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The impact of genomic variation on protein
phosphorylation states and regulatory networks
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Abstract

Genomic variation impacts on cellular networks by affecting the
abundance (e.g., protein levels) and the functional states (e.g.,
protein phosphorylation) of their components. Previous work has
focused on the former, while in this context, the functional states
of proteins have largely remained neglected. Here, we generated
high-quality transcriptome, proteome, and phosphoproteome data
for a panel of 112 genomically well-defined yeast strains. Genetic
effects on transcripts were generally transmitted to the protein
layer, but specific gene groups, such as ribosomal proteins,
showed diverging effects on protein levels compared with RNA
levels. Phosphorylation states proved crucial to unravel genetic
effects on signaling networks. Correspondingly, genetic variants
that cause phosphorylation changes were mostly different from
those causing abundance changes in the respective proteins.
Underscoring their relevance for cell physiology, phosphorylation
traits were more strongly correlated with cell physiological traits
such as chemical compound resistance or cell morphology, com-
pared with transcript or protein abundance. This study demon-
strates how molecular networks mediate the effects of genomic
variants to cellular traits and highlights the particular importance
of protein phosphorylation.
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Introduction

Genetic polymorphisms are important modifiers of many physiologi-

cal traits, such as body height or disease susceptibility. Differences

in these traits are caused by alterations in the underlying molecular

regulatory networks (Emilsson et al, 2008). The signal processing in

regulatory networks is determined by both the concentrations of rel-

evant molecules and their state or activity. The abundance of mole-

cules is altered by biosynthetic or degradative processes, such as

transcription and translation, whereas their biological activity is

determined by their location, protein folding, or post-translational

modifications (among others). For instance, the net activity of a pro-

tein can be modulated not only by changing its abundance but also

by changing its state, e.g., by increasing or decreasing regulatory

phosphorylation. The regulatory effect of phosphorylation can be

realized not only via direct activation or inhibition (Ardito et al,

2017) but also via modulation of the degradation rate (Henchoz

et al, 1997), changes in subcellular localization (Miller & Cross,

2001), or complex association (Abdollah et al, 1997). Regulatory

phosphorylation in turn affects the biosynthesis of yet other gene

products, e.g., through modulating transcription and translation.

Thus, there is a great diversity of as yet poorly defined mechanisms

of crosstalk between biosynthesis and molecular signaling networks

(van der Sijde et al, 2014).

High-throughput molecular profiling (“omics”) technologies have

enabled the characterization and quantification of individual molec-

ular layers such as the transcriptome, proteome, and metabolome in

large populations. Such data have been used to identify genetic vari-

ants that explain some of the variation in the measured traits,

termed quantitative trait loci (QTLs). For example, it is possible to

detect expression QTLs (eQTLs) for virtually all transcripts present
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in a yeast cell (Albert et al, 2018). Likewise, mass spectrometry has

been used to identify QTLs for hundreds of proteins (pQTLs) (Fu

et al, 2009; Foss et al, 2011; Holdt et al, 2013; Picotti et al, 2013; Wu

et al, 2013; Okada et al, 2016; Singh et al, 2016; Keele et al, 2021)

and metabolic traits (mQTLs; reviewed in Gowda & Djukovic,

2014). Despite technological progress in multi-layer molecular ana-

lyses, existing studies have focused on effects of genomic variants

on molecular abundance, whereas the impact on protein states (and

thus regulatory network changes) has not been systematically

explored. There is only anecdotal evidence about how specific

genetic variants influence regulatory pathways with downstream

effects on RNA levels (Smith & Kruglyak, 2008). Post-translational

modifications (PTMs) such as phosphorylation have been largely

neglected in this context, and no systematic phosphorylation QTL

(phQTL) studies have been performed to date. Consequently, we

lack a detailed understanding of genetic effects on regulatory net-

works and important questions remain unanswered: Are genomic

variants that affect protein states located primarily in coding or non-

coding regions? To what extent is protein abundance determined

by the abundance of the respective transcript compared with post-

transcriptional regulation? To what extent do genomic variants

affecting cellular traits mediate their effects through molecular state

changes as opposed to through abundance changes?

To answer these questions, we designed a multi-omics QTL study

in recombinant offspring of a cross of two budding yeast strains.

The study has four key distinguishing features: (i) We quantified

transcripts, proteins, and protein phosphorylation levels at a geno-

mic scale; (ii) by using the SWATH-mass spectrometry (SWATH-

MS) technology, we could reproducibly quantify a large number of

proteins across virtually all samples; (iii) the analyzed RNA, protein,

and phosphoprotein samples were obtained from the same yeast

cultures to minimize experimental variability and to accommodate

for the complex relationship between abundance and regulatory

modifications (Civelek & Lusis, 2014); and (iv) the data integration

scheme that we developed for this study enabled us to investigate

the crosstalk between biosynthetic processes and regulatory net-

work changes. This setup, illustrated in Fig 1, enabled us, for the

first time, to map the response of cellular signaling networks to

genomic variation, to dissect the interaction of transcript and pro-

tein abundance changes with protein phosphorylation states, and to

investigate the relevance of phQTLs for complex cellular traits.

Results

Multi-omics profiling of a yeast panel

The BYxRM Saccharomyces cerevisiae segregant panel used in this

study results from a cross between a laboratory strain (BY4716) iso-

genic to the reference strain S288C, and a derivative of a wild isolate

from a vineyard (RM11-1a). This cross was previously used to study

the genetic contribution to molecular traits including RNA and pro-

tein levels and to test novel systems genetics approaches (Brem

et al, 2002; Foss et al, 2007; Albert et al, 2014). We grew the two

parental haploid yeast strains and 110 of their recombinant offspring

under tightly controlled conditions with multiple replicates for some

of the strains (Fig 1, Dataset EV3). The transcriptomes of 150 cul-

tures were sequenced at high coverage (38-186x) allowing for the

quantification of 5,429 transcripts in all samples (Dataset EV1). The

RNA-seq data were also used to infer the genotypes of the strains

(Cl�ement-Ziza et al, 2014) (Appendix Fig S1, Dataset EV2), which

increased the number of unique markers compared with array-

based genotyping (3,593 unique markers compared with 2,957

markers from Gillet et al, 2012). While the resolution of the QTL

mapping is mainly limited by the number of segregants (i.e., recom-

binations), this procedure allows for more accurate genotyping. In

samples obtained from the same yeast cultures, we used SWATH-

MS (Gillet et al, 2012; Selevsek et al, 2015) to measure the abun-

dance of 1,862 proteins with < 1.8% missing values across all sam-

ples (Fig 2A, Dataset EV1). This represents a fourfold increase in

the number of consistently quantified proteins compared with previ-

ous studies in the same cross (Foss et al, 2007, 2011; Picotti et al,

2013; Albert et al, 2014). We also quantified the phosphorylation

state of the proteins by SWATH-MS. After stringent filtering, we

obtained the abundance of 2,116 phosphopeptides from 988 pro-

teins with < 2.4% missing values across all samples (Dataset EV1).

These peptides correspond to a total of 3,716 phosphorylated resi-

dues, including serines (2,832, 76.2%), threonines (825, 22.2%),

and tyrosines (59, 1.6%). Only peptides that were not polymorphic

between the parental strains were considered here.

We observed that in most cases, protein abundance was posi-

tively correlated with the corresponding transcript level (average

r = 0.23), and the abundance of most phosphopeptides was posi-

tively correlated with the corresponding protein (average r = 0.29)

(Appendix Fig S2). However, each layer can also be affected inde-

pendently of the genetic effects on the other layers. In order to iden-

tify such direct effects, we generated computationally derived traits,

from which the effects acting on other molecular layers were

removed (Foss et al, 2011) (termed residual traits). First, we esti-

mated the contribution of transcript to protein-level changes by

regressing the concentration of a given protein against the concen-

tration of its encoding transcript across all strains (schematic repre-

sentation in Fig 1). Deviations from this regression (residuals) can

either result from noise in the data or from pQTL effects that are

independent of transcript-level changes. We used the residuals as

estimates of post-transcriptional regulation, resulting in 1,857 post-

transcriptional (pt) traits (Foss et al, 2011). Likewise, we regressed

phosphopeptide levels against levels of the proteins of origin and

used the residuals as estimates of differential phosphorylation,

resulting in 879 phospho-residual (phRes) traits. The QTLs obtained

by mapping these residual traits were termed post-transcriptional

QTL (ptQTL) and phospho-residual QTL (phResQTL), respectively.

▸Figure 1. Experimental design and study overview.
Yeast segregants derived from two parental strains, BY and RM, were grown and characterized with different omics approaches. Their transcriptome, proteome, and
phosphoproteome were directly quantified in samples obtained from the same culture flask. Residual traits representing the disparities between transcript and protein
levels (i.e., measuring post-transcriptional regulation, light green), and those between protein and phosphopeptide levels (i.e., measuring phosphorylation status, pink)
were computed. QTL analyses were performed to determine the effect of genetic variation on each of these molecular layers.
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Figure 1.
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QTLs have widespread effects on all quantified molecular layers

In order to quantify the fraction of trait variation that can be attrib-

uted to genetic differences, we quantified broad-sense heritability by

leveraging available replicates as proposed before (Bloom et al,

2013) (Fig 2B, Appendix Fig S3).

In short, broad-sense heritability was estimated by comparing

the variation between replicates from the same strain (which is non-

genetic) and the total variation between strains. When the intra-

strain variation is small compared with the inter-strain variation, it

can be concluded that the genetic contribution to trait variation is

large under the experimental conditions tested (Bloom et al, 2013).

All five types of molecular traits outlined above had heritability

greater than expected by chance (all P < 2.2E-16, Wilcoxon rank-

sum test). The fact that 525 (28%) pt traits and 165 (18%) phRes

traits had heritability greater than 50% indicates that at least part of

the residual variation is genetically determined and not just techni-

cal and/or biological noise (Foss et al, 2011). Furthermore, while

transcripts and protein abundance tend to reach greater heritability

on average, there are many genes with greater heritability on the

phospho-layer compared with their transcript and protein abun-

dance (Appendix Fig S3). This observation is suggesting direct

genetic effects on phosphopeptides that are not (solely) mediated

via protein abundance changes.

We utilized a Random Forest-based mapping strategy to identify

QTLs (Michaelson et al, 2010), resulting in the detection of 5,776

eQTLs, 2,078 pQTLs, and 1,327 ptQTLs at a false discovery rate

(FDR) below 10% (Dataset EV5-S1, Fig EV1A–E). The same fraction

of transcripts and proteins had at least one QTL (77% at FDR<10%
in both cases; Fig 2C). This large proportion of proteins with at least

one pQTL underlines the high quality of the proteomics data (Foss

et al, 2011). We also detected 1,595 phQTLs affecting 1,266 phos-

phopeptides (60%) and 466 phResQTLs affecting 389 phospho-

residuals (44%) (Dataset EV5-S1). The physiological importance

(growth effects) of 76 of the phosphopeptides that we quantified

had previously been analyzed using phospho-deficient mutants

(Vi�eitez et al, 2022). Based on that data, we estimated that at least

39 of these phosphopeptides were functionally relevant. Others

might still have an effect in growth conditions that were not studied

by Vi�eitez et al. Functional phosphopeptides were similarly likely to

be affected by a phQTL (20 out of 39) compared with non-

functional phosphopeptides (23 out of 37). Thus, genetic variation

in the BYxRM cross impacts on physiologically relevant phosphory-

lation traits to an extent that is similar to peptides for which no

functional relevance was established yet.

To understand where these QTLs are located with respect to their

target genes, we classified QTLs as either “local” or “distant”, based

on their linkage disequilibrium with the genetic marker that is clos-

est to the affected gene. QTLs were considered local if they had a

correlation of r > 0.8 with the allele of the affected gene. Marker

pairs fulfilling this criterion had a genetic linkage of 7.9 cM on aver-

age. The fraction of molecular traits with a local QTL was in a simi-

lar range for all directly measured traits (10–20%) (Fig 2C). The

residual-derived traits (pt and phRes) had the smallest fraction of

local QTLs, which may be due to biological reasons, increased mea-

surement noise (as discussed above), or a combination of the two.

Next, we asked whether local eQTLs and pQTLs could be attrib-

uted to changes in the sequence of the respective transcript, which

might influence transcription and translation rates. When compar-

ing genes with local QTLs to genes that were only affected by distant

QTLs, we found that the former had an increased number of poly-

morphisms in non-coding regions (e.g., 50-untranslated regions

(UTRs) or 30-UTRs; Fig 3A, Appendix Fig S4). The existence of local

ptQTLs (129 local ptQTLs for 6.9% of all pt traits) underlines that

protein levels can be influenced independently of their coding tran-

scripts. Notably, targets of local ptQTLs were enriched for polymor-

phisms outside of coding regions (Fig 3A, Appendix Fig S4), which

suggests that variants in non-coding parts of the genome can influ-

ence post-transcriptional regulation (Foss et al, 2011). The underly-

ing mechanisms might be polymorphisms in ribosomal binding sites

or upstream open reading frames (uORFs) (Morris & Geballe, 2000)

affecting translation initiation or variants altering mRNA processing

(e.g., capping and polyadenylation) (Bernstein & Toth, 2012).

Regions in the genome that affect significantly more traits than

expected by chance are referred to as QTL hotspots (Smith &

Kruglyak, 2008). Since these loci affect large numbers of molecular

traits, they often act through master regulators, for instance tran-

scription factors or kinases in yeast (Yvert et al, 2003; Albert et al,

2018). We detected between 9 and 15 significant hotspots for each

molecular layer, with the eQTL layer having the largest number of

hotspots (Fig 3B, Dataset EV5-S2). Many of the detected hotspots

have been reported as eQTL hotspots for this yeast cross before, and

a causal gene has been validated for some of them, e.g., HAP1

(chrXII:2, a transcription factor), IRA2 (chrXV:1, an inhibitor of RAS

signaling), and MKT1 (chrXIV:1, a post-transcriptional regulator and

interactor of Pab1p)(Brem et al, 2002; Smith & Kruglyak, 2008).

While we observed hotspots that predominantly impacted the tran-

scriptome (e.g., chrV:2), the proteome (e.g., chrXII:1), or the phos-

phoproteome (e.g., chrVIII:1), most hotspots affected multiple

molecular layers simultaneously. Furthermore, our data extend pre-

vious findings that most distant eQTLs act from within hotspots

(Albert et al, 2018) to all five types of molecular traits considered

here (Appendix Fig S5).

Transmission of genetic effects from the transcriptome to
the proteome

The deep coverage of the transcriptome and proteome in this study

enabled us to investigate to what extent transcript-level changes are

transmitted to their corresponding proteins. First, we observed that

local eQTLs and local pQTLs of the same genes significantly over-

lapped (P < 2.2E-16, OR = 11, one-sided Fisher’s exact test), which

is expected in the absence of major post-transcriptional or post-

translational regulation. In order to estimate QTL effect sizes, we

split the population of yeast segregants based on the alleles at a

linked locus and computed the log fold change of the transcript and

protein levels between the two subpopulations. When comparing

transcript fold changes with the respective protein fold changes of

the same genes, we found that they were strongly correlated (eQTLs

with FDR < 10%, r = 0.73; Fig 3C). Previous work suggested that

local and distant eQTLs affect the proteome in different ways (Foss

et al, 2011; Chick et al, 2016) (Appendix Text S1). Using our data, a

regression of transcript and protein fold changes had a slope close

to 1 for both local and distant eQTLs (Appendix Fig S6), implying

that changes in transcript levels tend to cause similar changes in

protein levels of the same genes regardless of the eQTL being local
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or distant. In addition, for most but not all eQTL hotspots the

ensemble of transcript variation was propagated to the protein level,

exemplified by the HAP1 locus (chrXII:2). Effects of this hotspot on

protein concentrations were highly correlated with those on the

transcripts of the same genes (Pearson’s correlation coefficient

r = 0.94 for the 289 eQTLs at FDR < 10%).

A

C

B

Figure 2. Genetic control of molecular phenotypes.

A Overlap of the quantified transcriptome, proteome, and phosphoproteome. The numbers refer to the amount of genes for which a product could be measured on the
respective layer.

B Broad-sense heritability of traits belonging to the 402 genes for which measurements at each molecular level were available (n = 402 for the first three boxes from
the left corresponding to trait levels by gene; n = 879 for the two boxes on the right corresponding to individual phosphopeptides belonging to the same 402 genes).
The boxes extend from the first quartile to the third quartile of the data. The median is represented by the central line. Whiskers extend up to the most extreme data
point within a distance of 1.5 times the interquartile range relative to the closest border of the box.

C Proportions of molecular traits affected by at least one QTL are shown separately for each molecular layer. Shaded areas indicate the proportion of traits for which a
local QTL was found.
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A B

C

Figure 3. Genomic effects on transcript and protein levels.

A Average number of SNPs in and around genes affected by local QTLs at the respective molecular layer. The horizontal dashed black line shows the average number of
SNPs across all annotated genes in the respective regions.

B Number of traits affected by each locus at FDR < 10% for each molecular layer. Regions with more QTLs than expected by chance (QTL hotspots) are shown in color.
C Allelic effects of QTLs on transcript compared with their effect on the corresponding protein. Each dot represents an association of a QTL with a gene for all

significant eQTLs. The relationship between effect size and direction on the transcript and protein levels is color-coded based on the four effect classes described in
the main text. Axes show the log2-transformed fold changes of BY versus RM alleles.
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Despite widespread concordance between eQTL effects on tran-

scripts and proteins, we also detected many eQTLs that exhibited

effects on the protein level deviating from those on the transcript

level. We classified targets of eQTLs into three groups based on the

difference in the QTL effects at the transcript and protein levels

(Fig 3C). The first group contained genes for which the effects of an

eQTL on the transcript and protein levels of its target gene were sim-

ilar (“similar”). The second group contained genes for which the

effects of an eQTL were repressed or even entirely buffered on the

protein level (“buffered”). The third group contained genes for

which proteins showed enhanced responses compared with their

corresponding transcript (“enhanced”). As a fourth group, we added

genes that were affected on their protein level by ptQTLs, without a

significant effect on the corresponding transcript level (“protein

only”). Gene Ontology (GO) enrichment revealed that genes with

eQTLs in the “similar” group were enriched for genes related to pro-

tein import into the mitochondrial matrix (Dataset EV5-S4). Genes

with “buffered” eQTL effects were strongly enriched for terms

related to cytoplasmic translation, including the large subunit of the

ribosome, and proteins localizing to the nucleolus (Dataset EV5-S5).

Although buffering of ribosomal proteins has been observed before

(Foss et al, 2011), it could not be excluded that this was due to tech-

nical issues in protein quantification. However, this is unlikely to be

the case here: first, because ribosomal proteins are relatively highly

expressed and hence easily quantifiable by mass spectrometry; and

second, because these proteins were affected by other pQTLs at a

similar rate as the rest of the proteome (73% of proteins with buff-

ered eQTLs had at least one pQTL).

Genes affected by the group of “enhanced” eQTLs were strongly

enriched for mitochondrial ribosomes and other terms related to

mitochondrial translation (Dataset EV5-S6). Like buffered proteins,

proteins affected by “protein-only” effects were also enriched for

functions related to cytoplasmic translation (Dataset EV5-S7). This

unexpected functional similarity between buffered proteins and pro-

teins subject to “protein-only” effects raised the question whether

the same proteins could be subject to both. Indeed, we found that

genes affected by a buffered eQTL were more likely to also be

affected by a “protein-only” QTL (219 genes; P < 7E-4, Fisher’s

exact test). Thus, specific groups of proteins seem to require exten-

sive post-transcriptional fine-tuning of their cellular concentrations,

decoupling protein levels from transcript levels (Appendix Fig S7).

This notion was further supported by a detailed investigation of

individual hotspots with heterogeneous eQTL and pQTL effects. For

example, the effects of the IRA2 hotspot (XV:1) on transcript levels

of cytoplasmic ribosomal genes were not transmitted to protein

levels, but the same locus affected protein levels of genes related to

mitochondrial respiration without changing their transcript levels

(Appendix Fig S8). Whereas the effects of the MKT1 hotspot (XIV:1)

on the protein levels of cytosolic ribosomes were buffered, the

effects of the same locus on the protein levels of mitochondrial ribo-

somes were enhanced.

While effects of the same hotspot on the transcript level were

transmitted to the protein level for some genes and not for others,

we observed a strong agreement for different eQTLs of the same

transcript. A pair of eQTLs for the same gene was more likely to be

of the same class (“as expected”, “enhanced”, and “buffered”) than

a random pair of eQTLs (P < 2.2E-16, OR = 1.89, Fisher’s exact

test). Thus, our analysis reveals complex post-transcriptional QTL

effects, especially for genes involved in translation, with marked dif-

ferences between cytoplasmic and mitochondrial translation. The

transmission of these effects to the protein level seems to be more

dependent on the target gene than the causal variation.

Phosphorylation states are affected directly by local and
distant variants

To investigate effects acting directly on the phosphorylation state of

proteins (i.e., not through protein abundance changes), we focused

on the phRes traits, for which the phosphorylation effects were

corrected for abundance changes of the proteins of origin, as

described above. After this correction, we detected 466 phResQTLs

affecting 389 phRes traits (44% of all quantifiable phRes traits) and

there were multiple phResQTL hotspots (Fig 3B). A striking example

of a phResQTL hotspot is the HAP1 locus (chrXII:2), affecting 22.1%

of phosphoproteins, but only 6.5% and 5.2% of the transcripts and

proteins of the 402 genes whose products were detected on all three

molecular layers (Fig 4A). Remarkably, this is despite the molecular

function of HAP1 as a transcription factor (Jensen-Pergakes et al,

2001). Thus, this hotspot exemplifies widespread genetic effects on

the phospho-layer, which could not be observed by only studying

transcript or protein abundance.

Due to the notion that multiple phosphosites on the same protein

are often targeted by a common kinase or phosphatase (Ben-Levy et

al, 1995), we asked whether genomic variation could result in coor-

dinated effects on different phosphosites on the same protein.

Indeed, phRes traits of the same protein (i.e., different phosphosites

on the same protein) had a higher chance to be targeted by the same

phResQTL than random pairs of phosphosites (P < 3E-8, one-sided

Fisher’s exact test; Fig 4B).

Local phResQTLs might be caused by genetic variants directly

affecting the phosphorylation state of a protein, for example,

through the modification of residues close to a kinase or phospha-

tase binding site. In support of that notion, we found that proteins

that were affected by a local phResQTL had a higher number of mis-

sense polymorphisms than proteins that only had distant

phResQTLs (P < 1.3E-7, one-sided Wilcoxon rank-sum test; Appen-

dix Fig S9). In addition, phosphosites with a local phResQTL were

closer to a missense variant than those with a distant phResQTL

(Wilcoxon rank-sum test: P < 7E-4, Fig 4C). Further, if two phos-

phosites on the same protein were both affected by two different

phResQTLs—one local and the other distant—the phosphosite with

the local phResQTL was on average closer to a polymorphism than

the distant one (P = 0.005, one-sided paired Wilcoxon rank-sum

test; Appendix Fig S10). In summary, these results suggest that

many local phResQTLs are caused by missense polymorphisms.

These polymorphisms might cause differences in phosphorylation

by changing the strength or accessibility of kinase and phosphatase

binding motifs, by changing the localization of the protein, or by

other covalent modifications of the protein.

Phospho-traits are strongly associated with physiological traits

In order to better understand the mechanisms by which genetic vari-

ation affects physiological traits, we integrated our molecular QTL

data with two datasets that encompass chemical resistance traits

(Perlstein et al, 2007) and morphological traits (Nogami et al, 2007)
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for subsets of the same yeast cross used in our study. In the former,

growth was measured in the presence of 92 chemical compounds at

multiple dosages each, resulting in a total of 307 trait measurements

for 95 strains. The second dataset comprises 501 morphological

parameters from high-throughput imaging for 55 strains. We found

that QTLs affecting resistance and morphology were more likely to

overlap with p- and phQTLs than with eQTLs (Dataset EV5-S8). Fur-

ther, protein and phosphopeptide abundance was, on average, more

strongly correlated with the physiological traits compared with tran-

script abundance (Fig EV2 and Appendix Fig S11).

Due to those findings, we hypothesized that resistance and mor-

phology traits were frequently conveyed through changes in abun-

dance or phosphorylation of specific proteins. To test that, we

identified the molecular trait that correlated most strongly with each

cellular trait (resistance or morphology). Strikingly, phospho-traits

were more likely to be top correlators with physiological traits com-

pared with transcript or protein abundance (Fig 5A and B).

The two phosphoproteins Mkt1 and Rps31 stood out in that they

were most strongly correlated with multiple resistance traits. We

observed a single, biphosphorylated phosphopeptide from Mkt1 at

amino acid positions 354–378. Mkt1 was previously identified as

harboring the causal variant of a hotspot on chromosome XIV

(Smith & Kruglyak, 2008) and linked to multiple phenotypes includ-

ing sporulation deficiency and decreased growth at high tempera-

ture (Sinha et al, 2006). As stated above, our data indicated that the

MKT1 hotspot regulates the abundance of mitochondrial ribosomal

proteins, with enhanced effects on the protein levels compared with

the mRNA levels. Thus, Mkt1 phosphorylation might be a key effec-

tor adapting the cellular biosynthesis to various stress responses.

In addition, phosphorylation of Rps31 stood out as being corre-

lated with many resistance traits. The primary protein product of

Rps31 is cleaved into ubiquitin and a small ribosomal subunit and

thus influences both protein degradation and synthesis (Shrestha et

al, 2019). The detected phosphosite on Rps31 (S122) is located in

the ribosomal part, and its phosphorylation is negatively correlated

with resistance (i.e., strains with less phosphorylated Rps31 are

more resistant to the applied chemicals; Fig 5C). Hence, RPS31 may

be involved in chemical stress resistance by regulating protein

metabolism.

Avt1 and Spe4 phosphorylations were correlated with multiple

morphological traits. Avt1 is involved in the import of large neutral

amino acids into the vacuole (Russnak et al, 2001). The phospho-

residuals of Avt1 were correlated with traits related to general cell

shape and size (Dataset EV5-S9), and all of those traits were targets

of the same QTL within hotspot chrVIII:1 (GPA1/STE20 hotspot,

discussed below). Spe4 phospho-residuals were correlated with

traits related to actin (Dataset EV5-S9). Spe4 is required for the syn-

thesis of spermine, and disruption of spermine synthesis was previ-

ously associated with abnormal distribution of actin (Balasundaram

et al, 1991). Formal mediation analysis suggested that the phospho-

residuals of Avt1 and Spe4 significantly mediate the effects of

genetic variation on the respective cell morphology traits (all FDR <
0.05 for both Avt1 and Spe4; Fig 5D and E).

phQTL effects on regulatory network states

The above findings suggest that protein phosphorylation provides a

crucial link between genomic variability and cellular (stress resis-

tance) traits. Since these effects were likely mediated via signaling

processes, we next investigated QTL effects on the states of signal-

ing networks. To study QTL effects on the regulome, we integrated

the five types of molecular traits with regulatory network informa-

tion. We found that phResQTL targets were often functionally

related to the putative causal genes underlying a given hotspot and/

or targets of kinases that were affected by the same locus. The IRA2

hotspot (XV:1) (Smith & Kruglyak, 2008) is an example for such a

case. This hotspot affected resistance to six chemical compounds

and had targets among all five types of molecular traits (Dataset

EV5-S2, Fig 3B). Ira2 inhibits the Ras/Pka pathway by promoting

the GDP-bound form of Ras2, which is crucial for the adaptation of

cellular metabolism to conditions with different nutrient availabili-

ties (Tatchell et al, 1985). Earlier work had shown that the

A

C

B

Figure 4. Analysis of phResQTLs.

A Overlap of different QTL types in the HAP1 locus (chrXII:2) for the 402 genes
whose products were detected on the transcript, protein, and
phosphopeptide level.

B Proportion of pairs of phosphosites on different or the same protein that
share a phResQTL. The P-value was determined using a one-sided Fisher’s
exact test.

C Distance of phosphosites affected by a local phResQTL or exclusively by
distant phResQTLs to the nearest missense mutation in the protein of
origin (n = 49 and n = 131 for the left and right boxes, respectively). The P-
value was determined using a Wilcoxon rank-sum test. The boxes extend
from the first quartile to the third quartile of the data. The median is repre-
sented by the central line. Whiskers extend up to the most extreme data
point within a distance of 1.5 times the interquartile range relative to the
closest border of the box. Outliers (points more extreme than the whiskers)
are not shown.
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A B

C D

E

Figure 5. Integration with physiological phenotypes.

A For a collection of 307 compound resistance traits (Perlstein et al, 2007), the highest correlators among molecular traits (i.e., transcripts, proteins, phospho-traits, and
their derived traits) were extracted. We then counted from which layer each top correlator originated (total bar height). The bar segments represent growth traits for
which the same gene was the top correlator. Genes that are discussed in the main text are highlighted in bold. The analysis was limited to genes that were measured
in all layers.

B Same as in a, but for 501 morphological traits (Nogami et al, 2007).
C Comparison of the distribution of correlation between Rps31 at different layers and compound resistance traits. Each observation (dot) is a single correlation between

the RPS31 molecular trait and one compound resistance trait (n = 307 for each box). Difference from zero was determined using a one-sample Wilcoxon rank-sum
test. The boxes extend from the first quartile to the third quartile of the data. The median is represented by the central line. Whiskers extend up to the most extreme
data point within a distance of 1.5 times the interquartile range relative to the closest border of the box.

D Schematic representation of mediation analysis for the transmission of genetic variants toward morphological traits related to cell size and shape through Avt1
phospho-residuals.

E Schematic representation of mediation analysis for the transmission of genetic variants toward morphological traits related to actin region size and brightness
through Spe4 phospho-residuals.
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polymorphisms of this cross in the IRA2 coding sequence affect the

activity of the Ras/Pka pathway (Smith & Kruglyak, 2008). Several

targets of phQTLs in the IRA2 hotspot were functionally connected

to IRA2 including a local phQTL targeting Ira2 itself, a phQTL

targeting Cdc25, which promotes the GTP-bound form of Ras2, and

a phQTL targeting the Ras2 protein (Jian et al, 2010). In addition,

we detected phQTLs for numerous downstream targets of Ras/Pka

signaling at the IRA2 hotspot (Dataset EV5-S10). Hence, our data

reveal widespread differences in phosphorylation states of key sig-

naling molecules in the Ras/Pka pathway upon genetic variation

and therefore contribute to a better understanding of the molecular

mechanisms through which this QTL hotspot affects cellular

phenotypes.

Another example illustrating the effect of genetic variants on cel-

lular signaling is the HAP1 hotspot on chromosome 12 (chrXII:2)

(Brem et al, 2002; Albert et al, 2014), which was previously shown

to affect cellular growth in multiple conditions (Bloom et al, 2013).

Hap1 regulates respiration in response to oxygen and iron depriva-

tion (Verdi�ere et al, 1985). Again, our analysis revealed that this

locus has much more prominent effects on the phospho-layer than

on transcript or protein abundance (Fig 4A). To determine a poten-

tial regulator through which the HAP1 hotspot affects the phosphor-

ylation state of these proteins, we leveraged a previously published

dataset of strains with deleted kinases and phosphatases (Boden-

miller et al, 2010) (see Materials and Methods for details). Among

all tested regulators, targets of the HAP1 hotspot were most signifi-

cantly enriched in proteins changing their phosphorylation upon

perturbation of the protein kinase PSK2, a known regulator of carbo-

hydrate metabolism (Rutter et al, 2002). Strikingly, we found Psk2

itself to be a target of the HAP1 hotspot both on the transcript and

on the phosphorylation layer. Together, these findings suggest a sig-

naling cascade from the HAP1 locus via altered Psk2 activity to Psk2

substrates.

The added value of integrating protein phosphorylation with

transcript and protein abundance was even more apparent from a

hotspot on chromosome 8 (chrVIII:1). GPA1, a key factor in the

pheromone response pathway, was earlier shown to harbor a vari-

ant that explains effects on some targets of this hotspot (Yvert et al,

2003). The hotspot had a disproportionate effect on phospho-traits,

harboring only 69 eQTLs, 8 pQTLs, and 1 ptQTL, but 41 phQTLs

(Dataset EV5-S2, Fig 3B). Many of the hotspot eQTL targets (41%)

could be found downstream of the mating pheromone response

pathway, which supports GPA1 as a causal gene. In addition, the

hotspot region included the kinase STE20. Ste20 is the key activator

of multiple mitogen-activated protein kinase (MAPK) pathways,

including not only the mating pheromone response but also the

invasive growth regulation, regulation of sterol uptake, and osmotic

stress response (Klipp & Liebermeister, 2006) (Fig 6A). STE20 con-

tains variants that co-segregate with those in GPA1, making it a sec-

ond candidate for a causal gene for this hotspot. Indeed, for up to

60% of the target genes of this hotspot we found a link to Ste20

and/or Gpa1 (Dataset EV5-S11 and Dataset EV5-S12). Further, most

of the phosphopeptides and phRes traits targeted by the hotspot

corresponded to proteins phosphorylated by components of MAPK

pathways downstream of Ste20 (51%; Fig 6A, Dataset EV5-S11 and

Dataset EV5-S12). GO enrichment analysis of targets of the hotspot

at the transcript layer revealed enrichment for biological processes

under the influence of STE20 (Dataset EV5-S13). Together, these

results suggest that the effects of the chrVIII:1 hotspot are due to the

combined effects of the polymorphisms in GPA1 and STE20. To test

this hypothesis, we first generated allele replacement strains for

GPA1 and STE20, carrying the RM allele of one or both of the candi-

date genes in the BY background. We then characterized their tran-

scriptome, proteome, and phosphoproteome. Indeed, replacing

either STE20 or GPA1 with the RM allele each partially replicated

the effects of the hotspot on its targets on the transcriptomic

(r = 0.42 for STE20 and r = 0.59 for GPA1; Fig 6B–D) and phospho-

proteomic layers (r = 0.33 for STE20 and r = 0.55 for GPA1; Fig 6B–
D), including well-characterized members of the pheromone

response pathway such as Dig1, Dig2, and Far1. The double replace-

ment strain showed changes comparable to those observed in the

GPA1 replacement strain, indicating an (alleviating) epistatic rela-

tionship between STE20 and GPA1 for the traits considered here.

Overall, our results support that GPA1 and STE20 contribute

together to the downstream effects of this hotspot.

The examples of these hotspots illustrate how phQTL mapping

provides information on signaling networks that is orthogonal to

transcript and protein abundance data: Genetic variants often affect

the phosphorylation states of gene products that are distinct from

the genes affected by abundance changes (i.e., eQTL and pQTL tar-

gets). Furthermore, those protein activity changes can act either

upstream (as in the case of the GPA1/STE20 hotspot) or downstream

(as in the case of the HAP1 hotspot) of genetic effects on transcript

and/or protein abundance. Overall, we show that by quantifying the

effects of sequence polymorphisms on multi-layer molecular net-

works our integrated approach can provide clues toward recon-

structing the molecular architecture underlying complex traits.

Discussion

In this study, we present the first dataset that concurrently quan-

tifies the effects of natural genomic variation on the transcript

(eQTL), protein (pQTL), and protein phosphorylation (phQTL)

layers in the same sample set. Whereas previous “omics” QTL stud-

ies have primarily focused on the genetic effects on the abundance

of transcripts and proteins, our study integrates abundance with the

phosphorylation states of proteins. This allows us to associate the

consequences of genomic variation not just on transcript and pro-

tein abundance changes but also on phosphorylation-mediated acti-

vation of signaling pathways and regulatory networks. The detailed

dissection of the three hotspots around IRA2, HAP1, and GPA1/

STE20 exemplifies this notion.

Quantifying transcript and protein levels along with the activity

state of the proteins indicated by phosphorylation from the same

yeast culture maximized the comparability of the data, thus facilitat-

ing data integration. This three-layer molecular profiling enabled the

following findings: (i) RNA effects are generally transmitted to pro-

tein levels in a 1:1 relationship. There are, however, numerous

exceptions, and specific classes of genes are subject to enhanced

(e.g., mitochondrial ribosomes) and buffered (e.g., cytosolic ribo-

somes and nucleolus) protein-level effects. (ii) A substantial fraction

of phosphopeptides (44%) were under direct control of at least one

QTL, independent of the abundance of its protein of origin. (iii) We

observed multiple cases in which protein abundance effects were

buffered (i.e., absent) at the level of phosphopeptides. (iv) QTLs
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affect multiple phosphosites on the same protein more often than

expected by chance. (v) Protein phosphorylation is much more

often affected by local missense variants than protein levels,

indicating that structural destabilization of proteins through segre-

gating variants is rare and presumably under strong negative selec-

tion. (vi) Phosphosites closer to sequence variants are more likely

A

B C D

Figure 6. Multi-layer effects of the hotspot around GPA1 and STE20 on chromosome 8.

A Gpa1 and Ste20 play key roles in the mating response pathway (left, through transcription factor complex Ste12/Ste12) and filamentous growth regulation pathway
(middle, through transcription factor complex Tec1/Ste12). Ste20 additionally regulates the osmotic stress response pathway (right, through transcription factors
Msn2/Msn4). Depicted are genes that are known to have a direct or indirect connection with GPA1 and/or STE20. Genes that we found to be affected by the GPA1/
STE20 hotspot on any molecular layer are indicated with arrows in the respective color of each layer. The arrow orientation indicates the fold change direction.
References for each known connection are given in Dataset EV5-S11.

B Replacement of the reference alleles of STE20 and GPA1 causes changes in the transcriptome of the BY strain similar to those observed in the QTL cross. Each
transcript that was targeted by a QTL at the GPA1/STE20 locus is represented as a blue dot. A linear fit of the effects of the double replacement and the effects of the
hotspot is shown as a solid line. The slope (m) is indicated in the figure title.

C Effects of the allele replacements on the phosphoproteome are shown, with each affected phosphopeptide affected by a QTL at this locus being represented as a red
dot. A linear fit of the effects of the double replacement and the effects of the hotspot is shown as a solid line. The slope (m) is indicated in the figure title.

D Pearson’s r and the slope of a linear model (m, as depicted in B and C) are shown for each replacement strain for the phosphoproteome and transcriptome,
respectively. The standard error of each slope is shown as bars. Each dot shows the comparison of two genotypes based on three biological replicates per genotype.
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to be affected by them compared to other phosphosites on the same

protein. (vii) The characterization of phosphorylation events in

addition to transcript and protein abundance enabled the separation

of upstream and downstream effects of genetic variants on signaling

pathways as exemplified by the dissection of the IRA2, HAP1 and

GPA1/STE20 hotspots. Importantly, as shown for HAP1, the same

QTL can affect distinct sets of genes at different molecular layers.

(viii) Although previous eQTL studies were able to identify causal

genes underlying regulatory hotspots, the mechanism of their wide-

spread effects often remained unclear. The additional information of

altered protein phosphorylation states contributes significantly to

understanding the mechanisms of QTL hotspots leading to the acti-

vation of pleiotropic downstream effects. (ix) Protein and phospho-

peptide abundance and their respective QTLs (pQTLs and phQTLs)

were more strongly connected with cellular traits, compared with

transcripts and eQTLs. Furthermore, we identified specific phos-

phorylation traits that were the best predictors for a variety of physi-

ological traits. This suggests that state changes of critical regulatory

proteins often have more dramatic functional consequences for the

cell than molecular abundance changes. In essence, protein abun-

dance/activity can be seen as a summation of all upstream regula-

tions on the transcript layer, which is why protein/phospho-traits

are more correlated with physiological traits than transcripts. For

instance, the phosphorylation of Rps31 was, to our knowledge,

never explicitly studied, but considering that the phosphorylation

level of Rps31 is more tightly connected to many growth traits com-

pared to its protein abundance (Fig 5C), we propose that the phos-

phorylation of Rps31 is critical for its function in stress responses.

Further studies will be needed to fully reveal how phospho-traits

mediate QTL effects to physiological traits, for example, using

amino acid replacements to modify the phosphosites of the mediator

and evaluating whether the genetic effect on the physiological trait

is then blocked.

Our findings also have implications for future work on complex

human diseases and complex traits in other species. They suggest

that mapping phospho-traits and molecular states in general may

greatly contribute to understanding the mechanisms through which

GWAS loci act. We showed here that phosphorylation states harbor

orthogonal information about physiological processes in addition to

abundance of transcripts and proteins (Mehnert et al, 2020). Fur-

thermore, our results support the notion that causal cis-variants are

often nearby the altered phosphosite. Thus, in order to interpret

genomic variants affecting complex traits (including loci identified

in human GWAS), it would help to leverage comprehensive cata-

logues of functional phosphorylation sites (Needham et al, 2019;

Ochoa et al, 2020).

In conclusion, our study is a first step toward a better mechanis-

tic understanding of genomic effects on multi-layered cellular net-

works and physiological traits. This study captures some of the

enormous complexity of how genetic variants influence signal trans-

mission between different molecular layers. While the data here

were obtained from just one standard growth condition, mapping

phosphorylation states will be even more critical when aiming to

understand the effects of genetic variation in the context of dynamic

environmental cues. In addition, future work should address addi-

tional aspects of protein state changes, including other PTMs,

changes in protein folding, protein complex formation, and protein–
ligand interactions.

Materials and Methods

Sample preparation

All media were prepared in a single batch to limit experimental vari-

ability. The BYxRM yeast strain collection, which we obtained from

Rachel Brem, was originally derived from a cross between the two

parental strains, BY4716, an S288C derivative (MATα lys2Δ0), and
RM11-1a (MATa leu2Δ0 ura3Δ0 ho::KAN) (Brem et al, 2002). A

subset of 129 strains were picked in random series of 16 (Dataset

EV3), pre-cultured in in-house made synthetic dextrose medium

(S.D., containing per liter: 1.7 g yeast nitrogen base without amino

acids (Chemie Brunschwig), 5 g ammonium sulfate, 2% glucose

(w/v), 0.03 g isoleucine, 0.15 g valine, 0.04 g adenine, 0.02 g argi-

nine, 0.02 g histidine, 0.1 g leucine, 0.03 g lysine, 0.02 g methio-

nine, 0.05 g phenylalanine, 0.2 g threonine, 0.04 g tryptophan,

0.03 g tyrosine, 0.02 g uracil, 0.1 g glutamic acid, and 0.1 g aspartic

acid), and then grown in 115 ml fresh S.D. medium at 30°C until a

maximal optical density at 600 nm (OD600) of 0.8 (� 0.1). In total,

180 cell cultures were successfully grown to OD600 of 0.8 and then

subdivided as follows for the transcript and proteomic analyses,

respectively. Of the 115 ml of cultures, 15 ml was collected, centri-

fuged at 2,000 g for 3 min at 4°C, transferred into an Eppendorf

tube, and snap-frozen in liquid nitrogen for transcriptomic analysis.

The remaining 100 ml was processed for proteomic analysis essen-

tially as described in Bodenmiller et al (2010). In short, 6.66 ml of

100% trichloroacetic acid (TCA) was added to the 100 ml culture

media to a final concentration of 6.25% and the cells were harvested

by centrifugation at 1,500 g for 5 min at 4°C and washed three times

with cold acetone. The cell pellets were transferred into 2-ml Eppen-

dorf tubes and frozen in liquid nitrogen. Six different segregants

were processed with three replicates each, and the parent strains

had six (BY) and eight (RM) replicates each.

RNA sequencing

RNA extraction
Total RNA was isolated from deep frozen aliquots of yeast pellets

using the RiboPure™ RNA Purification Kit, yeast (Ambion), which

includes a DNase treatment to eliminate contamination. RNA qual-

ity was assessed using RNA ScreenTape assay (Agilent). All RNAs

were of very high quality (Dataset EV3 median RIN 9.8, minimal

RIN 9.1).

RNA-seq library preparation
cDNA libraries were prepared from poly(A) selected RNA applying

the Illumina TruSeq protocol for mRNA using a total of 1 μg RNA

per sample and 14 PCR cycles.

Sequencing
The cDNA libraries were sequenced on a HiSeq 2000 with 20 sam-

ples per lane (8 million reads per sample). The generated reads were

stranded and single-end, and had a length of 100 bp.

RNA-seq-based genotyping

The BYxRM yeast cross has been widely used for QTL mapping.

Microarray-based genotype information at 2,957 markers is
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available for the segregants (Brem & Kruglyak, 2005). However,

deep sequencing enables a more accurate genotyping of recombi-

nant lines. To this end, we have exploited published resequencing

data of the parental strains (Bloom et al, 2013) together with the

RNA-seq data generated here to infer the genotype of the segregants

of the BYxRM cross using a method that we previously developed

(Cl�ement-Ziza et al, 2014).

Resequencing data of the parental strains
Sequence variation information of the parental strains was obtained

from http://genomics-pubs.princeton.edu/YeastCross_BYxRM/; only

calls with a MQ ≥ 30 were considered, which represents 42,769

polymorphic sites.

Genotype inferring from RNA-seq data
RNA-seq data were mapped to the S. cerevisiae reference genome

(SaCer3) using TopHat 2 (Ref. Kim et al, 2013) with the following

options: --min-intron-length 10 --min-segment-intron

10 --b2-very-sensitive --max-multihits 1 --library-

type fr-secondstrand. Read group information was added,

and BAM files were sorted using Picard utilities (http://

broadinstitute.github.io/picard/).

RNA-seq data were further processed using the GATK pipeline

(version 3.4-46-gbc02625) following the best practice guide (Van

der Auwera et al, 2013). First reads containing exon–exon junc-

tion were split using the following options: -T SplitNCigar-

Reads -rf ReassignOneMappingQuality -RMQF 255 -RMQT

60 -U ALLOW_N_CIGAR_READS; then, the variants were called

using the UnifiedGenotyper at the 42,769 polymorphic sites identi-

fied in the resequencing data of the parental strains. Genotype

calls where the GATK genotype score was below 40 (GQ ≤ 40) or

that were covered with < 5 reads (DP ≤ 4) were considered as

missing values.

Filtering and missing value imputing
For every polymorphic site between the parental strains, we com-

pared the polymorphisms in the segregants and the parental strains

to infer which allele was inherited. We further excluded polymor-

phisms (i) that could not be called (or correctly called) in the parental

strains based on RNA-seq data, (ii) that could be called in < 70% of

the segregants, and (iii) with a lower allele frequency of < 20%. As

previously discussed (Cl�ement-Ziza et al, 2014), genotypes called

differing from the two direct flanking markers in more than one

segregant (93 cases) probably denote erroneous genotype calls;

the corresponding polymorphisms were excluded from the analysis.

This resulted in 25,590 polymorphisms that were considered as

genetic markers.

Finally, missing genotype values were inferred from the two

neighboring polymorphisms if those were each within 20 kb of the

polymorphism of interest and were inherited from the same parental

strain (Cl�ement-Ziza et al, 2014) (Dataset EV2).

Assembling a set of markers for linkage analyses
Adjacent markers with the same segregation pattern across all segre-

gants were collapsed into one unique marker, resulting in a set of

3,593 unique mapping genotypic markers (Dataset EV2). Thus, each

marker represents a genomic interval in which all polymorphisms

are in full linkage disequilibrium in the cross.

Gene expression quantification and normalization

In previous work, we have shown that accounting for individual

genome variations for RNA-seq alignment improved gene expres-

sion quantification and deflated the number of falsely detected local

eQTLs (Cl�ement-Ziza et al, 2014). Therefore, we used the strategy

we had previously developed to map RNA-seq reads. It consists of

generating a strain-specific genome, for each segregant, against

which the corresponding reads are aligned.

First, we generated both strain-specific genome sequences and

strain-specific annotations from the reference genome sequence

(SaCer3), the reference genome annotation, and the genomic varia-

tions information (VCF files) previously created using RNA-seq

data. Then RNA-seq reads were aligned to the corresponding strain-

specific genomes using STAR (ver 2.5.0a; Dobin et al, 2013) with

the following options: --alignIntronMin 10 --quantMode

GeneCounts. The gene-specific read counts (strand-specific) gener-

ated by STAR were used to quantify gene expression.

RNA-seq coverage was computed by dividing the sum of the

length of all reads by the sum of the length of the coding regions

of the quantified transcripts per sample. Raw read counts were

normalized using the rlog method of DESeq2 (Love et al, 2014).

Normalized data were further corrected for effects due to culture

batches using the non-parametric empirical Bayes framework Com-

Bat (Johnson et al, 2007) (Dataset EV1). Normalized and batch-

corrected read counts were corrected for gene length as follows for

gene i in sample j:

c0ij ¼ log2 2cij � 1000
li

� �
;

where li is the length of the coding region of gene i, excluding

intronic regions.

Proteomics

Sample preparation and phospho-enrichment
Cell pellets were resuspended in lysis buffer containing 8 M urea,

0.1 M NH4HCO3, and 5 mM EDTA, and cells were disrupted by glass

bead beating (five times for 5 min at 4°C, allowing the samples to

cool down between cycles). The total protein amount from the

pooled supernatants was determined by BCA Protein Assay Kit

(Thermo, USA). Three milligrams of extracted yeast proteins was

reduced with 5 mM TCEP at 37°C for 30 min and alkylated with

12 mM iodoacetamide at room temperature in the dark for 30 min.

The samples were then diluted with 0.1 M NH4HCO3 to a final con-

centration of 1 M urea, and the proteins were digested with

sequencing-grade porcine trypsin (Promega, Switzerland) at a final

enzyme:substrate ratio of 1:100 (w/w). Digestion was stopped by

adding formic acid to a final concentration of 1%. Peptide mixtures

were desalted using 3cc reverse-phase cartridges (Sep-Pak tC18,

Waters, USA) and according to the following procedure: washing of

column with one volume of 100% methanol, washing with one vol-

ume of 50% acetonitrile, washing with three volumes of 0.1%

formic acid, loading acidified sample, reloading flow-through, wash-

ing column with sample with three volumes of 0.1% formic acid,

and eluting sample with two volumes of 50% acetonitrile in 0.1%

formic acid. Peptides were dried using a vacuum centrifuge and
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resolubilized in 100 µl of 0.1% formic acid. Retention time standard

peptides (iRT-Kit, Biognosys, Switzerland) were spiked into the

samples before they were analyzed by LC-MS for total protein abun-

dance (“non-enriched samples”). The remaining 95 µl was supple-

mented with 300 µl of an overnight recrystallized and cleared-up

phthalic acid solution prepared by carefully dissolving 5 g of

phthalic acid in 50 ml of 80% acetonitrile before adding 1.75 ml of

trifluoroacetic acid. The samples were then enriched for phospho-

peptides by incubating for 1 h under rotation with 1.25 mg of TiO2

resin (GL Sciences, Japan) preequilibrated twice with 500 µl of

methanol, and twice with 500 µl of phthalic acid solution. Peptides

bound to the TiO2 resin were then washed twice with 500 µl
phthalic acid solution, then twice with 80% acetonitrile with 0.1%

formic acid, and finally twice with 0.1% formic acid. The phospho-

peptides were eluted from the beads twice with 150 µl of 0.3 M

ammonium hydroxide at pH 10.5 and immediately acidified again

with 50ul of 5% trifluoroacetic acid to reach about pH 2.0. The

enriched phosphopeptides were desalted on microspin columns

(The Nest Group, USA) with the protocol described above, dried

using a vacuum centrifuge, and resolubilized in 10 µl of 0.1%

formic acid. Again, retention time standard peptides (iRT-Kit, Biog-

nosys, Switzerland) were spiked into the samples before they were

analyzed by LC-MS for total peptide abundance (“phosphopeptides

samples”).

LC-MS data acquisition
The peptide concentration in all samples was measured on a Nano-

Drop at OD280 and normalized to allow injection ~1 µg of material

into the mass spectrometer. The samples were randomized and then

either injected individually for SWATH-MS acquisition or pooled

and injected in technical duplicates for shotgun acquisition. The LC-

MS acquisitions were performed on an AB Sciex 5600 TripleTOF

coupled to a NanoLC-2D Plus HPLC system (for the main QTL

dataset), or on an AB Sciex 6600 TripleTOF coupled to a NanoLC-1D

Plus HPLC system (for the STE20/GPA1 validation). The liquid

chromatographic separation and mass spectrometric acquisition

parameters were essentially as described earlier (Selevsek et al,

2015). The peptide separation was performed on a 75-µm-diameter

PicoTip/PicoFrit emitter packed with 20 cm of Magic C18 AQ 3 resin

using a 2–35% buffer B at 300 nl/min (buffer A: 2% acetonitrile,

0.1% formic acid; buffer B: 98% acetonitrile, 0.1% formic acid). For

shotgun experiments, the mass spectrometer was operated with a

“top 20” method, with a 500-ms survey scan followed by a maxi-

mum of 20 MS/MS events of 150 ms each. The MS/MS selection

was set for precursors exceeding 200 counts per second and charge

states greater than 2. The selected precursors were then added to a

dynamic exclusion list for 20 s. Ions were isolated using a quadru-

pole resolution of 0.7 amu and fragmented in the collision cell using

the collision energy equation.

CE ¼ 0:0625 � m
z
� 3:5

with a collision energy spread of 15 eV. For SWATH-MS acquisi-

tion, a 100-ms survey scan was followed by a series of 32 consecu-

tive MS/MS events of 100 ms each with 25 amu precursor isolation

with 1 amu overlap. On both the AB Sciex 5,600 and 6,600

TripleTOF instruments, the sequential precursor isolation window

setup was as follows: 400–425, 424–450, 449–475, . . ., 1,174–
1,200 m/z. The collision energy for each window was determined

based on the collision energy for a putative doubly charged ion

centered in the respective window using the same equation as

above with a collision energy spread of 15 eV.

All the MS data files were visually inspected and curated at this

stage for low total ion chromatogram intensities, and the corre-

sponding samples were reinjected when possible. For the main QTL

dataset, this resulted in a final set of 179 SWATH data files for non-

enriched and 179 SWATH data files for phospho-enriched samples

(Dataset EV3) that were used for data extraction. Similarly, 40 DDA

files for non-enriched and 30 DDA files for phospho-enriched sam-

ples were selected for database searching and library generation.

The STE20 validation dataset additionally contained 16 phospho-

and 16 non-phospho-data files.

LC-MS database searching
The shotgun data were searched with Sorcerer-Sequest (TurboSe-

quest v4.0.3rev11 running on a Sage-N Sorcerer v4.0.4) and Mascot

(version 2.3.0) against the SGD database (release 03 Feb. 2011,

containing 6,750 yeast protein entries, concatenated with 6,750

corresponding “tryptic peptide pseudo-reverse” decoy protein

sequences). For the search, we allowed for semi-tryptic peptides

and up to two missed cleavages per peptide. For the non-enriched

samples, we used carbamidomethylation as a fixed modification on

cysteine residues and oxidation as variable modification on methio-

nine residues. For the phospho-enriched samples, we additionally

allowed for phosphorylation as variable modification on serine,

threonine, and tyrosine residues. The Sequest and Mascot search

results were converted to pep.xml and then combined using iPro-

phet (included in TPP version 4.5.2) both for the non-enriched and

for the phospho-enriched samples. Both search results were filtered

at 1% FDR by decoy counting at the peptide spectrum match (PSM)

level, resulting in a total of 698,652 identified spectra, 26,893 unique

peptides, and 4,310 proteins for the non-enriched sample set; in the

phospho-enriched sample set, there were a total of 224,551 identi-

fied spectra, 16,515 unique peptides (thereof 14,466 unique phos-

phopeptides), and 2,333 proteins (thereof 1,911 phosphoproteins).

Those data were compiled into two spectra libraries (one “non-

enriched” and one “phospho-enriched”) using SpectraST (included

in TPP 4.5.2) essentially as described earlier (Schubert et al, 2015),

including the specific splitting of the consensus spectra when MS/

MS scans identifying the same peptide sequence were recorded

more than 2 min apart, also described earlier (Schubert et al, 2015).

Those “split peptide assays” were given different protein entry

names labeled Subgroup_0_ProteinX to Subgroup_N_ProteinX,

respectively. The fragment ion coordinates for the peptides

contained the top 6 most intense (singly or doubly charged) y or b

fragment ions for each spectrum, excluding those in the SWATH

precursor isolation window for the corresponding peptide. The non-

enriched assay library comprised assays for 19,473 peptides (thereof

18,074 proteotypic peptides matching a total of 3,119 unique pro-

teins). The phospho-enriched assay library comprised assays for

14,339 peptides (thereof 12,969 phosphopeptide sequences) or

assays for 13,786 proteotypic peptides (thereof 12,678 proteotypic

phosphopeptides, matching a total of 1,676 unique phosphopro-

teins). The same phospho- and non-phospho-libraries were used to

extract both the QTL and the STE20 validation datasets.
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The SWATH-MS data extraction was performed separately for

the main QTL and the STE20 validation datasets using the iPortal

workflow manager (Kunszt et al, 2015) calling OpenSWATH

(openMS v. 1.10) (Röst et al, 2014) and pyProphet (Teleman et al,

2015). The precursors were then realigned across runs using TRIC

(Röst et al, 2016). The two resulting SWATH identification result

files contained a total of 18,273 identified peptides (thereof 16,922

proteotypic peptides matching a total of 2,940 proteins) for the non-

enriched datasets; in the phospho-enriched datasets, there were

13,748 identified peptides (thereof 12,412 phosphopeptides) or

13,218 proteotypic peptides (thereof 12,139 proteotypic phospho-

peptides matching a total of 2,247 unique phosphoproteins). After

alignment, we used a set of in-house scripts to compare the chro-

matographic elution profiles of the various isobaric phosphopeptide

isoforms matching a same delocalized peptide form (peptide

sequence + number of phosphorylations) within each single run

and to eventually group those co-eluting phosphopeptide assays into

the proper corresponding number of phospho-peak clusters (labeled _

cluster0 to _clusterN, respectively). The phospho-peak clusters were

then consistently re-numbered across runs, and those were used as

input to mapDIA (Teo et al, 2015) to select for the best suitable transi-

tions and peptides for quantification. This resulted in the final peptide

and protein quantification matrices for the non-enriched and

phospho-enriched datasets that were used for further processing.

Preprocessing of proteome data
First, features detected after 7,000 s and those corresponding to

decoys, reverse proteins, or not unique peptides were removed. We

also removed fragments with oxidized methionine and their corre-

sponding non-oxidized fragments. Next, native retention times were

converted to iRTs (Escher et al, 2012). Fragments corresponding to

peptides, whose sequence was existing only in the reference prote-

ome (i.e., BY1416 background) and not in RM11-1a background

were excluded from subsequent analysis. Normalization of the

fragment-level data and aggregation into peptides and protein-level

data were performed using mapDIA (Teo et al, 2015) with the fol-

lowing options: NORMALIZATION = RT 10, MIN_CORREL = 0.3,

MIN_FRAG_PER_PEP = 2, MIN_PEP_PER_PROT = 1, and a maxi-

mum of 20% missing data for each fragment. Finally, abundance

data were further corrected for effects due to culture batches and

proteomics measurement batches using the non-parametric empiri-

cal Bayes framework ComBat (Johnson et al, 2007).

Preprocessing of phosphoproteome data
First, fragments detected after 6,000 s, corresponding to non-

phosphorylated peptides (0P), corresponding to non-unique pro-

teins, and oxidized peptides were removed. As for non-

phosphorylated proteomics data, native retention times were

replaced by iRT (Escher et al, 2012), and fragments corresponding

to peptides whose sequence did not exist in the RM11-1a back-

ground were excluded from subsequent analysis. To normalize the

fragment-level data and to aggregate them at the phosphopeptide

cluster level, we used mapDIA (Teo et al, 2015). Fragments

derived from phosphopeptides belonging to the same phosphopep-

tides cluster were aggregated together. The following mapDIA

options were used: NORMALIZATION = RT 10, MIN_CORREL =
0.3, MIN_FRAG_PER_PEP = 2, and a maximum proportion of

missing data of 20% for each fragment as for the non-

phosphoproteomics data. Data were corrected for culture batch

and phosphoproteomics measurement batch effects using ComBat

(Johnson et al, 2007).

Derivation of the post-transcriptional traits (protein abundance
regressed to RNA levels) and phosphorylation levels
(phosphopeptide abundance regressed to protein abundance)

In order to (i) separate the changes in protein abundance due to

RNA changes from the post-transcriptional specific regulation, and

(ii) to distinguish changes in phosphopeptide abundance due to pro-

tein abundance changes from modification of the phosphorylation

levels, we have generated regressed traits (as already proposed in

Foss et al, 2011). The same procedure has been applied for both

traits and will be detailed below using the phosphopeptide abun-

dance example.

First, for each pair of corresponding traits (i.e., a phosphopeptide

and its protein of origin) relative abundance across sample was nor-

malized using a modified transformation to standard score (i.e., cen-

tering and scaling). To compute mean and standard deviation for

this normalization, only the values corresponding to the samples in

which measurements were available for both phosphopeptides and

protein were used. Then, for each pair, normalized phosphopeptide

data were regressed on protein data using a robust linear regression

using a MM estimate (Yohai, 1987), initialized by an S-estimate

using Hubber’s weight function and using an M-estimator as final

estimate using Tukey’s biweight function as implemented MM esti-

mation option in the rlm function of the MASS R package (Venables

& Ripley, 2002). The residuals of these regressions were averaged

per strain and then used as traits in subsequent analyses.

QTL mapping

We employed a previously developed QTL detection method based

on Random Forest (Michaelson et al, 2010; Cl�ement-Ziza et al,

2014), with slight modifications. In short, Random Forest is used to

model the phenotype using genetic variants as predictive variables.

A combination of variable importance measures (described below)

is used to score the effect of each variant on the phenotype. The sig-

nificance of these scores is then determined by comparing them

with an empirical distribution created through permutations. This

approach is implemented in the “RFQTL” R package (http://cellnet-

sb.cecad.uni-koeln.de/resources/qtl-mapping/).

To correct for population substructure, we included population

structure as covariates in the model, as we previously proposed

(Michaelson et al, 2010), with the following modifications. First, the

genotype matrix was normalized as described in Patterson et al

(2006) (see equations (1) to (3) there). Then, we carried out a singu-

lar value decomposition on the normalized genotype matrix

followed by an eigenvector decomposition. We then selected those

eigenvectors corresponding to the top seven eigenvalues as covari-

ates for the QTL mapping (additional predictors for growing the

Random Forests). These first seven vectors explained more than

25% of the genotype variance (Dataset EV2).

We adapted the approach described in Cl�ement-Ziza et al (2014)

using a different score describing the importance of each predictor

in the Random Forest (variable importance measure, VIM). While

previous work relied on the selection frequency as the VIM, i.e., the
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number of times a predictor was used in a forest, to quantify the

importance of each predictor, we combined two previously

published VIMs, RSS and PI (Liaw & Wiener, 2002), to compute an

informative combined score serving as the VIM in our study. While

the RSS describes the average reduction in the sum of the squared

residuals after splitting a node with a predictor, the PI refers to the

relative reduction in predictive accuracy after permuting the infor-

mation for the respective predictor.

RSS and PI are combined in the following way to generate a more

robust score Si for predictor i:

Si ¼ max ð0;RSSiÞ � max ð0; PIiÞ:

We averaged replicates for the same strain to avoid the detection of

false-positive QTLs. Consecutive markers linked to the same trait

and/or markers in high LD (Pearson’s r > 0.8) linked to the same

trait were counted as a single linkage as we previously described

(Cl�ement-Ziza et al, 2014).

QTL hotspot detection

To formally identify hotspots in our dataset, the genome was

divided into 40-kb bins (293 bins, bins at chromosome extremities

could be bigger). As proposed before (Brem et al, 2002), if the link-

ages were randomly distributed across the genome, the number of

linkages in each bin would be expected to follow a Poisson distribu-

tion with the mean of Nlinkage=Nbin. We use this distribution to esti-

mate the highest number of linkages that a bin could contain at a

probability lower than 0.01. These numbers were 30 for eQTLs, 13

for pQTLs, 9 for ptQTLs, 11 for phQTLs, and 4 for phResQTLs. Bins

with a sufficient number of QTLs at a given molecular layer were

considered as QTL hotspots. Consecutive bins on the same chromo-

some with enough QTLs were combined into single hotspots.

Integration of physiological traits

We downloaded the compound resistance traits from Perlstein et al

(2007). After merging replicates by taking their mean, the data

included 307 distinct phenotypes, representing growth with 94 com-

pounds at multiple exposure times and concentrations each. We

restricted the data to the 95 strains for which where we could match

the sample IDs between our and their data. The morphology traits

were taken from Nogami et al (2007). Again, we took the subset of

the 55 strains that were present in both their and our study. In total,

there were 501 morphology traits, representing measurements of

cells and organelles (including length, bud size, area, and nucleus

size) and combined values thereof (including the sum of length and

size of bud, and the product of nucleus area and nucleus density). In

order to facilitate integration with our molecular QTLs, we used our

sequencing-based genotypes and RF-based approach to remap QTLs

for these resistance and morphology traits, as described above. In

addition to merging markers in LD, we merged QTLs that affected

the same compound but at different concentrations, according to the

approach in Perlstein et al (2007). This resulted in 171 unique com-

pound resistance QTLs and 115 morphology QTLs (gQTLs) at a FDR

of 10%, compared with 124 in their original study.

We used Pearson’s correlation to investigate interrelationships

between morphological and physiological traits. In order to

summarize multiple phosphopeptides belonging to the same pro-

tein, we took the mean of the normalized, centered peptides of each

protein. Although the different peptides in the same protein are not

equivalent, this simplification was necessary in order to compare

results for the different molecular layers.

Mediation analyses were performed with the "mediation" R pack-

age (Tingley et al, 2014). Bootstraps with 999 iterations were used to

estimate P-values of average causal mediation effects (ACME).

Identification of local QTL

QTLs were considered to be local to their target if the QTL contained

at least one genetic marker that had a correlation of 0.8 or higher

with one of the markers that are directly up- or downstream of the

target gene (Pearson’s r). For eQTLs, the target gene corresponds to

the gene, whose expression is investigated; for pQTLs, it corre-

sponds to the gene encoding the protein, whose abundance is stud-

ied; for phQTLs and phResQTLs, it corresponds to the gene

encoding the protein of which the phosphopeptide is part of to pro-

vide context for the LD threshold, we also computed the genetic

linkage in cM between neighboring markers a and b as follows:

cM ¼ r

n
� 100;

where r corresponds to the number of strains that experienced a

recombination event between markers a and b, and n corresponds

to the total number of strains (excluding parental strains).

To provide an estimate of genetic linkage that corresponds to the

correlation threshold we used, we computed the average linkage

distance of all marker pairs with a correlation of 0.8 or greater.

GO enrichment

Gene Ontology (GO) enrichment analyses were performed using

topGO (Alexa et al, 2006). We performed Fisher’s exact tests with

the “weight01” algorithm and a minimal node size of 10. We always

tested a group of significant genes against an appropriate back-

ground set of genes whose products could be measured on the

respective molecular layer. For instance, we tested the pQTL targets

of a hotspot for enrichment in comparison with other proteins

whose levels also could be reliably determined. We employed this

approach to avoid conflating measurement biases (e.g., for highly

abundant proteins) with functional enrichment. We used annota-

tions from SacCer3.

Broad-sense heritability estimation

Broad-sense heritability estimates were computed based on replicate

measurements of some strains, as described elsewhere (Bloom et al,

2013). We used six different segregants with three replicates each,

as well as the parents with six (BY) and eight (RM) replicates each.

In short, the “lmer” function from the lme4 R package was used to

create a linear mixed-effects model with the phenotype as the

response and the segregant labels as random effects (Bates et al,

2015). The variance components σ2G (the variance due to genetic

effects, i.e., different segregants) and σ2E (the error variance) were

extracted, and broad-sense heritability was calculated as

H2 ¼ σ2G=ðσ2G þ σ2EÞ. Standard errors were calculated using the
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delete-one jackknife procedure, as proposed previously (Bloom et

al, 2013). Random distributions of heritability estimates for each

molecular layer were generated by permuting the strain labels and

compared with the real distributions using a Mann–Whitney test. In

order to be able to compare heritability estimates between the differ-

ent molecular levels, we restricted the analysis to the set of 402 pro-

teins where we had measurements for expression, protein, and (at

least one) phosphopeptide.

Polymorphisms in and around genes

To investigate the cause of local QTLs, we counted polymor-

phisms in the upstream region, downstream region, 30 and 50

UTRs, coding sequence, and amino acid sequence of each coding

gene between the BY and RM genomes. We considered all SNPs

reported by Bloom et al (2013). We excluded all genes with inser-

tions and deletions from this analysis. UTR annotations were

downloaded from www.yeastgenome.org in October 2017. If the

UTR was reported multiple times with differing lengths, we used

the largest annotation. The up- and downstream regions of a gene

spanned 2 kb each and began at the outer borders of the UTRs

relative to the gene of interest. The number of coding polymor-

phisms was defined as the number of amino acid changes in a

protein between BY and RM. Multiple SNPs in the same codon

were only counted once.

Figure 3C shows only genes with available UTR annotations and

available measurements on the protein level. Genes with indels are

not included.

For each phosphosite, we identified the closest polymorphism in

the amino acid sequence space by computing the absolute difference

of the position of the modified serine and all polymorphic amino

acids within the protein and using the minimum of those distances.

Note that phosphopeptides were only included in this study if they

did not have any polymorphisms.

Classification of QTLs based on their effects on the
transcriptome and proteome

To analyze how QTLs affect the proteome, we classified eQTLs into

three distinct classes: (i) eQTLs with “similar” effects on the tran-

scriptome and proteome, (ii) “buffered” eQTLs, and (iii) “enhanced”

eQTLs. We computed the effect E of a QTL at locus i on a molecular

trait j as a log2 fold change by subtracting the average of the log2-

transformed trait values t of all strains with the RM allele at this

locus from the average trait value for all strains with BY allele.

Eij ¼ tj;Gi¼BY � tj;Gi¼RM

The eQTLs were classified based on the difference in their effects on

the target transcript and the encoded protein:

Δepi ¼
Eie

jEiej Eie � Eip

� �

where Eie and Eip are the effects of eQTL i on the mRNA and pro-

tein levels, respectively. If the absolute difference |Δepi| was below

0.15, the eQTL effect was classified as “similar”. If Δepi was above

+0.15, it was classified as “buffered”, and if the effect difference

was below −0.15 (i.e., Δepi < −0.15), it was classified as

“enhanced”.

ptQTLs at FDR < 10% that did not overlap with an eQTL for the

same gene were added as a fourth class (“protein only”).

The effects of local and distant eQTLs on the proteome were

compared, by generating simple least squares regression models for

local and distant eQTLs separately. Here, we considered the log2

fold change on the protein level as the dependent variable and the

log2 fold change on the transcript level as the independent variable.

Models were generated with the lm function of the stats package in

R (R Core Team, 2020).

Validation of causal variation within STE20 and GPA1

Generation of allele replacement strains
The allele replacement strains generated in this study are derivatives

of Saccharomyces cerevisiae BY4716 (Brachmann et al, 1998)

(Table 1). Gene deletions were achieved by PCR-based targeted

homologous recombination replacing ORFs by indicated genes convey-

ing amino acid prototrophy or drug resistance (Sheff & Thorn, 2004).

In detail, the STE20 ORF was replaced by either STE20 or polymorphic

RM11-1a-STE20 both linked to kanMX6 cassettes (pFA6a-kanMX6) in

the BY4716 MATalpha lys2Δ20 background. For the genomic modifi-

cation of essential GPA1, an additional copy was ectopically expressed

from plasmid (pRS316) containing the LYS1 ORF for selection. Subse-

quently, the genomic GPA1 ORF was replaced by either GPA1 or poly-

morphic RM11-1a-GPA1 both linked to natMX6 cassettes (pFA6a-

natMX6). Single clones were selected for according to drug resistance

and loss of ectopically GPA1. All strains created were verified by PCR-

based methods and sequencing of targeted ORFs.

Sample preparation
Four replicates were grown for each of the four derived strains car-

rying either the BY4716 or RM11-1a allele of GPA1 and STE20. Sam-

ples were grown, harvested, and processed as described above for

the full panel of strains.

RNA extraction and sequencing
RNA extraction was performed as described above. RNA extraction

failed for sample BY:GPA1-BY:STE20-3. This sample was removed

for all further analysis on all molecular layers. All other RINs were

> 8.5. cDNA libraries were prepared with the Illumina TruSeq

stranded mRNA kit, according to the manufacturer’s specifications,

by the Cologne Center for Genomics (CCG) facility. The samples

were sequenced on a single lane of an Illumina HiSeq 4000 to pro-

duce 2 × 100 nt reads.

Transcriptomic data processing
Reads were trimmed with Trimmomatic v0.36 (Bolger et al, 2014),

with the following parameters differing from default settings: LEAD-

ING:0 TRAILING:0 SLIDINGWINDOW:4:15 MINLEN:25.

For quantification, the reads were mapped against strain-specific

versions of the BY-genome that carry the expected polymorphisms

within GPA1 and STE20. This was done to avoid additional mis-

matches for the strains carrying RM11-1a alleles for STE20 and

GPA1. Reads were mapped using bowtie2 (v2.3.4.1) (Langmead &

Salzberg, 2012) with default parameters. Aligned reads were

counted using intersect from the bedtools package (v2.27.1)
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(Quinlan & Hall, 2010), with the parameters -wb -f 0.55 -s -bed.

Identical reads were only counted once.

The matrix containing the read counts of all samples where RNA

extraction was possible (all except BY:GPA1-BY:STE20-3) was

processed with the function DESeqDataSetFromMatrix to generate a

DESeq dataset. The DESeq function was run on this object using the

following design: ~batch + strain, where batch refers to the RNA-

extraction batch. For each pair of strains, we used the results func-

tion from DESeq2 to compute log2 fold changes and P-values for dif-

ferential expression.

Enrichment of targets of kinases and phosphatases among
HAP1 targets

We tested the phosphoproteins targeted by the HAP1 locus for

enrichment in the previously annotated targets of a large number of

kinases and phosphatases. Here, we used the data generated by

Bodenmiller et al (2010) who measured changes in the abundance

of phosphopeptides upon the deletion of selected kinases and phos-

phatases. We only considered target proteins that were reported to

be phosphorylated or dephosphorylated at serine residues. We also

considered proteins that were measured in Bodenmiller et al (2010)

but not found to be regulated by any genetic perturbation. Among

the 315 proteins that were measured in both studies, a total of 45

proteins had at least one phResQTL at the HAP1 locus. We used

one-sided Fisher’s exact tests to assess the significance of the enrich-

ment of targets of a kinase or phosphatase among the genes that

were also targeted by the HAP1 locus.

Comparison with site-specific fitness assays

A previous study by Vi�eitez and colleagues has investigated the fit-

ness effects of a selection of phosphosites in a range of growth

conditions (Vi�eitez et al, 2022). They did this by changing the

phospho-residue to an alanine each for 474 specific phosphosites,

resulting in 474 strains, each carrying a different mutation. The fit-

ness effects of these genetic perturbations were determined by

observing deviations from an expected growth rate (S-score) on a

range of growth media. We integrated these findings with our

results by classifying phospho-traits based on their overlap with a

phosphosite that was tested by Vieitez and colleagues. If a phos-

phopeptide contained at least one phosphosite that had a fitness

effect in at least one condition (at FDR < 5%), we classified the

phospho-trait as being “functionally relevant” (39 phospho-traits).

All phosphopeptides that did not include a site with significant

effects (but were tested) were classified as being “non-functional”

(37 phospho-traits). Phosphopeptides that did not include phos-

phosites that were tested were not classified as being functional or

non-functional (2040 phospho-traits). These were not further con-

sidered for this subanalysis.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• RNA-seq reads: ArrayExpress (E-MTAB-8146, https://www.ebi.ac.

uk/arrayexpress/experiments/E-MTAB-8146/)

• MS data: Pride (PXD010893, http://proteomecentral.proteomexchange.

org/cgi/GetDataset?ID=PXD010893)

• Analysis scripts: GitHub (https://github.com/Jan88/phosphoQTL)

Expanded View for this article is available online.
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