFn þ
P

dOn þ
P

dCn ð3Þ

The probability scores (W) for all video frames of a video are smoothed by applying

Savitzky-Golay filtering [47] with window size ω. The main advantage of this filtering is that it

enhances local maxima [47]. In Fig 8, the probability scores (W), smooth probability scores

(SW) and ground truth key frames of the office-1 video are shown by light blue, and red, and

black color respectively. Ground truth key frames are multiplied by maximum of W for better

visualization.

Fig 6. The explanation of the method to measure the dissimilarity of geometric primitives. (a) and (b) are the previous and the current

frame with a straight line respectively, (c) is the dissimilar points of a straight line in (b) with respect to (a). Similarly, (d) and (e) are the

previous and the current frame with a straight line respectively; (f) is the dissimilar points of a straight line in (e) with respect to (d).

https://doi.org/10.1371/journal.pone.0181636.g006
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Keyframe selection and summary generation

In the final step, SW is sorted in ascending order so that the frame with the highest dynamic

objects appears on the top of the list and frames with less or no dynamic objects remain at the

bottom. As a result, a list of sorted smooth probability scores (SSW) is obtained.

The introduced approach generates summarized video based on the skimming ratio (λ).

The proposed method enables the user to select for the value of λ. Otherwise, this approach

selects a default value of λ. After that, this method selects video frames from top of the list of

SSW based on λ. From these selected frames, frames with no dynamic object are removed.

Finally, summarized video is produced from these video frames, keeping their sequential order

in the original video.

Results and discussion

The proposed method is evaluated by the publicly available BL-7F dataset [1], Office [48] and

Office Lobby dataset [48]. They are considered to be the benchmark datasets to evaluate the

performance of the video summarization techniques. In the BL-7F dataset, 19 surveillance vid-

eos are taken from fixed surveillance cameras located in the seventh floor of the BarryLam

Building in the National Taiwan University. The duration of each video is 7 minutes 10 sec-

onds and contains 12,900 frames. This dataset also provides a complete list of selected key

frames as a ground truth for each video. In Office dataset [48], four videos are collected from

stably held with non-fixed cameras. The main difficulties are the vibration of camera and dif-

ferent lighting conditions. Similarly, three videos are collected in Office Lobby dataset [48],

with stably held but non-fixed cameras. However, they contain more crowded scenes with

richer activities compared to the Lobby and Office datasets. The ground truth key frames for

both the Office and Office Lobby datasets are also publicly available. No ethics approval is

required for this work as no human subject is involved in any step of this work.

In this experiment, the value of the dissimilarity threshold τ was set to 0.85. Experimental

results revealed that this value satisfied the condition to identify dynamic geometric primitives

successfully. The window size ω for Savitzky-Golay filtering [47] was set to 300. This value

effectively highlighted the key frames and suppressed the unnecessary frames (see Fig 8). We

apply Canny edge detector with the default parameters provided in Matlab (https://au.

mathworks.com/products/matlab.html) similar to [49] to extract edges from all video frames.

Matlab selects the high and low value of the sensitivity threshold to the highest value of the gra-

dient magnitude of the image and 0.4×the high value respectively. Matlab also selects the

Fig 7. A method to calculate the displacement of geometric primitives. (a) and (b) are geometric primitives of frame number 4720

(previous frame) and 4721 (current frame) of the bl-3 video of BL-7F dataset respectively, (c) dissimilar geometric primitives of (b) with

respect to (a).

https://doi.org/10.1371/journal.pone.0181636.g007
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default value of the standard deviation of the Gaussian filter to
ffiffiffi
2
p

. black The skimming ratio

λ (user preferred) was set to the skimming ratio of the ground truth key-frames for each video

in the datasets [1] [48] plus ten per cent of λ. This value ensured more accurate summarization

results. The default value of λ is set to 20% of the total number of frames of a video. This skim-

ming ratio is also consistent with some other existing methods [50] [51]. In Fig 9, the skim-

ming ratio of the ground truth key frames and the total number of frames and the default

skimming ratio (20% of the total video frames) for BL-7F, Lobby, and Office are shown. It is

clear from the graph that the default skimming ratio is almost consistent with the ground truth

skimming ratio provided in [1] [48].

An objective evaluation was performed to justify the effectiveness of the proposed method.

In this regards, a set of objective evaluation metrics, such as precision, recall and F1-measure

were computed. The definition of precision and recall are as follows

Precision ¼
tp

tp þ fp
ð4Þ

Recall ¼
tp

tp þ fn
ð5Þ

Fig 8. The probability score generation using geometric primitives of office-1 video. The light blue, red, and black lines represent probability score,

smooth probability score by Savitzky-Golay filtering [47] and ground truth respectively.

https://doi.org/10.1371/journal.pone.0181636.g008

Fig 9. The comparison of the skimming ratio of the ground truth key frames with respect to the total video frames and default

skimming ratio (20% of total video frames) for BL-7F, lobby, and office datasets.

https://doi.org/10.1371/journal.pone.0181636.g009
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where tp is the number of key-frames selected by the proposed method, fp is the number of

frames that are not key-frame selected by the proposed method, and fn is the number of key-

frames not selected by the proposed method. However, they alone cannot provide an unbiased

measurement of the performance of the proposed method. For example, a method with high

precision and poor recall or vice versa cannot be an excellent method. Therefore, a method

with both higher precision and recall is an excellent approach. To represent this measure,

F1-measure is defined as combining both precision and recall and is represented as follows:-

F1 � measure ¼ 2�
Precision� Recall
Precisionþ Recall

ð6Þ

The amount of conic parts in a video frame is very low compared to other geometric primi-

tives, such as line segments and angles (corners). Among all the conic parts, elliptical segments

may exist more than circular, parabolic or hyperbolic segments. However, conic parts still

have a significant role to detect dynamic objects and to summarize a video. To identify the role

of each geometric feature, such as line segments, angles, and conic parts for detecting dynamic

objects and generating the summary of a video, we compare the result obtained by the individ-

ual geometric primitive (feature) on bl-0 video of BL-7F dataset. In Fig 10, the precision, recall

and F1-measure of the proposed method with employing only F, O, C and combination of

them in bl-0 video of BL-7F dataset are displayed. From this figure, it is easily observed that

the proposed method with only F shows better than that of applying only O or C. The pro-

posed method with only C performs less compared to the proposed method with only F or O.

However, the combination of F, O, C outperforms the individual features. Therefore, we com-

bine F, O, C in the proposed method for video summarization.

The proposed approach is compared with the single-view summarization of the GMM

based method [1] as the proposed method is designed for the single-view summarization. This

method is recently proposed and the state of the art method to surveillance videos as it outper-

forms relevant and recent methods [1]. As the proposed method is implemented on surveil-

lance video, GMM based method is selected to compare with. The precisions, recalls and

F1-measures of the proposed method and GMM-based method on Office dataset are shown in

Table 1. The values of F1-measure of the proposed method for office-0, office-1, office-2, and

office-3 videos are 83.2, 66.2, 60.7, and 76.4 respectively. On the other hand, the GMM based

method (intra-view) shows 60.2, 56.7, 47.4 and 48.0 respectively. From this table, it is clear that

the F1-measures of the proposed method are higher than those of the GMM based method for

Fig 10. The comparative analysis of line segments, angles, conic parts and the combination of them for summarizing bl-0 video of

BL-7F dataset.

https://doi.org/10.1371/journal.pone.0181636.g010
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all four videos. The graphical representation of the F1-values of the proposed method with

user provided skimming ratio (F1-Geometric) and default skimming ratio (F1-DefaultSkim-

ming) and GMM based method (F1-GMM) is shown in Fig 11.

In Table 2, the results of the precision, recall, and F1-measure for Lobby dataset [48]

obtained by both the GMM-based method (intra-view) and the proposed method are pre-

sented. The values of F1-measure obtained by the proposed method for lobby-0, lobby-1, and

lobby-2 are 81.6, 83.8, and 86.0 respectively. In comparison, the GMM based method (intra-

view) obtains 75.8, 79.0, and 84.0 respectively. Therefore, the proposed method outperforms

the GMM based method for the Lobby dataset. In Fig 12, the results of F1-measure for four

videos of the Lobby dataset [48] obtained the GMM based method (intra-view) (F1-GMM)

and the proposed method with user provided skimming ratio (F1-Geometric) and default

skimming ratio (F1-DefaultSkimming) are shown.

The results of the precision, recall, and F1-measure obtained by both the GMM-based

method (intra-view) and the proposed method for the BL-7F dataset are provided in Table 3.

The values of F1-measure obtained by the proposed method are higher for 18 videos out of 19

Table 1. Precision, recall, and F1-measure of GMM (intra-view) and the proposed method for office dataset.

Video GMM (intra-view) The Proposed Method

Precision (%) Recall (%) F1-measure (%) Precision (%) Recall (%) F1-measure (%)

office-0 47.0 83.9 60.2 83.2 83.2 83.2

office-1 42.7 84.3 56.7 66.2 66.2 66.2

office-2 31.2 98.5 47.4 52.1 72.9 60.7

office-3 34.2 80.7 48.0 76.4 76.3 76.4

https://doi.org/10.1371/journal.pone.0181636.t001

Fig 11. The graphical representation of F1-measure of the proposed with user provided skimming ratio (F1-Geometric) and

default skimming ratio (F1-DefaultSkimming) and GMM based approach (intra-view) (F1-GMM) on office dataset.

https://doi.org/10.1371/journal.pone.0181636.g011

Table 2. Precision, recall, and F1-measure of GMM (intra-view) and the proposed method for lobby dataset.

Video GMM (intra-view) The Proposed Method

Precision (%) Recall (%) F1-measure (%) Precision (%) Recall (%) F1-measure (%)

lobby-0 65.3 90.2 75.8 73.2 93.9 82.3

lobby-1 70.0 91.8 79.0 75.2 94.6 83.8

lobby-2 76.0 93.2 84.0 81.4 95.7 88.0

https://doi.org/10.1371/journal.pone.0181636.t002
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videos than those of the GMM based method. In Fig 13, the results of F-1 measure obtained

the GMM based method (F1-GMM) and the proposed method with user provided skimming

ratio (F1-Geometric) and default skimming ratio (F1-DefaultSkimming) for 19 videos of BL-

7F dataset are represented. From this graph, it is apparent that the proposed method obtains

slightly better results than the GMM based method for four videos, such as bl-2, bl-14, bl-15,

and bl-17 videos. Noticeable enhanced values of F1-measure are obtained by the proposed

method for six videos namely bl-0, bl-4, bl-7, bl-8, bl-9 and bl-11. The proposed method

achieves superior performance for the remaining nine videos.

Fig 12. F1-measure of the proposed with user provided skimming ratio (F1-Geometric) and default skimming ratio

(F1-DefaultSkimming) and GMM based approach (intra-view) (F1-GMM) for lobby dataset.

https://doi.org/10.1371/journal.pone.0181636.g012

Table 3. Precision, recall, and F1-measure of GMM (intra-view) and the proposed method for Bl-7F dataset.

Video GMM (intra-view) The Proposed Method

Precision (%) Recall (%) F1-measure (%) Precision (%) Recall (%) F1-measure (%)

bl-0 70.3 91.8 79.6 87.1 91.4 89.2

bl-1 28.9 79.0 42.3 74.2 85.2 79.3

bl-2 77.8 64.2 70.3 70.1 86.9 77.6

bl-3 27.4 98.5 42.9 98.5 97.8 98.2

bl-4 62.4 88.1 73.1 80.1 96.1 87.3

bl-5 26.1 97.6 41.2 66.2 89.2 76.0

bl-6 2.1 100.0 4.1 87.5 100.0 93.3

bl-7 63.9 80.9 71.4 85.1 85.0 85.0

bl-8 83.6 100.0 91.1 99.5 99.0 99.2

bl-9 97.5 60.2 74.4 82.6 82.6 82.6

bl-10 61.4 78.6 68.9 86.2 99.4 92.3

bl-11 98.3 62.7 76.6 82.6 82.6 82.6

bl-12 88.3 98.2 93.0 79.4 91.3 84.9

bl-13 0.0 0.0 0.0 100.0 100.0 100.0

bl-14 76.9 97.7 86.1 85.3 95.6 90.2

bl-15 92.4 96.5 94.4 95.3 98.2 96.7

bl-16 55.6 97.0 70.7 91.8 91.7 91.8

bl-17 88.1 81.9 84.9 91.6 87.4 89.5

bl-18 21.3 89.2 34.4 91.2 91.0 91.1

https://doi.org/10.1371/journal.pone.0181636.t003
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The reasons for the failure of the proposed method to perform better in bl-12 video of BL-

7F dataset have been evaluated. In bl-12 video, some ground truth key-frames do not contain

any dynamic objects or object activities. Similarly, some frames are not selected as ground

truth key-frames although they contain significant dynamic object or object activities as pro-

vided in [1]. For example, frame no 4083, 4120, and 4563 show a person is working near the

door. However, these frames are not selected as ground truth key frames. On the other hand,

frame no 12615, 12675, and 12750 do not contain any object activities. However, they are

selected as ground truth key-frames. There is no explanation found for this incident in [1].

After observing the proposed method both quantitatively and qualitatively, it is certain that

the proposed method based on geometric primitives performs better than the GMM based

method (intra-view) [1]. The main reason for this success is that the proposed method utilizes

geometric primitives, such as line segments, angles, and conic parts for object detection, and

applies a dissimilarity measure method to include the degree of object activities. In contrast,

the GMM based method ranks the video frames based on the size of the foreground objects in

the intra-view stage [1]. This method does not consider multi-modal phenomena such as illu-

mination change, variation of local motion, or occlusion. Therefore, the proposed method per-

forms better than the GMM based method.

Conclusion

In this paper, an innovative approach is proposed to summarize video using geometric primi-

tives, such as line segments, angles, and conic parts. Existing video summarization methods

fail to detect dynamic objects in low contrast regions. However, edges are prominent in low

contrast regions. Again, to represent objects, geometric primitives (such as lines, arcs) are

higher level and more distinguishable descriptors than edges. Existing object detection meth-

ods apply circular or elliptical arcs or entire circles or ellipses for object segment representa-

tion. However, elliptical arcs do not fit accurately to circular curves or vice-versa. Therefore, a

conic part is applied for fitting the curve segments. To measure the activities of objects, a new

cost function is proposed to calculate the displacements of geometric primitives between two

successive frames. Experimental results has shown that the proposed summarization method

using geometric primitives outperforms the recent state-of-the-art method. The proposed

method performs very well in case of stationary camera. In the future, we will consider the

moving camera for video summarization.

Fig 13. F1-measure of the proposed with user provided skimming ratio (F1-Geometric) and default skimming ratio

(F1-DefaultSkimming) and GMM based approach (intra-view) (F1-GMM) for Bl-7F dataset.

https://doi.org/10.1371/journal.pone.0181636.g013
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