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Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, 
and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals 
in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and 
development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes 
as well as for vaccine research. �is review summarizes the commonly employed animal models, including mouse, guinea pig, 
rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for 
selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for 
TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics 
and research progress are discussed.

1. Introduction

Tuberculosis (TB) is a major human infectious disease caused 
by a single organism, and was responsible for 1.6 million 
deaths, including human immunodeficiency virus (HIV)-
associated TB deaths, with 10 million new TB cases diagnosed 
in 2017 worldwide [1]. �e development of novel vaccines is 
considered a high priority in protecting human beings against 
TB disease worldwide. Currently, 22 new TB vaccines are 
being evaluated in clinical trials, four of which [Vaccae 
(Mycobacterium vaccae for injection) in patients with latent 
TB infection (LTBI), Mycobacterium indicus pranii (MIP)/Mw, 
Utilins (Mycobacterium phlei), and VPM1002 (rBCG 
ΔureC::hly)] have reached Phase III clinical trials [2–4]. 
Furthermore, three therapeutic vaccines [Vaccae, Utilins, and 
BCG Polysaccharide and Nucleic Acid Injection (BCG-PSN)] 
have obtained registration certificates from the China Food 
and Drug Administration (http://eng.sfda.gov.cn/WS03/
CL0755/) and have been widely used to clinically treat TB in 
China [4]. In comparison with TB vaccines at the stage of 

clinical trials, there are many more vaccine candidates emerg-
ing in preclinical stages of development.

Promotion of the development of TB vaccines using 
humans as experimental subjects is fraught with challenges. 
Accumulation of clinical research is not only limited by time 
and space but also the several ethical and methodological 
restrictions of experiments with human subjects. �e main 
advantage of an animal model is that it overcomes these defi-
ciencies, and this essential role in the preclinical research of 
TB vaccines is receiving increasing attention. �e superiority 
of using an animal model is mainly manifested in the following 
aspects: (1) the risks of experimentation on humans are 
avoided; (2) experimental conditions can be strictly controlled, 
and comparability of experimental materials is enhanced; (3) 
experimental operation and sample collection are simplified; 
and (4) a more comprehensive understanding of the nature of 
TB can be achieved.

Because of these advantages, various animal models  
have been generated for testing TB vaccines. However, the 
strategy of using animal models has begun to shi� from an 
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empirical-based approach to focus on the 3Rs principle (replace-
ment, reduction, and refinement) [5]. �erefore, establishing 
methods to evaluate the immune protective efficiency and safety 
of TB vaccines using the smallest number of animals possible 
has become a scientific priority. Herein, we review the advantages 
and disadvantages of animal models, as well as clinical trials for 
TB vaccine research, and suggest that the goal of realizing a suc-
cessful TB vaccine to the market stage is inseparable from the 
selection of appropriate animal models in preclinical testing.

2. Current Animal Models Used in TB Vaccine 
Research

Animal models are not only valuable for understanding the 
humoral and cellular immune responses against M. tubercu-
losis but are also essential to evaluate the safety, immunogenic-
ity, and protective efficacy of TB vaccine candidates. �e main 
animal models used in TB vaccine research according to a 
search of the PubMed database are schematically presented in 
Figure 1 and listed in Table 1. Each of these animal models 
has its own characteristics that make it suitable for studying 
candidate TB vaccines; therefore, the choice and utilization of 
animal models should depend on the purpose of the experi-
ment, availability of space, stage of the vaccine, financial 
resources, trained staff, laboratory conditions, and other avail-
able resources (Table 1). In addition, pathological character-
istics are the consequence of host-pathogen interactions 
mediated by immunologic responses; thus, these features are 
directly relevant to the strengths and limitations of the differ-
ent models used in evaluating vaccine candidates. Previous 
studies have suggested that classical granulomas with similar-
ity to those in humans could be observed in guinea pig, rabbit, 
rat, nonhuman primate (NHP), cattle, and goat animal mod-
els, but not in common mouse, fruit fly, and amoeba animal 
models (Table 1). In general, small animal models are used for 
large-scale screening of TB vaccines, such as mice, guinea pigs, 
rabbits, and zebrafish, which are not only economical but also 
readily available. Once a vaccine with good protective efficacy 
has been identified, it can be further evaluated in large animal 
models such as NHPs, which, although expensive, can more 
closely mimic the immune responses of humans to reliably 
test the protective efficacy of the potential TB vaccine. 
Furthermore, these animal models play key roles in evaluating 
the safety of vaccines, including mice for acute toxicity and 
drug distribution, monkeys for chronic toxicity, guinea pigs 
for skin allergic reactions, and rabbits for skin irritation.

2.1. Small Mammalian Models. Small mammals are the most 
widely used type of animal models in preclinical studies of 
TB vaccines for several reasons, including easy operation, 
easy access, clear genetic background, low cost, easy feeding, 
and more abundant commercial reagents. �e most profound 
advantage of these models is their cost-effectiveness, allowing 
for numerous applications and detailed characterization. 
However, small mammalian animal models differ from 
humans with respect to genetics and immunology. �erefore, 
such models, especially murine models, are more suitable for 
screening candidate vaccines for TB on a large scale.

2.1.1. Mice. Mice have been the most widely used small 
animal model in the initial screening of TB vaccine candidates 
and for evaluating the efficacy of new vaccine candidates 
because of their low cost, rapid propagation, feasibility of use 
in the laboratory, long-term survival, mature immunological 
evaluation indices, and more abundant commercial reagents. 
�e most popular mouse strains used for these purposes are 
BALB/c and C57BL/6, which both show variations in the 
susceptibility to infection of the M. tuberculosis H37Rv strain 
according to different challenge routes, with doses of tail 
vein injection, intraperitoneal injection, and aerosol attack 
of 1–5 × 105 colony-forming units (CFUs), 1 × 106 CFUs, and 
0.5–1 × 102 CFUs [43, 44], respectively. Both of these mouse 
strains also show equivalent protective efficacy for evaluating 
the Bacillus Calmette–Guérin (BCG) vaccine (the current 
clinically used TB vaccine) [45]. Moreover, the differences 
in animal models and immunization routes will affect the 
protective response induced by vaccines. Stylianou et al. [46] 
reported that when BALB/c and C57BL/6 mice were primed 
with BCG and boosted 10 weeks later with ChAdOx1.PPE15 
vaccine, followed by challenge with aerosolized M. tuberculosis, 
the booster ChAdOx1.PPE15 only improved the protection 
provided by BCG in C57BL/6 mice and not in BALB/c mice. 
A recent study compared the effects of different immunization 
routes [intranasal (i.n.), subcutaneous (s.c.), and intramuscular 
(i.m.)] on immune responses against the recombinant protein 
ESAT-6/CFP-10 of M. tuberculosis in a mouse model, and 
found that the titers of specific antibodies were quickly 
elevated in s.c. and i.m. immunized mice compared to those 

Figure 1: Statistical map of the utilization of different animal models 
in preclinical studies of TB vaccines. �e source of the publications was 
an NCBI (National Center for Biotechnology Information) PubMed 
search using the keywords (vaccine AND tuberculosis AND ten 
categories shown in figure). �e statistics were plotted using an open 
source graph visualization and manipulation so�ware termed Gehpi. 
Each study is represented by a blue dot, and each animal model is 
represented by a circle of different color. �e circle size represents 
the frequency of use of the animal model.
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naturally transmitted multidrug-resistant M. tuberculosis 
because of their high susceptibility to M. tuberculosis infection 
via the airways [73, 74]. Pathological lesions that form on the 
inside and outside of the lungs of guinea pigs infected with M. 
tuberculosis have been widely studied, offering fundamental 
insight into pulmonary TB in guinea pigs [75, 76]. We and 
others reported that distinct gross pathological tubercles 
could be observed in the spleen of guinea pigs infected by 
M. tuberculosis, which were not observed in mice (Figure 2), 
whereas slight gross pathological tubercles could be observed 
in the lungs of both guinea pigs and mice (Figure 2) [35]. In 
particular, guinea pigs can develop classical granulomas that 
are structurally similar to those in humans, and Langerhans 
giant cells that are formed from macrophages and epithelioid 
cells a�er mycobacterium infection have been observed [10].

Furthermore, guinea pigs can be subsequently used to 
screen skin-test antigens, and to evaluate promising vaccines 
previously tested in a mouse model. A previous study also 
found that guinea pigs could be used as a long-term challenge 
model (with survival a�er 12 months) in assessment of TB 
vaccine efficacy [11]. Moreover, some vaccine candidates may 
be deemed to not be promising in the mouse model, but show 
satisfactory protection in guinea pigs as well as in humans. 
�e immune responses of TB vaccines in guinea pigs have 
been studied by several methods such as antibody blocking, 
flow cytometry, bioassays, and microarray [12, 77], demon-
strating that M. tuberculosis infection could initially activate 
responding T cells (mostly CD4 cells), which dramatically 
decreased in number 30 days a�er the infection and were grad-
ually replaced by steadily increasing B cells and granulocytes 
[12]. Hiromatsu et al. [78] also found that immunization with 
the lipid antigens of mycobacteria induced a CD1-restricted 
immune response in guinea pigs. However, in comparison 
with the reagents available for other animal models, there are 
limited immunological reagents specific for this animal model 
available, which affects the utility of guinea pigs in the evalu-
ation of TB vaccines. �erefore, there is an urgent need to 
develop specific immunological reagents for guinea pigs. 
Recently, a range of immunological reagents for guinea pigs 
have been developed, such as cloned guinea pig IL-17A cDNA 
and its recombinant protein [79], IL-10 cDNA and its recom-
binant protein [80], IL-4 cDNA [81], and IFN-γ cDNA [82].

2.1.3. Rabbits. Rabbit models were first widely used in 
molecular immunology, and have since been gradually 
replaced by rodents such as mice. However, rabbits are still 
an excellent animal model for human TB vaccine research 
because of the similar manifestations of lesions (granulomas, 
liquefaction, and cavities) to those observed in humans [14, 
15]. In particular, rabbit models have been extensively used 
to screen and evaluate potential vaccine candidates (such 
as BCG, M. vaccae, M. microti and subunit vaccines), and 
to determine the pathogenic factors and pathogenesis of 
cavities induced by M. tuberculosis H37Rv infection [15–20, 
83]. In addition, Tsenova et al. [84] reported large confluent 
granulomas with expansive areas of central necrosis in the 
lungs of rabbits infected with M. tuberculosis HN878 strain. 
Furthermore, a recent review article reported that infection 
of M. tuberculosis Erdman, M. tuberculosis H37Rv, and  

in i.m. immunized mice, whereas the i.n. immunized mice 
showed lower levels of interleukin (IL)-5 production [47]. 
Some previous studies also suggested that the BCG vaccine 
could induce similar immune responses and protection by 
rectal and parenteral immunization routes in BALB/c mice 
[48]; s.c. and i.n./oral immunization with Ag85A-Mtb32 
exhibited the strongest boosting effects for BCG-primed 
systemic and pulmonary cell-mediated immunity responses 
in C57BL/6 mice [49], respectively. �ese results highlight the 
importance of considering differences between mouse models 
as well as immunization routes when evaluating TB vaccine 
in mice.

Interestingly, a growing number of studies have suggested 
that immunization with most BCG or recombinant BCG 
(rBCG) vaccines could induce a significantly strong �1-type 
immune response, characterized by enhanced IgG2a/IgG1, 
IgG2b/IgG1, or IgG2c/IgG1 ratios, as well as a high expression 
level of �1 cytokines [interferon (IFN)-γ, tumor necrosis 
factor (TNF)-α, and IL-2) in C57BL/6 or BALB/c mouse mod-
els [50–57]. Additionally, a previous study reported that 
immunization of a new recombinant BCG vaccine, rBCG-
CMX (composed of immune-dominant epitopes from Ag85C, 
MPT51, and HspX), could present higher amounts of �1, 
�17, and polyfunctional specific T cells in a murine model 
[58]. In contrast, a small number of BCG or rBCG vaccines 
led to a relatively high �2 response, as evidenced by the high 
IgG1/IgG2a ratio and the low IFN-γ levels in these murine 
models [59–62]. We suggest that the type of immune responses 
induced by BCG or rBCG vaccines might be dependent on 
the adjuvants, vaccine types, immunization routes, and immu-
nization doses used in these mouse models.

A further advantage of mouse models is their ease for 
genetic manipulation. Recently, several immunodeficient and 
gene knockout mouse models, including severe combined 
immune deficiency (SCID) mice [63], C3HeB/FeJ mice (model 
of liquefactive necrosis and necrotic granulomas) [64, 65], 
CBA/J IL-10(−/−) mice (mature, fibrotic M. tuberculosis-con-
taining pulmonary granulomas) [66], C57BL/6 RAG(−/−) 
mice (small and diffuse lesions, with the majority of the lung 
retaining the typical lacy alveolar appearance of normal lung 
tissue) [67], C57BL/6 IL-17(−/−) mice (less densely packed 
granulomas with mononuclear cells) [68], and iNOS knockout 
mice (granulomas similar to those that form in humans) [69], 
have been used to study particular immune responses to 
mycobacterial infections. However, accumulating evidence 
shows that M. tuberculosis infection could induce neither case-
ous granuloma nor central necrosis in the most widely used 
mouse models (except for C3HeB/FeJ mice) [70, 71], which 
was entirely different to the pattern observed in humans and 
guinea pigs [30]. Moreover, some mouse models have disad-
vantages for studying various stages of TB progression in 
human pathologies, including granuloma formation, lique-
faction, cavity formation, and hematogenous spread of the 
disease [30, 72].

2.1.2. Guinea Pigs. Guinea pigs were first used for 
mycobacterial infection studies as a very useful animal model 
for lymphocyte proliferation assays, and for evaluating dermal 
reactivity, new TB vaccine candidates, and the capacity of 
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animal model has been widely used in evaluating vaccine- or 
drug-induced resistance [22, 23], for determining anaerobic 
drug activity [90], estimating the efficacy of BCG vaccination 
[91], and discovering new TB drugs [21]. Previous studies 
have indicated that granulomatous lesions (which lack central 
necrosis) could be observed in the lungs, spleens, lymph 
nodes, and livers of M. tuberculosis-infected American cotton 
rats, Lewis rats, Wistar rats, and Sprague-Dawley rats [21, 24–
26]. Interestingly, microelement deficiency (such as zinc) in 
the diet of rats could affect their humoral and cellular immune 
responses to BCG and ESAT-6/CFP-10 vaccination [92]. In 
addition to this limitation, similar to the situation with mice, 
the rat animal model has certain drawbacks, including not 
being able to mimic human pathological lung changes such 
as caseous necrosis, fibrosis, calcification, and cavitation.

2.2. Large Mammalian Models. Small mammalian animal 
models play important roles in the preliminary screening of new 
vaccine candidates. However, large mammalian animal models 
can effectively confirm the protective efficacy of the initially 
screened vaccines in systems that are more similar to humans. 
Additionally, compared to small mammalian models, large 
mammalian models are more like humans with respect to the 
genetic background and characteristics of immune responses; 
however, their disadvantages include few available commercial 
reagents, ethical limitations, high cost, and difficult genetic 
manipulation. As a rule, NHPs are always used in evaluating 
human TB vaccines, while other large mammalian animal 
models are usually used in testing animal TB vaccines.

2.2.1. NHPs. NHPs are naturally susceptible to M. tuberculosis 
and their use in vaccine and drug development has a long 
history. �e biggest differences between NHPs and other 
animal models are the close evolutionary relationship with 
humans [8] and the quite similar pathology as well as disease 
condition between NHPs and human beings [34], which 
indicates that the immune responses of NHP models are very 
similar to those of humans. In infected monkeys, widespread 
caseous necrosis and liquefaction of the caseous material 
with cavity formation have been observed [30], along with 
granulomas containing giant cells with a similar structure to 
that of human lung granulomas [34]. It is widely accepted 
that improved TB vaccines should be able to avoid interfering 
with TB diagnoses such as the tuberculin skin test (TST), 
interferon-gamma release assay (IGRA), and GeneXpert. 
As early as 1998, an additional test called the PRIMAGAM- 
IFN-γ test was developed to distinguish TB disease among 
NHPs by detecting cellular immune responses to a purified 
protein derivative antigen via the IFN-γ concentration in 
whole-blood samples [93]. However, the reliability of the  
IFN-γ response to tuberculin antigen in cynomolgus macaques 
remains controversial [94]. Based on the immunological 
characteristics mentioned above, NHPs have become one of 
the best animal models for screening and evaluating improved 
TB vaccines with no interference with the diagnosis of TB.

To date, a large number of novel TB vaccines have been 
evaluated in NHP animal models by gastrointestinal or res-
piratory mucosal delivery, and the delivery method of vacci-
nation appears to have an influence on the protective efficacy 

M. tuberculosis CDC1551 in New Zealand white rabbits resulted 
in different pulmonary pathologies, which indicated that the 
virulence of M. tuberculosis strains will determine the lesion 
severity in rabbit models [6]. Some recent studies suggested 
that a BCG-challenge rabbit skin model could be a valuable 
method for selecting therapeutic agents [20] and evaluating 
TB vaccines [19]. Collectively, these data suggest that rabbit 
animal models can be used not only for H37Rv strain infection 
but also for infection of other strains such as M. tuberculosis 
HN878, M. tuberculosis Erdman, M. tuberculosis CDC1551, 
and M. bovis, which provides new insights into the selection of 
animal models for evaluation of TB vaccines. Although guinea 
pigs and rabbits have many desirable features as models for TB, 
the high cost, lack of reagents, difficult gene manipulation, and 
ethical considerations involving these models o�en preclude 
their suitability for long-term survival studies [85].

2.1.4. Rats. Initially, it was widely believed that rats 
were insensitive to M. tuberculosis and that high doses of  
M. tuberculosis could neither kill rats nor induce typical TB 
pathological lesions and tuberculin susceptibility [86–88]. 
However, this view has changed. A large number of studies 
have found that rats are not only sensitive to M. tuberculosis 
but also show delayed hypersensitivity [89]. Compared 
with mice and guinea pigs, rats have several advantages as 
models, such as easy manipulation, relatively low cost, strong 
resistance, and easy blood collection [21]. �erefore, this 

Lung

Spleen

Guinea pigs Mice

Negative control

Vaccine group

Negative control

Vaccine group

Figure 2: Tubercles of spleen or lung collected from guinea pigs or mice 
infected with M. tuberculosis H37Rv strain. BALB/c mice or guinea 
pigs were challenged with M. tuberculosis H37Rv strain (2 × 105 
CFUs or 5 × 103 CFUs) to construct M. tuberculosis infected mouse 
or guinea pig TB model, respectively. A�er 3 days or 1 week, mice or 
guinea pigs were immunized intramuscularly three times at 2-weeks 
intervals with M. tuberculosis Ag85A/B chimeric DNA vaccine 
(vaccine group) or normal saline (negative control), respectively. 
�ree weeks a�er last immunization, the mice or guinea pigs were 
sacrificed and their spleen and lung were collected to observe 
pathological lesions.
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2.2.3. Goats. Goats can be naturally infected by Mycobacterium 
caprae or M. bovis [107] and are used to evaluate vaccine efficacy 
by differences in body weight, gross pathology, and bacterial 
loads. Indeed, the typical caseous necrotizing granulomas with 
liquefactive necrosis and cavities can be observed in the goat 
model infected with M. caprae [31], which is similar to that of 
active TB in humans. Recently, some studies have demonstrated 
that BCG vaccination of goats afforded a certain degree of 
protection against experimental challenge with M. bovis or 
M. caprae by reducing the volume of gross lung lesions and 
the bacterial loads in pulmonary lymph nodes, and increasing 
weight gain [32, 108, 109]. Interestingly, we found that the 
differences in BCG vaccination route might have an impact on 
the resulting immunoresponse characteristics. Accumulating 
data show that positivity to the single intradermal test and 
IGRA was observed in subcutaneously, intramuscularly [108, 
110], or intranasally [111] vaccinated kid goats, but not in 
orally vaccinated goats [112]. �ese studies also indicated 
that the goat could be a more feasible model than cattle and 
NHPs because of its smaller size, lower cost, and caseous 
granulomatous and cavitary lesions that resemble those found 
in human TB patients [32, 33].

2.3. Invertebrate Models. Although mammals have been 
widely used as experimental animal models in TB vaccine 
development, recent studies on Mycobacterium marinum 
infection in invertebrates have offered valuable insight into 
strategies for developing novel animal models. Furthermore, 
invertebrate models show several benefits in terms of resources, 
costs, technical convenience, and ethical acceptance.

2.3.1. Zebrafish. Zebrafish (Danio rerio) can be naturally 
infected by M. marinum (a close relative of M. tuberculosis and 
the etiological agent of TB in humans), and is widely used as 
an animal model in vaccine research owing to its advantages of 
small size, easy reproduction, and low cost [36]. A�er infection 
by M. marinum, both adult zebrafish and larvae can form 
granulomas that are very similar to those observed in humans, 
and the innate and adaptive immune responses elicited 
against mycobacteria are composed of the same primary 
components found in humans [37–39]. In addition, the 
transparent characteristic of zebrafish larvae is also suitable for 
fluorescence imaging. Although zebrafishes are very different 
to humans in genetic terms, the above characteristics of this 
model have helped to bridge the gap between fish and humans. 
Data obtained from zebrafish studies have already shown that 
BCG vaccination, as well as DNA vaccination, can protect 
adult zebrafish from M. marinum infection by reducing both 
the mortality and bacterial counts in a manner dependent 
on the adaptive immune response and enhanced production 
of IFN-γ [38, 113]. In addition to its use for the preclinical 
screening of vaccines, the zebrafish model has been used in 
clarifying the mechanisms underlying granuloma formation 
[114]. Recently, several studies have indicated that this animal 
model provides a feasible tool for examining the mechanisms 
underlying reactivation in mycobacterial infections, and 
confirmed its suitability for the preclinical screening of TB 
vaccine candidates [38, 115–117]. However, a recent review 
indicated that the zebrafish model has significant differences 

of TB vaccines in these models. Jeyanathan et al. [95] reported 
that respiratory mucosal boost immunization with 
AdHu5Ag85A vaccine could improve the protective efficacy 
and enhance the antigen-specific IFN-γ+ T cell responses in 
BCG-primed NHPs. IFN-γ is a cytokine that is critical for 
innate and adaptive immunity against mycobacterial infection. 
Another study demonstrated that the BCG vaccine induced 
multifunctional CD4+ T-cells producing IFN-γ and TNF-α, 
which are associated with reduced disease pathology following 
subsequent M. tuberculosis infection [96]. However, a previous 
study suggested that IFN-γ production was not a reliable cor-
relate of immune protection for vaccination protocols and 
might be more relevant for active disease [97].

Although primates are more similar to humans with 
respect to genetic background, pathogenesis, clinical symp-
toms, and the immune mechanisms of TB, they are generally 
only used to test vaccine candidates that have been identified 
as promising during pre-screening in small animal models, 
because the use of NHPs is limited by ethical concerns, high 
cost, time consumption, enormous variance among individ-
uals, lack of necessity for new drug approval, and space 
requirements [8, 35]. An additional challenge in using NHPs 
to test new vaccine candidates for improved performance com-
pared to BCG is the potential for variable responses a�er BCG 
vaccination, depending on which NHP species is used [98]. 
Moreover, it is difficult to obtain statistically significant results 
from NHP animal models because of the typical small sample 
sizes, and large individual and genetic differences involved.

2.2.2. Cattle. Cattle are the natural host of M. bovis, and these 
infections are a major cause of economic losses and problems 
with animal welfare, along with a zoonotic risk, especially in 
developing countries [99]. BCG-vaccinated cattle always show 
a higher IFN-γ response, fewer lesions, and fewer bacilli per 
lesion [100, 101]. Compared with nonvaccinated cattle, the 
microscopically visible bacterial load, CD68+ macrophages, 
CD3+ T lymphocytes, WC1+ γδ T cells, and CD4+ IFN-γ+ T 
cells were significantly reduced in lymph node granulomas 
[102, 103], and the expression of indoleamine 2,3-dioxygenase 
(considered to play an immunoregulatory role in the immune 
response to M. tuberculosis) was decreased in the granulomas 
of BCG-vaccinated cattle [27]. A more recent study showed 
that the protective efficacy of BCG in cattle gradually 
weakened, and the level of antigen-specific IFN-γ remained 
above baseline levels at two years post-vaccination [104]. 
Fortunately, this issue could be solved by BCG revaccination 
[105, 106], which supported the hypothesis that revaccination 
of BCG in humans might be effective in populations showing 
a negative response in the TST.

�is model is also well-suited for the secondary screening 
of TB vaccines [28] and measuring elements of immune 
responses against mycobacteria [101]. Indeed, the cattle model 
has several advantages in TB vaccine research, including the 
fact that the clinical disease develops slowly, the granuloma-
tous reactions and immune responses are similar to those 
observed in humans, and the possibility of vaccination involv-
ing neonatal calves [8, 29]. However, this model also has cer-
tain drawbacks, including high costs and absence of cavitations, 
which are seen in infected humans [30].
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to evaluate and compare the protection efficacy of new TB vac-
cine candidates in both preclinical animal models and clinical 
trials. Compared with BCG immunization in isolation, a good 
candidate TB vaccine should offer improvements in safety, 
immunogenicity, and protective efficacy (Table 2) [127]. A 
recent study showed that more than 85% of candidate drugs or 
vaccines that have passed preclinical testing failed in Phase I  
clinical trials [128]. Five well-known TB vaccine candidates 
that were successful in animal models but failed in clinical trials 
are recombinant BCG30 (rBCG30), AERAS-422, H1:LTK63, 
MVA85A, and SRL-172 (heat-killed M. vaccae) [3, 4, 129]. All 
five vaccines showed significant immunological protection and 
safety in animal models, but were terminated in clinical trials 
due to their poor protective efficacy and safety issues such as 
an antibiotic resistance gene in the case of rBCG30 [130], pain-
ful skin herpes for AERAS-422 [131], transient peripheral facial 
nerve palsies for H1:LTK63 [132], the absence of efficacy 
against TB for MVA85A [129], and technical issues for SRL-172 
[133]. �ese data indicated that some negative results in terms 
of safety, immunogenicity, and protection efficacy were not 
observed in animal models. �e following reasons were used 
to explain inconsistencies between animal preclinical data and 
clinical trials: (1) species differences between animal models 
and humans [134]; (2) differences in methodology between 
animal challenge experiments and natural infection in humans 
[134]; (3) fundamental differences in study schemes, protection 
efficacy definitions, and immunization strategies [135]; and (4) 
environmental differences such as environmental mycobacteria 
infection, BCG vaccination, and exposure level [135].

Although there are some barriers in translating the results 
of animal models to clinical trials, animal models are still the 
most effective tool for testing the safety and efficacy of TB 
vaccines, and they are still widely used by researchers world-
wide. Herein, we take VPM1002 and MVA85A as examples 
to review the preclinical studies in the context of human clin-
ical trials. VPM1002 is a recombinant BCG vaccine in which 
the urease C gene has been replaced by the listeriolysin O 
(LLO) gene [4]. VPM1002 can secrete LLO to accelerate the 
transport of BCG-derived antigens into the cytosol and pro-
mote the apoptosis and xerophagy of host cells in vitro.  
A growing number of studies have shown that the protective 
efficiency and/or safety of VMP1002 were improved compared 
with those of BCG tested in mice, guinea pigs, rabbits, and 
NHPs [4, 151–153]. A�er extensive preclinical development, 
the safety and immunogenicity of VPM1002, in comparison 
with BCG, have been successfully evaluated in two Phase I 
clinical trials conducted in adults and infants in South Africa 
(NCT01113281) and Germany (NCT00749034) [154]. �e 
results showed that VPM1002 was safe and immunogenic, 
which is consistent with two subsequent Phase II clinical trials 
carried out in HIV-exposed/unexposed newborn infants in 
South Africa (NCT02391415) [149], and in adults in Germany 
(NCT02371447). At present, a Phase II/III clinical trial is being 
conducted in India to assess the efficacy and safety of VPM1002 
(NCT03152903). In contrast, previous studies reported that 
MVA85A, a booster vaccine, showed protection efficacy in 
animal models, but failed to show better protective efficacy 
than BCG in Phase II clinical trials, which might be attributed 
to the fact that the clinical trial design did not include the same 

in anatomy and physiology from those of humans [7], which 
warrant attention when using this animal model to evaluate 
TB vaccines.

2.3.2. Fruit Fly. �e fruit fly Drosophila melanogaster is also 
a good model for studying the innate immune responses 
to M. marinum infection, understanding the physiological 
consequences of such infection and the associated immune 
responses, along with anti-mycobacterial drug discovery [41]. 
As an animal model for studying host-pathogen interactions, 
D. melanogaster has significant advantages such as being easy 
to breed and handle, strong fecundity, short generation time, 
low cost, technical convenience, ethical acceptability, and 
genetic amenability [40, 41]. D. melanogaster can be infected 
by M. marinum through anesthetizing with CO2 and injection 
in the abdomen using an individually calibrated pulled glass 
needle, as characterized by widespread tissue damage and 
low bacterial loads [118]. Additionally, a previous study 
suggested that M. marinum-infected D. melanogaster showed a 
diabetes-like state with reduced levels of circulating insulin or 
increased turnover of activated Akt [119]. �ese pathological 
characteristics are similar to those found in the early stages 
of M. marinum infection in fish [42]. �us, this model may 
be valuable in testing interactions between the pathogen and 
the host. However, the drawback of this model is that the fruit 
fly can only be used to study innate immunity because of the 
absence of adaptive immunity; therefore, experimental results 
still need to be confirmed in mammals.

2.3.3. Amoeba. �e amoeba species Dictyostelium discoideum 
is widely distributed in forest soil and can be infected by  
M. marinum, M. tuberculosis, and M. bovis [35, 120, 121].  
D. discoideum has a haploid genome and a simple life cycle, 
which provides a genetically tractable single-cell model for 
studying conserved host–pathogen interactions [35]. As 
early as 2009, Soldati et al. [122] used D. discoideum as a 
genetically tractable host of M. tuberculosis and M. marinum, 
and discovered a conserved nonlytic spreading mechanism, in 
which pathogenic mycobacteria are ejected from the amoeba cell 
through the ejectosome, providing the opportunity for research 
into the spreading of tubercular mycobacteria infections in 
mammalian cells. Recently, the D. discoideum host model was 
developed to quantitatively monitor M. marinum growth, and 
to quantify the recruitment of host proteins to the bacterium-
containing compartment [123, 124], assess the virulence of 
M. marinum, identify compounds inhibiting mycobacterial 
virulence [125], and recover new species of Mycobacteria from 
environmental and clinical specimens [126]. However, its 
application is limited, since it is single-cell model.

3. Lessons from Preclinical Experiments in 
Animal Models and Clinical Trials in Humans

�e potential for a candidate vaccine to progress to the stage 
of efficacy evaluation in humans depends on the following main 
criteria: protection and safety in animal models, and safety as 
well as immunogenicity in Phase I/IIa clinical trials [127]. To 
date, BCG has been used as a “gold-standard” control vaccine 
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route of administration as that used in mice where efficacy 
was observed [155]. In summary, the above comparison of 
animal and human data of VPM1002 and MVA85A vaccines 
suggests that preclinical results in animal models will be more 
predictive and consistent if the study design is optimized to 
more closely reflect the targeted effects of vaccines in clinical 
trials.

4. Current Challenges and Future 
Opportunities

Over 22 new TB vaccines have passed through animal exper-
iments to evaluation in clinical trials. However, development 
and further evaluations of four TB vaccine candidates were 
terminated owing to their disappointing results a�er Phase I 
or II clinical trials. Why are these hidden dangers not found 
early in animal models, but only later on in human volunteers? 
�e answer to this question is rather complicated, but the main 
reasons may be the lack of suitable animal models for TB vac-
cines, experimental design defects, vaccine adverse events, and 
lack of a complete understanding of host immunity to TB 
[127]. Although animal models are indispensable tools for 
human TB vaccine research, no animal model can fully mimic 
the real situation of human TB disease. �erefore, the exper-
imental results of animal models are only an indirect indica-
tion, and the protective effects of the vaccine need to be 
verified by clinical trials. �e following sections will discuss 
the challenges and opportunities related to the use of animal 
models in TB vaccine development.

4.1. Interactions Between the Host and M. tuberculosis are Still 
Unclear. Previous studies have indicated that innate immunity 
and adaptive immunity play critical roles in controlling  
M. tuberculosis infection in humans [4, 156, 157]. �us, to 
develop a suitable animal model for TB vaccine development, 
it is important to first understand the interplay between  
M. tuberculosis and the host. At the early stage of M. tuberculosis 
infection, M. tuberculosis can be first recognized and 
controlled by the innate immune cells such as macrophages, 
dendritic cells, neutrophils, and natural killer cells via pattern 
recognition receptors, phagocytosis, inflammasome activation, 
reactive oxygen species, autophagy, apoptosis, and production 
of nonspecific cytokines and chemokines [158–162]. However, 
M. tuberculosis has a special ability to escape from the immune 
surveillance of these innate immune cells [163]. Fortunately, 
this innate immunity “negligence” is overcome by adaptive 
immunity, especially cellular immunity. Class I or Class II 
major histocompatibility complex molecules bridge the 
gap between innate immunity and adaptive immunity by 
presenting M. tuberculosis antigens to CD4+ T cells such as �1 
and �17 cells, or CD8+ T cells [164, 165]. A growing number 
of studies have suggested that �1 and �17 cells play a central 
role in host protection by secreting IFN-γ, TNF-α, and IL-
17 [4, 166–172]. However, disappointingly, some vaccines 
have good immune protection and safety in animal models, 
but unexpected safety issues still arise in clinical trials. �e 
reasons behind this variability in protective efficacy and safety 

are largely unknown, but we hypothesize that the differences 
could be due to differences in immune system biology between 
mice, NHPs, and humans.

4.2. Immunization Strategies Should Be Optimized Based 
on Different Animal Models. No clinical studies have 
established immunologic requirements for protection 
against TB. Despite endless immunologic observations, in 
the absence of controlled trials comparing immunologic 
responses among successful and unsuccessful vaccines 
(or controls), these observations do not meet established 
vaccine requirements. For this reason, there is increasing 
acknowledgement that it is problematic to extrapolate the 
findings from “successful” animal studies to clinical efficacy. 
To overcome this problem, immunization strategies should 
be optimized and improved. Currently, three immunization 
strategies are used in the development of new TB vaccine 
candidates, including an immunotherapy strategy, prime 
strategy, and BCG prime-boost strategy [173], and the TB 
vaccine candidates in clinical development can be divided 
into two groups: BCG replacements and BCG boosters [174]. 
�is issue has also been explicitly addressed in recent World 
Health Organization position papers (https://apps.who.int/
iris/handle/10665/273089) and the general conclusion is 
that the most efficient and cost-effective approach will be a 
BCG booster vaccine. BCG was used for TB prevention as 
early as 1921, and since then many clinical trials conducted 
worldwide have evaluated the efficacy of BCG in preventing 
TB. �ese tests have shown that BCG can continue to protect 
children from TB meningitis and disseminated TB [4]. 
However, a large number of studies have also shown that the 
protective effect of a BCG vaccine varies in different regions 
[175]. In addition, a large randomized controlled trial in 
Brazil showed that revaccinating BCG at adolescence did 
not improve the protective efficacy of BCG vaccination at 
birth [176]. Our recent study found that the main TB vaccine 
immunization strategy is BCG for primary immunization, 
followed by selection of appropriate subunit vaccines for 
boosting immunization [4], which is consistent with previous 
studies [177–179]. �erefore, we strongly recommend that 
further TB vaccine research should focus on a BCG booster 
vaccine, and animal models will provide an opportunity for 
conducting preclinical studies to demonstrate the protective 
efficacy of booster vaccines.

4.3. M. tuberculosis/HIV Co-Infection Has Become a Major 
Barrier for Fighting TB with Limited Appropriate Animal 
Models. LTBI is a condition characterized by a persistent 
immune response to stimulation by M. tuberculosis antigens 
without evidence of clinical manifestations of active TB 
[1]. However, when the immunity of patients with LTBI is 
weakened, the possibility of LTBI transforming into TB is greatly 
increased. Unfortunately, the decreased CD4+ T cell level of 
HIV patients provides an opportunity for LTBI reactivation to 
active TB [180]. According to published data, people infected 
with HIV are 16–27-times more likely to develop TB than 
healthy people, and HIV co-infection in individuals with LTBI 
enhances the risk of developing active TB from 10% over a 
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more convenient and allow for objective evaluation of vaccine 
efficiency but also reduces the number of animals required 
as well as the impact of individual differences on vaccine 
evaluation [193]; and differentiating infected from vaccinated 
animals (DIVA) reagents in the skin test and IFN-γ assay in 
cattle and goats to differentiate TB-infected from vaccinated 
animals [194, 195]. Moreover, targeted genome editing 
technology has become a hot research area in animal models. 
Specifically, CRISPR/Cas9 technology, which greatly improves 
the efficiency of constructing gene-targeted animal models, 
has been widely used to construct genetically modified mouse 
models such as knockout/knockin models, and somatic cell 
genome-editing models [196].

4.5. Humanized Transgenic Animal Models Bring New Hope for 
TB Vaccine Research. TB vaccine candidates cannot be tested 
directly in human beings for ethical and safety reasons. �us, 
humanized animal models could be useful to bridge the gap 
between preclinical and clinical studies, and to gain relevant 
insight into the determinants of TB vaccine development. 
Humanized mice (defined as mice engra�ed with functional 
human genes, cells, or tissues) have become an essential tool in 
validating the results of infectious disease research in recent years 
because of their small size, easy access, low cost, clear genetic 
background, and easy manipulation. To date, large numbers of 
human cells or tissues have been engra�ed in mouse models, 
including immune system components, hepatocytes, skin 
tissue, pancreatic islets, uterine endometrium, and neural cells 
[197]. Recently, some new humanized mouse models have been 
developed to identify potential TB or other vaccine candidates, 
including humanized NOD/shi-scid/γc

null (NOG) mice [198], 
NOD/SCID/γc

null (NSG) mice engra�ed with human fetal liver 
and thymus tissues, and CD34+ cells [199], DRAG mice (NSG 
mice transgenic for human DR4, RRID:IMSR_JAX:017914) 
[200], HSC-engra�ed NSG mice [201], HLA-A2 transgenic 
NSG-BLT mice [201], and NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ 
mice [202]. As early as 2013, a BLT-humanized mouse model was 
developed to evaluate its feasibility as a model for experimental 
TB, demonstrating human T cells in the lung, liver, and spleen, 
and the formation of granuloma lesions with central necrosis 
and cholesterol crystals in the lung lesions [199]. Recently, a 
study compared the ability of the BCG vaccine to affect the 
immune response to infection with M. tuberculosis in C57BL/6 
mice, Hartley guinea pigs, and humanized NOG mouse models, 
and the results indicated that the BCG vaccine could induce a 
human T cell response in the humanized NOG mouse model 
but not in the C57BL/6 mouse and Hartley guinea pig models 
[198]. Although the use of humanized animal models is limited 
by some shortcomings such as high cost, slow reproduction, 
and strict feeding conditions, the development of more novel 
humanized animal models will be important to create a crucial 
pre-clinical platform for evaluating the protective efficacy of 
TB vaccines, and for screening antigens, epitopes, and targets 
of TB vaccines.

4.6. Transmission of M. tuberculosis Infection among Different 
Animal Models Needs to be Considered. For thousands of 
years, animals have become important hosts of M. tuberculosis 

lifetime to 10% per year [181]. Compounding this situation 
is the unique increased susceptibility of this population to any 
mycobacterial infection, which poses extraordinary challenges 
to the use of any live TB vaccines. �erefore, there is an urgent 
need to establish appropriate animal models to evaluate  
M. tuberculosis/HIV co-infection vaccines. Although HIV 
does not cause disease in rodents and NHPs, complementary 
mouse models and simian immunodeficiency virus (SIV; 
a retrovirus causing immunodeficiency similar to AIDS in 
Asian macaques) macaque models have been used for studies 
on M. tuberculosis/HIV co-infection [180]. Previous studies 
have reported two kinds of complementary mouse models, 
including a humanized mouse model and HIV transgenic 
mouse model. �e first humanized mice were generated by 
reconstituting the immune system of immunodeficient mice 
using human hematopoietic progenitor cells (CD34+) from 
human cord blood [182]. �e second one is a bone marrow, 
liver, thymic (BLT) mouse model in which NOD/scid-IL-
2Rgammacnull mice are engra�ed with human lymphoid 
tissue a�er CD34+ hematopoietic stem cell reconstitution 
[183]. �ese humanized mice gained human immunity by 
producing more proper humanized T cells, and have been used 
to evaluate new approaches for the prevention or treatment 
of HIV and/or M. tuberculosis infection [184–186]. An HIV 
transgenic mouse model was generated by incorporating the 
entire viral genome of HIV, which has been used to study the 
effect of M. tuberculosis infection on the induction of HIV 
gene expression [187]. In addition, a recent study found that 
NHPs could be infected by SIV, and SIV-infected macaques 
have been used as a model for AIDS and TB [188].

4.4. New Technologies and Tools Open New Avenues for the Use 
of Animal Models in TB Vaccine Research. �e traditional use 
of animal models for vaccine research follows the conventional 
testing route through mouse models, then into guinea pigs 
or rabbits, which may be followed by testing in NHPs before 
moving to humans. However, traditional research methods 
are somewhat insufficient for the dynamic study of living 
experimental animals. �erefore, new technologies and 
tools are needed to observe the physiological, biochemical, 
and pathological changes in these living animal models, 
which will accelerate the development of TB vaccine 
research. Fortunately, new technologies and equipment 
have been employed in studies of animal models of TB and 
other diseases, including fluorescence microscopy to detect 
infection by M. marinum; robotic injection technology used 
in zebrafish embryos for high-throughput screening in disease 
models, which can greatly improve the injection efficiency 
and accuracy, and reduce errors caused by manual operation 
[189]; fluorescence-based methods for serial quantitative 
assessments of drug efficacy and toxicity [190]; photodynamic 
therapy technology in the treatment of localized mycobacterial 
infections such as pulmonary granulomas and cavities [191]; 
a three-dimensional granuloma model for studying bacterial-
host interactions, drug-susceptibility, and resuscitation of 
dormant mycobacteria [192]; a small animal SPECT/PET/CT 
system for real-time dynamic observation of living animals, 
and for recording pathological changes, which can not only be 
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