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Global warming has been documented to threaten wild plants
with strong selection pressures, but how plant populations re-
spond genetically to the threats remains poorly understood. We
characterized the genetic responses of 10 wild emmer wheat
(Triticum dicoccoides Koern.; WEW) populations in Israel, sampling
them in 1980 and again in 2008, through an exome capture anal-
ysis. It was found that these WEW populations were under ele-
vated selection, displayed reduced diversity and temporal divergence,
and carried increased mutational burdens forward. However, some
populations still showed the ability to acquire beneficial alleles via
selection or de novo mutation for future adaptation. Grouping
populations with mean annual rainfall and temperature revealed
significant differences in most of the 14 genetic estimates in either
sampling year or over the 28 y. The patterns of genetic response to
rainfall and temperature varied and were complex. In general,
temperature groups displayed more temporal differences in ge-
netic response than rainfall groups. The highest temperature
group had more deleterious single nucleotide polymorphisms
(dSNPs), higher nucleotide diversity, fewer selective sweeps, lower
differentiation, and lower mutational burden. The least rainfall
group had more dSNPs, higher nucleotide diversity, lower differen-
tiation and higher mutational burden. These characterized genetic
responses are significant, allowing not only for better understand-
ing of evolutionary changes in the threatened populations, but also
for realistic modeling of plant population adaptability and vulnera-
bility to global warming.
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Global warming is one of the major environmental stresses
threatening plant populations in the wild (e.g., ref. 1).

However, how these threatened populations respond ecologi-
cally and evolutionarily to these stresses for adaptation to avoid
extinction remains elusive (e.g., ref. 2). Population genetic theory
predicts that a plant population will respond genetically to direc-
tional selection such as global warming via selection on standing
genetic variation before deleterious mutations are accumulated
sufficiently large to drive the population toward extinction (e.g.,
ref. 3). However, empirical genetic data to support the theoretical
prediction on population vulnerability under threats are largely
lacking, as characterizing deleterious and beneficial mutations and
analyzing genome-wide selections were technically limited (4) until
recent advances in genome sequencing (5–8). Little is known about
the interplay of selection and mutation in plant natural pop-
ulations under stresses (9, 10), particularly from global warming.
The wild relative species of domesticated crops harbor abun-

dant and useful genetic diversity (11) and are the best genetic
hope for improving genetically impoverished cultivars for human
food production (12–17). However, these valuable genetic re-
sources are found to be highly underconserved (18), and concerns
for losing these genetic resources are mounting (19). Also, many
studies have revealed increasing threats for crop wild relatives in
natural populations, particularly from global warming (1, 20, 21),
but few studies have characterized genetic responses of wild rel-
ative populations to the threats of global warming (22–24).

Wild emmer wheat (Triticum dicoccoides Koern.; WEW) (25)
is an important wild progenitor of cultivated wheat. It represents
useful genetic resources with adaptation to abiotic (e.g., solar
radiation, temperature, drought, and mineral poverty) and biotic
(e.g., pathogens and parasites) stresses. However, these wild
cereals become eroded by urbanization and agriculture (14) and
affected by climate changes such as rising temperature and less
rainfall (26). For example, our previous study showed the
shortening of flowering time 8.5 and 10.9 d in 10 WEW and 10
wild barley populations, respectively, after 28 y of global warm-
ing (23). Thus, it is important to assess the evolutionary re-
sponses of the wild relative populations to the severe ongoing
threats (22). Also, the advances in emmer wheat genome se-
quencing (27–29) open new opportunities to characterize
genome-wide genetic variations and to make genetic inferences
in wild emmer populations.
To understand genetic responses of wild crop relatives under

global warming, we conducted a comprehensive characterization
of genome-wide genetic variations using advanced sequencing
technologies and assessed the evolutionary responses in WEW
natural populations. Specifically, we selected 10 WEW populations
in Israel, sampling them in 1980 and 2008 (Fig. 1A and SI Ap-
pendix, Table S1), genotyped them using exome capture (27), and
analyzed the changes in mutation, selection, diversity, and population
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differentiation with respect to climate-specific groups (Fig. 1B).
We found elevated mutation and selection in these wild emmer
populations over the 28 y of global warming (Fig. 1 C and D).
Remarkably, some populations were still capable of generating
adaptive mutations for adaptation potential. Temperature groups
displayed more temporal differences in genetic response than
rainfall groups. The highest temperature group had more delete-
rious single nucleotide polymorphisms (dSNPs), higher nucleotide
diversity, fewer selective sweeps, lower differentiation, and lower
mutational burden.

Results
Sequencing, SNP Identification, and Annotation. We conducted
exome capture sequencing based on materials derived from ref.
23 with a total of 184 WEW samples with 6–10 individuals per
population in each sampling year (Fig. 1A and SI Appendix,
Table S1). The sequencing generated 4.3 million mapped se-
quence reads per WEW sample (SI Appendix, Table S2). SNP
calling using ANGSD (30) identified 6,499,444 and 6,482,132
SNPs across the WEW genome for the 1980 and 2008 samples,
respectively (Fig. 2A and SI Appendix, Table S4). SNP annotation
using Ensembl-Variant Effect Predictor (31) allowed for classifi-
cation of detected SNPs into 17 different classes (SI Appendix,
Table S4). Most SNPs were located on intergenic, intron, up-
stream, and downstream genic regions. A total of 899,855 and
874,833 SNPs were identified as synonymous variants and 986,903
and 956,002 SNPs as missense variants for 1980 and 2008 samples,
respectively. Weighting by the total SNPs detected, the pro-
portional missense SNPs were higher in the 1980 (0.152), than
2008 (0.147), samples (Fig. 2B and SI Appendix, Table S4).

Genetic Diversity. We inferred nucleotide diversity based on the
estimates of Watterson’s θ and Tajima’s π (SI Appendix, Fig. S2).
Overall, significantly lower estimate of Watterson’s θ was found
in the 2008, than 1980, samples (Fig. 2E and SI Appendix, Table
S5). Such diversity reduction was more obvious across the 14
chromosomes (Fig. 2F). Also, there were 6 populations dis-
playing significant diversity reduction (SI Appendix, Table S5). In
contrast, the estimates of Tajima’s π were not significantly dif-
ferent between samples of the 2 sampling years, but they were
significantly reduced in 5 populations (SI Appendix, Table S6).
Moreover, the estimates of individual inbreeding coefficient in a
population were generally reduced over the 28 y (SI Appendix,
Table S7). Quantifying the population differentiation (Fst) over
the 28 y revealed an overall Fst of 0.376 at the population level
(ranging from 0.143 to 0.684) and of 0.021 for all combined
populations (SI Appendix, Table S7). These results suggested that
the populations had reduced diversity and were diverged genetically.

Selective Sweep.We applied 2 methods to screen selective sweeps
across the WEW genome. Applying RAiSD (32) revealed more
sliding windows with selective sweeps across the 14 chromosomes
in the 2008, than 1980, samples, based on the outliers of MuStat
estimates being 9 or 15 SDs (Figs. 2B and 3A and SI Appendix,
Tables S8 and S9). Such patterns hold with respect to sampling
year, population and chromosome. The detected selective
sweeps on each chromosome were illustrated in SI Appendix, Fig.
S3 for the 1980 and 2008 samples, and summarized in Fig. 3E,
where the 2008 samples displayed more selective sweeps in 11
chromosomes and fewer sweeps in 3 chromosomes (Chr2B,
Chr5B, and Chr6B) than the 1980 samples. These 3 chromo-
somes might carry fewer genes sensitive to the rising temperature
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Fig. 1. Sampling location, population grouping, temperature, and precipitation in Israel. A shows the locations of the 10 WEW populations studied; B
displays the population grouping for climate-specific groups based on mean annual rainfall and temperature in each location; C illustrates the changes in
Israel from 1980 to 2008 of average temperature from below 20 °C to above 20 °C; and D shows the changes in Israel from 1980 to 2008 of average pre-
cipitation from above 20 mm to below 20 mm. Note that the weather data were acquired from the World Bank website Tradingeconomics.com.
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than the other 11 chromosomes. Evidently, these wild emmer
populations had elevated selection over the 28 y.
Less accurate Tajima’s D analysis was also made to acquire

indirect selection signals across the genome (33). The analysis
revealed the dominance of balancing selection for the WEW
samples with average Tajima’s D greater than zero across the
WEW genome (SI Appendix, Fig. S4). However, the 2008 sam-
ples displayed lower counts of nonoverlapping sliding windows
with Tajima’s D greater than 3 SDs per chromosome than the
1980 samples (Fig. 3D), while showing higher estimates of mean
Tajima’s D per chromosome (SI Appendix, Fig. S4). Similarly, the
2008 samples also displayed reduced nonoverlapping sliding
windows with Tajima’s D smaller than zero per chromosome
(Fig. 3C) and over the chromosomal regions representing dif-
ferent functional classes (SI Appendix, Fig. S5). The reductions in
the counts of balanced selection (Tajima’s D > 0) and purging
selection (Tajima’s D < 0) in the 2008, relative to 1980, samples
were also observed with respect to population and sampling year,
as summarized in SI Appendix, Tables S10 and S11. It is highly
possible that such patterns of reduction, particularly in purging
selection, were partly confounded with demographic factors.

Deleterious Mutation.We identified dSNPs based on the scores of
both Sorting Intolerant From Tolerant (SIFT; ref. 34) and Ge-
nomic Evolutionary Rate Profiling (GERP; ref. 35). The SIFT
score presents a prediction on the impact of an amino acid
substitution and can distinguish between functionally neutral and
deleterious amino acid changes. An amino acid substitution with
a SIFT score of 0.05 or less is considered to be deleterious.
GERP produces a “rejected substitution” (RS) score to quantify
the conservation of each nucleotide in multispecies alignment. A
positive score (RS > 0) at a substitution site means fewer sub-
stitutions than expected. Thus, a substitution occurring in a site
with RS > 0 is predicted to be deleterious; the larger the RS score,

the more deleterious the substitution. The identification generated
19,672 and 18,627 dSNPs for the 1980 and 2008 samples (SI Ap-
pendix, Table S4), respectively. For ease of comparison, SI Ap-
pendix, Table S12 summarized all of the dSNP detections with
respect to population, climate group, and sampling year. Weight-
ing by the total detected SNPs, we found that the 2008 samples
displayed lower proportional dSNPs (Fig. 2C), but such reduction
was not statistically significant, at least at the chromosomal level
(SI Appendix, Table S13). Examining the chromosomal distribu-
tions of the detected dSNPs revealed that more dSNPs were lo-
cated toward both ends of a chromosome, and such pattern of
dSNP distribution was similar for both 1980 and 2008 samples (SI
Appendix, Fig. S6).
To understand these dSNPs better, we assessed the deleterious

allele frequency distributions (SI Appendix, Fig. S7) and found
105 and 104 dSNPs were fixed in the 1980 and 2008 samples,
respectively (SI Appendix, Table S4). Comparing the extreme
frequencies of these dSNPs revealed that the 1980 samples had
more dSNPs of allelic frequency <0.1 or >0.90 than the 2008
samples (Fig. 2D and SI Appendix, Fig. S8). This finding helped
to explain why the 2008 samples had fewer dSNPs than the 1980
samples. Further distribution analysis of allelic frequencies for
the dSNPs revealed marked differences between sampling years
at the population level, particularly for populations 4, 6, and 10
(SI Appendix, Fig. S9). These patterns were compatible with al-
lelic frequency differences between sampling years at the pop-
ulation level for all of the detected SNPs (SI Appendix, Fig. S10),
showing marked population divergences.

Beneficial Mutation. We also inferred beneficial mutations using
PolyDFE (8). PolyDFE generates alpha-dfe statistics as the pro-
portion of adaptive substitutions (with selection coefficient greater
than zero) from site frequency spectrum data. Higher alpha-dfe
estimates mean relatively more advantageous mutations. The

estimates across 14 chromosomes

dSNPs
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Mean Watterson’s 

Total variants Prop. of missense variants Prop. of Prop. of dSNPs of MAF Nucleotide diversity

B C D EA

Fig. 2. SNP detection, SNP characterization, and nucleotide diversity in the samples of WEW collected in 1980 and in 2008. A shows the total variants
detected for each sample group; B the proportion of the missense variants detected over the total SNPs; C the proportion of the dSNPs; D the proportion of
dSNPs with minor allelic frequencies (MAF) smaller than 0.05; E mean Watterson’s θ estimates; and Fmean Watterson’s θ estimates across 14 chromosomes. In
each graph, the 1980 and 2008 samples are labeled in green and orange, respectively, and the sample mean values are shown above the bars.
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estimation of alpha-dfe following model A showed an over-
all increase in adaptive mutations in the 2008 samples at the
population level (Fig. 4A and SI Appendix, Table S14). Seven
populations showed a significant increase in alpha-dfe estimates
over the 28 y, while 3 populations (Rosh Pinna; Tabigha, terra
rossa; Kokhav Hashahar) displayed a significant decrease (Fig.
4F and SI Appendix, Table S14).

Mutational Burden. We estimated mutational burdens for individ-
ual samples by counting deleterious heterozygotes and homozy-
gotes for each deleterious SNP. The estimates and their tests of
significance were summarized in SI Appendix, Tables S15–S17 for
individual heterozygous load, homozygous load, and total load,
respectively. On average, the 2008 samples displayed higher in-
dividual mutational burdens than the 1980 samples (Fig. 4 B–D).
Interestingly, individual total loads were not associated with the
WEW population latitudes (SI Appendix, Fig. S11).
We also inferred mutational burden at the population level

following the method of Wang et al. (9) by weighting GERP++
RS scores with the deleterious allelic frequencies for all of the
dSNPs. Seven populations displayed higher RS-based mutational
burdens over the sampling years, while 3 populations showed a
reduction in RS-based mutational burden (SI Appendix, Table
S18). Overall, the 2008 samples displayed more population-
weighted RS load inferred than the 1980 samples (Fig. 4 E and
G). Further distribution analyses of RS and weighted RS scores
for all of the dSNPs in the 1980 and 2008 samples (SI Appendix,
Figs. S12 and S13) support the finding that the 2008 samples
carried an increased RS-based mutational burden.

Gene Ontology Analysis. We characterized further the detected
deleterious genes by performing Gene Ontology (GO) analysis
via REVIGO (36). The analysis revealed that inferred genes
were mainly associated with the biological processes of protein

phosphorylation, organic substance metabolism, lipid metabolism,
and organic substance catabolism. However, considering the GO
terms extracted from deleterious genes unique to 1980 or 2008
samples, we found more unique clusters of biological processes in
the 1980, than 2008, samples (SI Appendix, Fig. S14A). Specifi-
cally, there were 28 and 18 unique REVIGO GO biological pro-
cesses for the 1980 and 2008 samples (SI Appendix, Fig. S14B),
respectively. Similarly, considering only 93 fixed deleterious genes
unique to 1980 or 2008 samples, we found 3 and 14 GO terms for
the 1980 and 2008 samples, respectively, and more biological
processes present in the 2008 samples (SI Appendix, Fig. S15).
Interestingly, REVIGO also generated tag clouds with the key-
words that correlated with the values based on 1,044 and 1,022
GO terms identified from all of the deleterious genes. The tag
clouds consistently displayed the word “temperature” in both 1980
and 2008 samples (SI Appendix, Fig. S16), indicating many of these
deleterious genes had functions associated with temperature.
We also performed GO analysis of the selective genes de-

tected in the selective chromosomal regions identified by RAiSD
MuStat estimates of 20 or larger SDs. A total of 497 and 789
chromosomal segments across the WEW genome having 66 and
80 nonredundant genes were identified, and a total of 159 and
336 GO terms were extracted, for the 1980 and 2008 samples,
respectively. More genes were underrepresented with smaller
log10pvalue in the 2008, than 1980, samples (SI Appendix, Fig.
S17A), but there were 16 and 77 unique REVIGO GO biological
processes identified for the 1980 and 2008 samples, respectively
(SI Appendix, Fig. S17B). These results further confirmed the
elevated selection in the 2008 samples.

Variation Analysis for Climate-Specific Groups. We evaluated the
impacts of rainfall and temperature on genetic responses (or
estimates of genetic parameters) in WEW by grouping the 10 pop-
ulations with climate factor profiles to 3 rainfall and 3 temperature

RAiSD mu across 14 chromosomes

RAiSD RAiSD

E

PSW >15SD of 

A

PSW>9SD of mu PSW>15SD of mu PSW with negative Tajima’s D PSW>3SD of Tajima’s D 

B C D 

Fig. 3. Selection signals detected by RAiSD and Tajima’s D in the samples of WEW collected in 1980 and in 2008. A shows the proportion of sliding windows
(PSW) with RAiSD MuStat estimates greater than 9 SDs; B the proportion of sliding windows with RAiSD MuStat estimates greater than 15 SDs; C the pro-
portion of sliding windows with negative Tajima’s D estimates; D the proportion of sliding windows with positive Tajima’s D estimates greater than 3 SDs; and
E the proportion of sliding windows with RAiSD MuStat estimates greater than 15 SDs across 14 chromosomes. In each graph, the 1980 and 2008 samples are
labeled in green and orange, respectively, and the sample mean values are shown above the bars.
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population groups (Fig. 1B), estimating 14 genetic parameters in
each group, and testing the differences in genetic estimates among
climate-specific groups by Kruskal–Wallis one-way ANOVA. The
results are tabulated in SI Appendix, Tables S5–S18 and summa-
rized in Table 1 with respect to global warming (less rainfall and
higher temperature). It was found that these climate-specific

groups displayed significant differences in most of the 14 genetic
estimates in either sampling year or over the 28 y (Table 1).
However, their impacts on genetic responses seemed to be varied
and more complex than previously anticipated, conditional on the
nature of genetic parameter and its estimate. In general, the tem-
perature groups showed more temporal differences in genetic

 Mean weighted RS load / expected mean RS load across 17 groups Mean alpha-dfe estimate

A B C D E

F G

Fig. 4. Estimates of adaptive mutations and mutational burdens in the samples of WEW collected in 1980 and in 2008. A–E show the estimates of adaptive
mutations, mean individual heterozygous (het), homozygous (hom) and total mutational burden, and the population weighted GERP++ RS mutational
burdens. F and G display the mean alpha-dfe estimate for each population and the ratios of mean weighted RS load vs. expected mean RS load across 17
sample groups. In each graph, the 1980 and 2008 samples are labeled in green and orange, respectively, and the sample mean values are shown above
the bars.

Table 1. Genetic impacts of rainfall and temperature in the samples of WEW collected in 1980 and in 2008, as
illustrated with increase or decrease and with their statistical significance

R1 vs. R3 R1 vs. R3 R1 over T3 vs. T1 T3 vs. T1 T3 over From

Genetic parameter in 1980 in 2008 28 y in 1980 in 2008 28 y table

Selection
RAiSD muStat 9SD (selective sweep) INC*** DEC DEC* INC* INC DEC** S8
RAiSD muStat 15SD (selective sweep) INC*** INC** INC INC DEC DEC S9
PSW (negative Tajima’s D) (purging) DEC*** DEC*** DEC*** INC*** DEC*** DEC*** S11
PSW (3SD of Tajima’s D) (balancing) DEC*** DEC*** DEC INC*** INC*** DEC*** S10

Mutation
Proportion of dSNP count INC*** INC*** INC DEC*** DEC*** INC*** S13
Individual heterozygous load DEC*** DEC*** INC INC*** DEC*** DEC* S15
Individual homozygous load DEC*** DEC*** INC*** INC*** INC DEC** S16
Individual total load DEC*** DEC*** INC*** INC*** DEC* DEC** S17
Population weighted RS load DEC*** DEC*** INC*** INC*** DEC*** DEC*** S18
Adaptive mutation INC*** DEC*** DEC*** INC*** DEC*** DEC*** S14

Diversity
Watterson’s θ DEC*** INC*** INC** DEC*** DEC*** INC*** S5
Tajima’s π INC*** INC*** INC*** DEC*** DEC*** INC*** S6
Individual Fis INC*** DEC DEC* DEC*** INC** INC*** S7

Differentiation
Fst — — DEC*** — — DEC*** S7

The impact of an increase (INC) or decrease (DEC) is defined if an estimated genetic response was higher or lower for the least, than
the most, rainfall group (R1 vs. R3) in a given sampling year, or for R1 over the 2 sampling years, respectively. Also similarly defined was
for temperature with the highest temperature group (T3) vs. the lowest temperature group (T1) in a sampling year, or with T3 over the
28 y. All of the estimated genetic responses are listed in SI Appendix, Tables S5–S18. *P < 0.05, **P < 0.01, ***P < 0.001.
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response than the rainfall groups. The highest temperature
group had more dSNPs, higher nucleotide diversity, fewer se-
lective sweeps, lower differentiation, and lower mutational bur-
den. The least rainfall group had more dSNPs, higher nucleotide
diversity, lower differentiation, and higher mutational burden.
More specifically, more deleterious base-substitution mutations
per sample (×10−8) and fewer adaptive mutations were found in
the most drought and highest temperature groups of WEW after
28 y (Fig. 5).
To understand the complexity of genetic responses to rainfall

and temperature, we compared the extent of selective sweeps
identified across the 14 WEW chromosomes in each climate-
specific group and confirmed the complexity in the selection
response to rainfall and temperature (SI Appendix, Figs. S18 and
S19). Similar conclusion can also be drawn when allele frequency
distributions were compared between 2 sampling years for all
detected SNPs and for all dSNPs in 6 climate-specific groups (SI
Appendix, Figs. S20 and S21).

Discussion
This study represents a comprehensive characterization of ge-
netic responses in crop wild relative populations through a com-
parative genomic analysis of diversity, selection, and mutation.
After the 28 y of global warming, the assayed 10 WEW pop-
ulations were under elevated selection, displayed reduced diversity
and temporal divergence, and carried increased mutational bur-
dens forward. However, some populations were still capable of
selecting beneficial alleles from existing genetic variations for
adaptation. Grouping the populations with mean annual rainfall
and temperature revealed significant differences in most of the 14
genetic estimates in either sampling year or over the 28 y. The
patterns of genetic response to rainfall and temperature varied
and were complex. Temperature groups generally displayed more
temporal differences in genetic response than rainfall groups.
These findings not only allow for better understanding of evolu-
tionary changes in threatened populations, but also provide valu-
able empirical data for realistic modeling of plant population
adaptability and vulnerability to global warming.
Our study has some limit in the association analyses to es-

tablish the immediate links of the global warming to all of these
genetic responses, as other climate changes such as CO2 increase
and their interactions may have also played a role in these

genetic changes. However, our GO analysis (SI Appendix, Fig.
S16) and climate group analysis (Table 1) seemed to favor the
temperature as the major driver of the detected temporal genetic
changes. Also, our genomic and genetic analyses may have suf-
fered from the small sample size, sampling unbalance, and WEW
polyploidy. Despite these limitations, the characterized genetic
responses have helped to paint a picture in a resolution unachiev-
able before on the evolutionary changes occurring at the levels of
gene, chromosome, individual, and population in response to
global warming, and allowed us to understand better the evolu-
tion of the threatened populations. First, our characterization
confirmed the expectation generated from our early study that
the WEW populations under global warming were under strong
selection and had reduced diversity (23). Second, these pop-
ulations overall will carry increased mutational burdens forward,
but some populations also showed their ability to generate more
adaptive mutations via selection of existing variations or de novo
mutation (Fig. 4), which is also consistent with the early obser-
vation of adaptive SSR alleles present in WEW samples (23).
These findings together are encouraging, as some WEW pop-
ulations such as populations 1 and 9 will have the genetic po-
tential of adaptation to the ongoing global warming. Third, we
could also reason empirically that some populations may be
more vulnerable genetically than the others. For example, the
populations 4, 7, and 10 had some feature of becoming geneti-
cally vulnerable, as they had the highest mutational burdens (SI
Appendix, Table S18 and Fig. S11) with accumulations of fewer
adaptive mutations (SI Appendix, Table S14) and displayed the
strongest temporal differentiations with reduced individual in-
breeding coefficients (SI Appendix, Table S7) and marked allelic
changes (SI Appendix, Figs. S9 and S10).
With these empirical genetic responses, we move closer to-

ward the reliable prediction of population adaptability and vul-
nerability to climate changes (37, 38), as realistic modeling of a
threatened population with deep learning tools is possible (39,
40). The main advantage of such population modeling is its ability
to incorporate genetic responses (including adaptive mutations),
demographics, climate factors, and environmental conditions for
an integrated projection of threatened population dynamics (41,
42). With the incorporation of adaptive mutations into modeling,
the projection may be more realistic and accurate than before. We
believe the population modeling will be a fruitful area of research,
enhancing our understanding of the adaptability and vulnerability
projection in threatened populations and assisting in the devel-
opment of effective conservation strategies and guidelines, par-
ticularly for those threatened populations of crop wild relatives.
Conserving valuable crop wild relatives has now become more
critical than before to secure valuable genetic resources for im-
proving food production (13), as many crop wild relatives are not
properly protected and under conservation (18).
Our research also demonstrates a feasible approach to moni-

tor evolutionary responses of some plant populations under en-
vironmental stress in the wild (4) through a comparative analysis
of selection, mutation, and diversity (SI Appendix, Fig. S1). The
approach can be applied to characterize genome-wide variations
of other plant species or organisms and to assess selection and
mutation in the wild (43). The threatened populations of crop
wild relatives, however, naturally have become an attractive model
of research, as characterizing genetic responses in crop wild rel-
ative populations is more feasible than before with the availability
of sequenced genomes and gene annotations in the related crops
(27–29, 44). Also, many crop wild relatives have been collected
and conserved in seed genebanks worldwide over the last 60 y with
precise GIS information, allowing for population resampling (45–
47). Thus, it is technically possible to acquire more temporal data
on genetic responses for more reliable population adaptability
and vulnerability modeling, allowing better understanding of

Rain1     Rain2     Rain3                     Temp1    Temp2       Temp3

More drought                                               Warmer  
Global warming

Deleterious muta onA

B ve muta

Fig. 5. Changes in the estimates of deleterious base-substitution mutations
per sample (×10−8; A) and adaptive mutations (B) in 6 climate-specific groups
in response to 28 y of global warming. Positive and negative changes are
highlighted in green and orange, respectively, and the differences are shown
above or within the bars.
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the evolutionary processes and potential of crop wild relative
populations under the threats of global warming.

Materials and Methods
Materials used for this study and methods used for collecting samples, DNA
extractions, sequencing, SNP calling, population genetic analysis, GO analysis,
variation analyses for climategroups, anddata and codeavailability are available
in the SI Appendix. The SI Appendix has several components: A, Supplemental
materials and methods; B, References for materials and methods; C, Grouping
of supplementary tables and figures; D, Tables S1 to S18; and E, Figs. S1 to S21.
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