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Abstract: Inflammation may adversely affect early human brain development. We aimed to assess
the role of maternal nutrition and infections on cord blood inflammation. In a pregnancy cohort in
Sylhet, Bangladesh, we enrolled 251 consecutive pregnancies resulting in a term livebirth from July
2016–March 2017. Stillbirths, preterm births, and cases of neonatal encephalopathy were excluded.
We prospectively collected data on maternal diet (food frequency questionnaire) and morbidity, and
analyzed umbilical cord blood for interleukin (IL)-1α, IL-1β, IL-6, IL-8 and C-reactive protein. We
determined associations between nutrition and infection exposures and cord cytokine elevation
(≥75% vs. <75%) using logistic regression, adjusting for confounders. One-third of mothers were
underweight (BMI < 18.5 kg/m2) at enrollment. Antenatal and intrapartum infections were observed
among 4.8% and 15.9% of the sample, respectively. Low pregnancy intakes of B vitamins (B1, B2,
B3, B6, B9 (folate)), fat-soluble vitamins (D, E), iron, zinc, and linoleic acid (lowest vs. middle tertile)
were associated with higher risk of inflammation, particularly IL-8. There was a non-significant
trend of increased risk of IL-8 and IL-6 elevation with history of ante-and intrapartum infections,
respectively. In Bangladesh, improving micronutrient intake and preventing pregnancy infections are
targets to reduce fetal systemic inflammation and associated adverse neurodevelopmental outcomes.

Keywords: undernutrition; prenatal infection; inflammation; micronutrient

1. Introduction

Globally, an estimated 200 million children under the age of 5 years do not reach
their full potential in cognitive development, the vast majority in low-middle-income
countries (LMIC) [1]. The first 1000 days from conception onward presents a critical
window of opportunity to optimize child neurodevelopment [2]. Maternal undernutrition
and infections are prevalent and targetable pregnancy risks in LMIC may have significant
consequences for long term offspring development. There is increasing recognition of
the importance of the complex “collision” of nutrition and inflammation in global child
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health, as evidenced by the National Institute of Child Health and Human Development
INSPIRE (Inflammation and Nutritional Science for Programs/Policies and Interpretation
of Research Evidence) initiative [3]. The relationships between maternal nutrition, infection,
and maternal–fetal inflammation in pregnancy are complex and inadequately characterized,
particularly in LMICs [4].

Maternal infections are prevalent in LMICs and associated with maternal and fetal
systemic inflammation. The risk for maternal infections is high in LMIC, where prenatal
care coverage is low, access to clean water and sanitation is poor, and up to half of births
occur at home without a skilled birth attendant [5]. Up to 60% of mothers may experience
a urinary or reproductive tract infection at least once in pregnancy [6,7], and in LMIC,
screening and treatment of these infections is inadequate. Maternal infections result in
inflammation by direct bacterial cytotoxicity and activation of host immune responses [8].
In the Extremely Low Gestational Age Newborn (ELGAN) study, pregnancy history of
cervical/vaginal and urinary tract infections was associated with elevations in newborn
pro-inflammatory cytokines [9]. Chorioamnionitis has been associated with elevations in
maternal [10,11] and umbilical cord blood [12] cytokines.

Undernutrition is common among women of reproductive age in South Asia (21%
underweight (BMI < 18.5 kg/m2)) [13] and linked with immune dysfunction. Chronic
protein energy malnutrition impairs antigen-presenting cell and cell mediated T-cell func-
tion, thereby increasing infection risk [3,14,15]. Furthermore, chronic undernutrition may
also activate the hypothalamic-pituitary-adrenal axis and result in immune dysregula-
tion [16]. In rural Bangladesh, 63% of pregnant mothers have at least one micronutrient
deficiency [17]. Specific micronutrients such as long-chain polyunsaturated fatty acids
(PUFAs), B vitamins, and zinc, modulate immune function and the inflammatory response,
and thus, deficiencies may result in a pro-inflammatory milieu. Finally, maternal macro-
and micronutrients may be epigenetic regulators of inflammatory and immune function in
the fetus [18].

Fetal and neonatal inflammation leads to white matter brain injury and has been linked
with altered neonatal functional connectivity [19,20], abnormal behavior, and autism [21].
In preterm infants, perinatal inflammation has been associated with ventriculomegaly,
microcephaly and lower neurodevelopmental scores as well as intelligence quotient in
childhood [22,23]. In order to identify potential modifiable pregnancy targets to reduce
fetal exposure to inflammation, we aimed to investigate the association of maternal preg-
nancy undernutrition and infections with offspring inflammation, as measured by pro-
inflammatory immune mediators in umbilical cord blood in a pregnancy-birth cohort in
rural Bangladesh.

2. Materials and Methods

This study was implemented in the Projahnmo field site, a site for maternal, newborn,
and child health research, which was established in 2001 in Sylhet district of Bangladesh by
a partnership of Johns Hopkins University, the Bangladesh Ministry of Health and Family
Welfare (MOHFW), and several Bangladeshi NGOs and academia. The Projahnmo study
site is located in two sub-districts of Sylhet district, in northeast Bangladesh (Kanaighat and
Zakiganj: population: ~500,000), ~350 km from the capital city, Dhaka. Since its inception,
Projahnmo has maintained routine demographic surveillance for all pregnancy and births
in the study areas. The study population is rural, poor (average daily wage < USD 2/day),
and with high disease burden. Mortality rates are high (stillbirth rate 30/1000 births,
neonatal mortality rate 37/1000 live births) [24]. In this study, in 299 consecutively enrolled
women in the Projahnmo pregnancy cohort, we collected umbilical cord blood spots at
delivery between July 2016–March 2017. In the present analysis, we included pregnancies in
this cohort resulting in a full-term live birth. We excluded stillbirths, infants with neonatal
encephalopathy, and preterm births (n = 48 total), yielding 251 pregnancies for analysis.

Trained community health workers (CHWs) collected primary data and measure-
ments at home visits on household sociodemographic, environmental and pregnancy
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risks, medical and obstetric histories, pregnancy outcomes and maternal-newborn an-
thropometrics and morbidity. A table of data collection timepoints can be viewed in
Supplementary Table S1. Birth attendants were interviewed by research staff regarding
delivery history and maternal/infant morbidity, including neonatal encephalopathy and
maternal puerperal infections/sepsis. CHWs followed over 90% of pregnancies in the pop-
ulation after delivery and conducted postnatal visits within 1 to 6 days and 42–60 days post-
partum. This study was approved by the Ethics Review Committee of Johns Hopkins Uni-
versity (IRB no. 00004508), International Centre for Diarrhoeal Disease Research Bangladesh
(icddr,b) in Bangladesh (PR 12073) and Partners Health Care (Protocol 2014P001741).

2.1. Exposure Measures
2.1.1. Maternal Nutritional Status

CHWs measured maternal anthropometrics at the enrollment (<20 weeks gestation),
24–28 week, 32–36 week, and 38–40 week antenatal care (ANC) visits. Weight was mea-
sured with OMRON Digital Body Weight Scale (model: HN-283, 100 g precision) that
was calibrated daily. Height was measured with a locally constructed portable height
stadiometer (precision: 1 mm) and mid-upper arm circumference (MUAC) using a TALC
insertion tape (precision: 1 mm). Training and standardization in anthropometric measure-
ments were performed by research staff with anthropometry expertise using a protocol
modified from the WHO Multicentre Growth Reference Study [25], at the start of the study
and every 3 months thereafter. All measures were performed independently three times,
and 10% of measures were further repeated by a field supervisor blinded to the CHWs
measures. Maternal body mass index (BMI) was calculated as weight in kg divided by
height in meters squared at the first ANC study visit (mean gestational age at enrollment
12.1 weeks (standard deviation(SD) 3.8 weeks)). Maternal underweight was classified
as BMI < 18.5 kg/m2 and overweight or obese was classified as BMI ≥ 25 kg/m2. Low
MUAC was classified as MUAC < 22 cm and stunting was classified as height <145 cm.
Anemia was classified as maternal enrollment hemoglobin (Hb) levels <11 g/dL.

2.1.2. Micronutrient Intake

Maternal dietary intake was assessed using a thirty-nine-item food frequency ques-
tionnaire collected during ANC visits at 24–28, 32–36, and 38–40 weeks’ gestation. Data
collectors interviewed women on their recall of food item frequency for the last 7 days
(ranked categorically: never, once per week, 2–4 times per week, 5–6 times per week,
and daily). Food items from the food frequency questionnaire (FFQ) were matched with
corresponding food items and their nutrient data provided by Food Composition Tables for
Bangladesh [26]. For nutrients without adequate data available in Bangladesh tables, we
used the Indian Food Composition Tables [27]. Nutrient data for FFQ variables containing
more than one possible food item (i.e., “any red meat”) were averaged across all possible
items (i.e., beef, goat, etc.). Portion sizes were not collected with the original questionnaire
and thus we used the recommended daily serving sizes from the Dietary Guidelines for
Bangladesh [28] to estimate nutrient intakes. Daily nutrient intake was estimated as the nu-
trient value * recommended daily serving/portion size (g) * daily consumption frequency
per maternal self-report. Dietary nutrient intake, based on average consumption frequency
of the 24–28 and 32–36 FFQ assessments to characterize habitual pregnancy intake prior to
delivery, was categorized into tertiles for analysis.

2.1.3. Maternal Infections

CHWs interviewed mothers and birth attendants regarding history of intrapartum
fever, clinical chorioamnionitis, duration of rupture of membranes, administration of
antibiotics during delivery, and report of infections during current pregnancy including:
UTI, sexually transmitted diseases, and other reproductive tract and systemic infections.
Infection exposure was examined by timing of exposure: during pregnancy (24–28 week,
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32–36 week, or 38–40 week), delivery, as well as a binary variable indicating any maternal
infection at any time.

2.2. Outcome Measures
2.2.1. Blood Spot Collection

Three drops of umbilical cord blood (0.25–0.20 mL) were collected on Whatman filter
paper (FTA (Flinders Technology Associates) Card, General Electric) at delivery by research
staff. Blood spots were air-dried at room temperature for at least 24 h, and stored in sealed
Ziplock bags with desiccant at −80 ◦C.

2.2.2. Inflammatory Protein Analysis

Samples were sent to the Laboratory of Genital Tract Biology, Brigham and Women’s
Hospital (Boston, MA, USA), which conducted the inflammation analysis for the ELGAN
study [9,22,29]. Proteins were eluted from dried blood spots as per standard procedures
developed and validated for the ELGAN study [30]. Inflammation biomarkers were
selected based on analytic validation and prior data demonstrating the associations with
our exposures of interest, as well as neurodevelopmental outcomes [31,32]. Cord blood
levels of IL-1α, IL-1β, IL-6, IL-8, and CRP were measured using electrochemiluminescence
multiplex assays on a Meso Scale Discovery Sector Imager S600 (MSD, Gaithersburg,
Maryland). The platform has been analytically and clinically validated compared to
traditional ELISA [23,29,33–38]. Protein concentrations were calculated from relative
luminescent units based on interpolation from log calibrator curves. Reproducibility was
confirmed by reanalyzing a quality control split sample on each assay plate, which showed
an inter-assay variation of 5.54% for IL-1α, 5.96% for IL-1β, 8.44% for IL-6, 10.21% for
IL-8 and 5.10% for CRP. Each analyte was normalized by the total protein content (mg)
as determined by BCA assay. Similar methods have been used and reported in ELGAN
studies [23,31,32].

2.3. Statistical Analysis

We summarized descriptive statistics of key demographic and clinical characteristics,
exposure, and outcome variables. Weekly FFQ food item consumption at each time point
of assessment was calculated as a weighted average (weekly frequency category value
(0 (none), 1 (once), 3 (2–4 times), 5.5 (5–6 times), and 7 (daily)) * percent each frequency
category was observed in sample) multiplied by the recommended serving size. The
correlations among nutrient concentrations were determined by Spearman correlation
coefficient and plotted on a heat map. The relationship between each exposure (maternal
underweight, overweight/obese, low MUAC, stunting, anemia, nutrient intake (dietary
intake tertiles of vitamins A, B (B1, B2, B3, B6, B9, B12), C; minerals (iron, selenium, zinc));
and long-chain polyunsaturated fatty acids (LCPUFAs) (alpha-linolenic acid, arachidonic
acid, docosahexaenoic acid, eicosapentaenoic acid, eicosatrienoic acid, linoleic acid); or
maternal infections in pregnancy (antepartum, intrapartum)) and outcome (elevated levels
of inflammatory protein concentrations) was calculated using logistic regression. Con-
centrations of individual cytokines were categorized as ≥75% vs. <75% for analysis [29].
The statistical approach of using the top-quartile concentrations was supported by the
concept that the highest concentrations would be most biologically significant and by the
observed nonlinear distribution of the concentrations of most proteins. The approach
has been validated by clinical content showing strong association between newborn in-
flammation defined as top quartile concentration of the inflammatory proteins chosen for
this study, infections and child development outcomes [23,39]. Composite variables of
exposure groups (fat-soluble or water-soluble vitamins, minerals, LCPUFAs) and outcomes
(elevation of one or more inflammatory biomarkers) were also created. Multivariate models
were constructed to adjust for potential confounding. Based on our a priori conceptual
model, we selected the following potential confounders: socioeconomic status, nulliparity,
MUAC > 22 cm, maternal educational attainment (years), tobacco and/or betel nut use,
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and season of initial antenatal assessment [40]. To categorize the seasons for multivariate
analysis, due to small numbers, one subject in season category Hermanta was merged
with Sarat and one subject in season category Shhit was merged with Basanta. We used
principal component analysis to construct a wealth index from household possessions. For
this exploratory analysis, adjustments were not made for multiple comparisons.

2.4. Statistical Power

We estimated the detectable effect size (odds ratio (OR)) given a two-sided test with
alpha = 0.05 and power of at least 0.80 in a sample of n = 251 adjusted by a variance inflation
factor (VIF) for model covariates ranging from 0 to 0.15. The detectable effect size ranged
from adjusted OR (aOR) 2.14 to 2.28 [41].

3. Results

A total of 251 mothers and their full-term infants were included in the analysis; all
were singleton births. Table 1 shows key demographic and clinical characteristics of the
study population. Women were on average 23.7 years old (SD 4.6) with primary level
education (mean years of schooling 6 (SD 2.9)). Rates of maternal undernutrition were
high, 20.1% of women were stunted, 31.7% underweight at their first ANC/enrollment
visit (mean GA 12.1 weeks), and 34.5% had a MUAC < 22 cm. Betel nut, the seed of the
Areca palm tree, is a stimulant mixed with tobacco and chewed in this population, with
36.3% of pregnant women reporting use during the current pregnancy. All infants were
born vaginally and 92.0% of deliveries in this sub-study occurred in a health facility. Mean
birthweight was 2749.9 g (SD 413.7) and rates of term low birth weight (22.9%) and small
for gestational age (43.9%) were high, similar to national rates in Bangladesh [42,43].

Table 1. Basic characteristics of Projahnmo study population (N = 251) 1.

Maternal Characteristics Mean ± SD or N (%)

Gestational weeks at enrollment (by ultrasound dating < 20 weeks) 2 12.1 ± 3.8
Age (years) 23.7 ± 4.6
Education (years) 2 6.0 ± 2.9
Wealth index 3 −0.04 ± 1.74
Parity

Nulliparous 79 (31.5)
1–2 119 (47.4)
3+ 53 (21.1)

Season during 24–28 week antenatal visit
Grisma (summer, mid-April to mid June) 115 (45.8)
Barsa (rainy, mid-June to mid-August) 43 (17.1)
Sarat (autumn, mid-August to mid-October) 39 (15.5)
Hermanta (late autumn, mid October to mid-December) 1 (0.4)
Shhit (winter, mid-December to mid-February) 1 (0.4)
Basanta (spring, mid-February to mid-April) 52 (20.7)

Stunting (height < 145 cm) at enrollment 2 (cm) 50 (20.1)
BMI at enrollment 2

Underweight (BMI < 18.5 kg/m2) 79 (31.7)
Normal (18.5 < BMI < 25 kg/m2) 152 (61.0)
Overweight (25 < BMI < 30 kg/m2) 18 (7.2)

Mid-upper arm circumference < 22 cm at enrollment 3 (cm) 85 (34.5)
Weight change from enrollment to 38–40 weeks GA3 (kg) 5.6 (4.0)
Weight change by week (kg/week) 0.23 ± 0.17
Maternal hemoglobin at enrollment 2 (g/dL) 11 (1.2)

Anemic (Hg < 11 g/dL) 117 (47.4)
Betel nut/tobacco use (chewing/sniffing during this pregnancy) 4 91 (36.3)
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Table 1. Cont.

Maternal Characteristics Mean ± SD or N (%)

Delivery and Infant Characteristics

Delivery at a health facility 230 (92.0)
Gestational age at birth 2 (by ultrasound dating < 20 weeks) 39.48 ± 1.2
Infant sex (female) 134 (53.4)
Birth weight 2 (g) 2749.9 ± 413.7
Birth weight z-score −1.09 ± 1.01
Low birth weight 2 (<2500 g) 51 (22.9%)
Infant Size for Gestational Age 2

Small for gestational age (SGA) (birthweight z-score < 10 percentile) 97 (43.9)
Appropriate for gestational age (AGA) 10th–90th percentile) 122 (55.2)
Large for gestational age (LGA) (>90th percentile) 2 (0.9)

1 Excluded stillbirths, infants who died shortly after delivery, neonatal encephalopathy, and preterm
(GA < 37 weeks). All dyads are singleton births. 2 Missing values (n (%)): Maternal characteristics:
education = 1 (0.4); height = 2 (0.8); BMI = 2 (0.8); MUAC = 5 (2.0); weight change = 4 (1.6); hemoglobin = 4 (1.6);
gestational age = 1 (0.4). Infant characteristics: birth weight = 28 (11.2); birth weight z-score = 30 (12.0); low
birth weight = 28 (11.2); Infant size for gestational age = 30 (12.0). 3 Household index was created from wealth
scores based on housing materials and household possessions using principal component analysis [44,45].
4 n = 91 women reported using betel nut and n = 54 women reported tobacco use; all women using tobacco were
also using betel nut (59.3% of n = 91 reporting both betel nut and tobacco use).

3.1. Maternal Dietary Intake

Maternal self-report of FFQ food item consumption is shown in Figure 1. The
animal-source foods with the highest amount of average weekly consumption were fish
(463–478 g/week) and poultry (80–108 g/week), followed by milk (77–92 g/week). Among
plant-based food items, the foods with highest consumption were leafy green vegetables
(324–362 g/week), green peppers (193–200 g/week), followed by mango (120–182 g/week).
Maternal diet was relatively consistent in this population, with little variation across preg-
nancy gestation (Figure 1). Differences in mean food item intake across visits were of small
magnitude (Supplementary Table S2) and significant for fewer than one-third of food items.
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Figure 1. Estimated average weekly consumption (grams) of food items through the course of
gestation among (n = 251) pregnant women in Sylhet, Bangladesh: (a) animal source and (b) plant-
based food items.

Table 2 shows the estimated nutrient intake of pregnant women in this population
for 20 nutrients as determined from FFQ responses, compared to Institute of Medicine
(IOM) recommended values in pregnancy [46]. Nutrient intake in this population was
substantially lower than recommended intake in pregnancy for most nutrients [46], with
the exception of Vitamin C. Figure 2 shows a correlation matrix of nutrient intake. The
intakes of several vitamins were highly correlated (r > 0.80). Daily intake of most B vitamins
(B3, B6 and B9) were highly correlated with each other, with relatively lower correlation
with B12 intake. Vitamin B3, B6 and B9 intake was also strongly correlated with Vitamin D,
Vitamin E, iron, and zinc intake. Correlation among the different LCPUFAs were also high.

Table 2. Daily nutrient intake during Pregnancy in Projahnmo Cohort, Sylhet, Bangladesh (n = 244).

Nutrient Mean (SD) Median (IQR) Range IOM Recommended Dietary Allowances *
and Adequate Intakes †

Vitamin
Vitamin A (µg) 458 (357) 380 (241–551) 32.05–2741 770 *
Vitamin B1 (mg) 0.28 (0.1) 0.27 (0.21–0.35) 0.09–0.56 1.4 *
Vitamin B2 (mg) 0.47 (0.2) 0.45 (0.33–0.60) 0.12–1.60 1.4 *
Vitamin B3 (mg) 8.82 (2.6) 8.29 (6.8–10.7) 3.55–16.62 18 *
Vitamin B6 (mg) 0.59 (0.2) 0.56 (0.42–0.74) 0.20–1.49 2.0 *
Vitamin B9 (Folate) (µg) 104.80 (54) 95.2 (67.0–133) 9.36–321 600 *
Vitamin B12 (µg) 1.67 (0.5) 1.77 (1.42–1.97) 0.20–2.75 2.6 *
Vitamin C (mg) 84.70 (46) 77.6 (48.8–115) 1.50–261 80–85 *
Vitamin D (µg) 10.08 (4.4) 9.43 (6.60–12.6) 2.26–27.1 15 *
Vitamin E (mg) 3.16 (0.8) 3.06 (2.50–3.69) 1.76–6.01 15 *

Mineral
Iron (mg) 3.57 (1.3) 3.47 (2.5–4.5) 1.05–7.14 27 *
Selenium (mg) 0.04 (0.01) 0.04 (0.03–0.05) 0.01–0.08 0.06 *
Zinc (mg) 3.22 (1.2) 3.02 (2.3–4.0) 1.07–7.60 11–12 *

Omega-3 LCPUFA
Alpha Linolenic acid (mg) 201.77 (107.4) 188.8 (111–263) 20.0–575 1400 †

Docosahexaenoic acid (mg) 75.54 (16.1) 83.0 (68.6–85.8) 17.65–118 -
Docosapentaenoic acid (mg) 32.35 (9.4) 34.6 (30.4–38.6) 2.77–38.7 -
Eicosapentaenoic acid (mg) 26.39 (7.64) 28.22 (24.8–31.6) 2.26–31.6 -
Eicosatrienoic acid (mg) 21.68 (6.4) 23.23 (19.4–25.6) 3.27–35.7 -

Omega-6 LCPUFA
Linoleic acid (g) 588 (305) 511 (390–712) 180–2270 13 †

Arachidonic acid (mg) 87.41 (34) 79.1 (62.2–105) 33.2–325 -

*,† Values for Recommended Dietary Allowances and Adequate Intakes were calculated and reported by the Institute of Medicine (IOM) Food and
Nutrition Board for pregnancy ages 14–50 years [46]. An RDA * is the average daily dietary intake level sufficient to meet the nutrient requirements
of nearly all (97–98 percent) healthy individuals in a group. An AI† is believed to cover the needs of all healthy individuals in the groups, but lack
of data prevents being able to specify with confidence the percentage of individuals covered by this intake. (-) Denotes unavailable data.
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Figure 2. Spearman correlations between 20 nutrients in pregnant women in the Projahnmo co-
hort, Sylhet, Bangladesh. Unshaded cells did not meet statistical significance. Abbreviations:
Vit = Vitamin, Se, selenium; Zn, Zinc; ALA, Alpha Linolenic acid; ARA, arachidonic acid; DHA,
docosahexaenoic acid; DPA, docosapentaenoic acid; ETA, eicosatrienoic acid; EPA, eicosapentaenoic
acid; LA, linoleic acid.

3.2. Infection Prevalence

History of an antenatal infection was reported in 12 women (4.8%). Urinary tract
infection was reported by 2 participants, and 10 women received antibiotics during the
pregnancy to treat an infection (n = 10). Intrapartum infection was reported in 40 (15.9%)
women, as indicated by fever during delivery (n = 6), receipt of antibiotics for presumed
infection (n = 33), or abnormal vaginal discharge (n = 1) (self-reported or reported by a
birth attendant). A total of 49 (19.5%) women reported infection at either time. There were
inadequate numbers of infections to disaggregate the analysis by infection type.

3.2.1. Distribution of Cord Blood Inflammation Biomarkers

The distributions of umbilical cord IL-1α, IL-1β, IL-6, IL-8, and CRP were highly right-
skewed, as typical of inflammation biomarkers. Histograms of the natural log transformed
(ln) distributions and thresholds for quartile selection are shown in Figure 3.

3.2.2. Maternal Nutrition, Infection and Odds of Elevated Inflammatory Biomarkers

The odds ratios (ORs) and 95% confidence intervals for elevation (top quartile) of
IL-1α, IL-1β, IL-6, IL-8, and CRP in umbilical cord blood are shown for maternal nutrition
(anthropometrics and anemia) and infections in pregnancy (Figure 4). Maternal anemia
(enrollment Hb level < 11 g/dL) was significantly associated with greater odds of elevated
IL-1α (aOR = 1.92, 95% CI: 1.04, 3.54). No other statistically significant results (p < 0.05)
were observed among these exposures, though ORs tended to be greater than one. Greater
odds of elevated IL-6 had a borderline significant association with stunting (maternal
height < 145 cm; aOR = 1.97, 95% CI: 0.97, 4.02) and intrapartum infections (aOR = 2.07,
95% CI: 0.95, 4.54). aORs for antenatal infection and for any antenatal or intrapartum
infection, as well as for overweight BMI status (data not shown), were greater than one
across all inflammatory markers, though none met statistical significance.
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Figure 4. Association of maternal anthropometry and infections with newborn inflammation at delivery (n = 251 healthy
term infants): Odds ratios are for outcome of elevation in inflammation protein above the 75% (vs. <75%). The 75%
thresholds for each cytokine are: IL-1α: 0.05 pg/mg total protein; IL-1β: 2.01 pg/mg total protein; IL-6: 0.0046 pg/mg
total protein; IL-8: 3.09 pg/mg total protein; and CRP: 0.04 ng/mg total protein. Analyses were adjusted for potential
confounding by socioeconomic status, nulliparity, maternal education attainment (years), maternal upper arm circumference
(MUAC) < 22 cm, tobacco or betel nut use, and season of initial antenatal assessment.

Table 3 shows the association between nutrient intake in pregnancy (tertiles) and
cord blood cytokine elevation (reference group middle tertile (33rd–66th percentile) for
all comparisons). Lowest tertile levels (<33rd percentile) of B vitamins (B1, B2, B3, B6, B9
(folate), B12) were associated with increased odds of inflammation, notably IL-1 α, IL-8
and IL-6, with aORs greater than 2 times the reference category (Table 3). In particular,
low intake of Vitamin B2 was associated with significantly greater odds of elevation of all
inflammatory markers with the exception of IL-1β. Low intake of iron and linoleic acid
was associated with elevated IL-8, while low zinc and iron intake were associated with
elevated IL-1α.

For Vitamins D and E, a relatively higher intake (>66%) was associated with lower
aOR for IL-1α and IL-8 elevation, respectively. Higher B12 intake was associated with
lower odds of elevated IL-6 and IL-8. As a group, low intake of fat-soluble vitamins
(<33rd percentile intake of one or more of the fat-soluble vitamins (Vitamins A, D, and E))
was associated with greater odds of IL-8 elevation compared to the group without low
intake of any fat-soluble vitamin. Low intake of any mineral (iron, selenium, and zinc) was
associated with a greater odds of elevated levels of IL-1β and of IL-8 compared with those
without a low mineral level.
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Table 3. The adjusted odds of cord blood inflammation (≥75th percentile) by tertile of maternal nutrient intake (n = 251 mothers and their term infants). (Reference is the middle tertile of nutrient intake).

Nutrient 1 Tertiles of Intake (Range) IL-1α IL-1β IL-6 IL-8 CRP Any Marker 2

aOR 1 (95%CI) aOR 1 (95%CI) aOR 1 (95%CI) aOR 1 (95%CI) aOR 1 (95%CI) aOR 1 (95%CI)

Vit A (mcg) <33% (32.1–286) 1.50 (0.7–3.21) 2.13 (0.93–4.87) 1.18 (0.56–2.52) 1.76 (0.81–3.79) 1.16 (0.56–2.41) 1.27 (0.64–2.51)
>67% (482–2741) 0.96 (0.44–2.1) 1.81 (0.8–4.1) 0.78 (0.36–1.69) 0.79 (0.35–1.78) 0.62 (0.29–1.35) 1.15 (0.58–2.28)

Vit B1 (mg) <33% 0.09–0.22) 2.13 (0.98–4.65) 1.76 (0.79–3.95) 2.07 (0.95–4.48) 2.27 (1.05–4.91) * 1.11 (0.52–2.34) 1.14 (0.57–2.27)
>67% (0.32–0.56) 1.30 (0.59–2.85) 0.75 (0.34–1.68) 1.02 (0.46–2.26) 0.74 (0.32–1.67) 1.01 (0.48–2.12) 0.91 (0.46–1.8)

Vit B2 (mg) <33% (0.12–0.37) 3.17 (1.39–7.19) * 2.11 (0.93–4.8) 2.25 (1.03–4.94) * 2.45 (1.12–5.37) * 2.52 (1.17–5.45) * 2.84 (1.37–5.88) *
>67% (0.55–1.60) 1.86 (0.83–4.15) 1.14 (0.52–2.51) 1.10 (0.5–2.41) 0.74 (0.33–1.68) 1.10 (0.5–2.42) 1.45 (0.74–2.86)

Vit B3 (mg) <33% (3.55–7.34) 2.30 (1.03–5.12) * 2.94 (1.25–6.9) * 1.60 (0.74–3.46) 3.23 (1.42–7.31) * 0.96 (0.46–2.02) 1.70 (0.84–3.44)
>67% (0.20–0.56) 1.61 (0.72–3.58) 1.70 (0.75–3.84) 0.80 (0.36–1.78) 1.32 (0.57–3.06) 0.62 (0.29–1.34) 1.04 (0.52–2.06)

Vit B6 (mg) <33% (0.20–0.47) 1.78 (0.82–3.87) 1.92 (0.85–4.34) 2.47 (1.12–5.44) * 2.35 (1.08–5.13) * 1.56 (0.74–3.3) 1.43 (0.71–2.9)
>67% (0.68–1.49) 1.20 (0.55–2.61) 0.75 (0.34–1.67) 1.09 (0.49–2.44) 0.71 (0.31–1.63) 0.90 (0.41–1.95) 0.80 (0.4–1.58)

Vit B9 (Folate) (mcg) <33% (9.36–77.3) 1.60 (0.73–3.51) 2.04 (0.88–4.71) 1.16 (0.54–2.47) 2.28 (1.04–5.02)* 1.36 (0.64–2.89) 1.14 (0.57–2.3)
>67% (121–321) 1.28 (0.6–2.73) 1.26 (0.57–2.76) 0.55 (0.25–1.19) 0.78 (0.35–1.76) 0.86 (0.4–1.85) 0.89 (0.45–1.76)

Vit B12 (mcg) <33% (0.20–1.60) 0.60 (0.28–1.3) 0.49 (0.21–1.13) 0.42 (0.19–0.92) * 0.49 (0.23–1.07) 0.75 (0.35–1.6) 0.83 (0.41–1.67)
>67% (1.89–2.75) 0.63 (0.29–1.37) 0.54 (0.24–1.24) 0.38 (0.17–0.84) * 0.42 (0.19–0.95) * 0.71 (0.33–1.56) 0.70 (0.35–1.4)

Vit C (mg) <33% (1.50–57.3) 1.28 (0.59–2.8) 1.28 (0.57–2.89) 1.31 (0.61–2.81) 1.23 (0.57–2.62) 0.65 (0.31–1.38) 0.89 (0.45–1.77)
>67% (101–261) 1.18 (0.56–2.48) 0.76 (0.35–1.65) 0.82 (0.38–1.74) 0.52 (0.24–1.15) 0.52 (0.25–1.1) 0.88 (0.45–1.73)

Vit D (mcg) <33% (2.26–7.71) 0.66 (0.29–1.52) 1.44 (0.59–3.52) 1.33 (0.57–3.07) 1.18 (0.51–2.73) 0.90 (0.39–2.06) 0.84 (0.39–1.79)
>67% (11.6–27.13) 0.48 (0.23–0.99) * 0.65 (0.31–1.37) 0.80 (0.39–1.67) 0.57 (0.27–1.2) 0.86 (0.42–1.77) 0.46 (0.23–0.91) *

Vit E (mg) <33% (1.76–2.74) 0.91 (0.42–1.98) 1.00 (0.43–2.34) 0.82 (0.38–1.79) 1.06 (0.49–2.3) 0.90 (0.43–1.9) 0.54 (0.27–1.09)
>67% (3.45–6.01) 0.79 (0.38–1.65) 0.76 (0.36–1.61) 0.60 (0.28–1.26) 0.42 (0.19–0.92) * 0.56 (0.26–1.19) 0.44 (0.22–0.89) *

Iron (mg) <33% (1.05–2.76) 1.57 (0.73–3.38) 2.37 (1.03–5.45) * 1.52 (0.72–3.25) 2.28 (1.05–4.97) * 0.94 (0.45–1.94) 1.06 (0.54–2.09)
>67% (4.20–7.14) 1.30 (0.61–2.78) 1.52 (0.68–3.37) 0.96 (0.45–2.05) 1.01 (0.45–2.24) 0.70 (0.34–1.48) 0.75 (0.38–1.46)

Selenium (mg) <33% (0.01–0.03) 1.43 (0.67–3.06) 1.62 (0.72–3.66) 1.01 (0.48–2.16) 1.79 (0.84–3.83) 0.95 (0.46–1.97) 0.95 (0.48–1.89)
>67% (0.04–0.08) 1.23 (0.58–2.62) 1.43 (0.66–3.1) 1.01 (0.48–2.11) 1.02 (0.47–2.23) 0.65 (0.3–1.37) 0.66 (0.33–1.3)

Zinc (mg) <33% (1.07–2.56) 2.10 (0.95–4.65) 2.52 (1.07–5.91) * 2.08 (0.93–4.65) 2.20 (1–4.86) 1.60 (0.73–3.47) 1.75 (0.86–3.58)
>67% (3.61–7.60) 1.23 (0.56–2.7) 1.26 (0.56–2.82) 1.24 (0.57–2.73) 0.68 (0.3–1.55) 1.06 (0.49–2.28) 0.97 (0.49–1.92)

Linoleic acid (mg) 3 <33% (1020–1994) 1.72 (0.81–3.67) 1.73 (0.76–3.9) 1.35 (0.63–2.9) 2.35 (1.07–5.15) * 1.47 (0.69–3.12) 1.89 (0.93–3.86)
>67% (2116–3561) 0.78 (0.36–1.69) 1.10 (0.51–2.38) 0.85 (0.4–1.8) 0.96 (0.43–2.12) 0.87 (0.41–1.85) 0.83 (0.42–1.64)

Low Nutrient Intake Categories 4

Water-soluble vitamins 5 1.08 (0.55–2.13) 1.28 (0.64–2.57) 1.19 (0.6–2.35) 1.60 (0.79–3.24) 1.40 (0.71–2.79) 1.07 (0.58–1.97)
Fat-soluble vitamins 5 1.33 (0.7–2.55) 1.68 (0.86–3.27) 1.18 (0.61–2.26) 1.96 (1.01–3.82) * 1.55 (0.81–2.95) 1.34 (0.74–2.43)
Minerals 1.51 (0.8–2.85) 2.12 (1.07–4.20) * 1.23 (0.65–2.32) 2.07 (1.07–3.99) * 1.68 (0.9–3.15) 1.49 (0.84–2.65)
LCPUFAs 1.03 (0.53–1.98) 0.90 (0.45–1.80) 1.99 (0.98–4.04) 1.42 (0.72–2.83) 1.38 (0.70–2.71) 0.96 (0.53–1.75)

1 Reference category for models of individual nutrient intake tertiles are levels between the 33rd–67th percentile of the sample distribution. Models adjusted for socioeconomic status (continuous), primiparity,
maternal upper-arm circumference < 22 cm at enrollment, tobacco and/or betel nut use, season of initial antenatal assessment, and maternal educational attainment (years). Analytic sample, n = 244 dyads with
both nutrient and inflammatory marker data available. 2 Any marker refers to elevation (≥75th percentile) of one or more of the five inflammatory markers examined. 3 Adjusted odds ratios of LCPUFAs not
present in this table were not statistically significant, effect estimates are provided in Supplementary Table S3. 4 Low nutrient intake category variables are binary: operationalized as one or more deficiencies
within nutrient category (at least one nutrient with value < 33rd percentile) versus no deficiencies (reference, no values less than 33rd percentile) within nutrient category. 5 Water-soluble vitamins include all Bs
and C; fat-soluble vitamins include A, D, and E. * Statistically significant odds ratios (p < 0.05) are bolded.
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4. Discussion

We report on pregnancy risk factors for cord blood inflammation in the Projahnmo
birth cohort, a rural Bangladeshi population typical of South Asia with a high prevalence of
maternal undernutrition. We found that lower intake of B vitamins (B1, B2, B3, B6, and B9
(folate)), iron, zinc, and omega-6 fatty acid (linoleic acid) in pregnancy, were associated with
higher risk of inflammation (primarily IL-8) in the newborn at birth. Levels of fat-soluble
vitamins D and E were also inversely associated with inflammation risk. Maternal stunting
and infection at delivery were associated with a non-significant trend of increased risk of
elevation of newborn IL-6.

While the link between diet and systemic inflammation is well established, fewer
studies have examined this relationship in pregnancy, and particularly, on offspring in-
flammation. A recent systematic review summarized the evidence on associations between
diet and maternal inflammation in pregnancy [47]. Despite inconsistent data, the authors
reported that maternal diet with higher animal protein and cholesterol and lower fiber
were associated with higher inflammation biomarkers (IL-6, IL-8, CRP or TNF-α) [47]. In
Project Viva, a cohort of 1808 mother–child dyads in Massachusetts and a pro-inflammatory
maternal diet (measured with the dietary inflammatory index (DII) [48], was positively
associated with maternal systemic inflammation, measured by second trimester mater-
nal serum CRP (β: 0.08 mg/L per 1-unit increase in maternal DII, 95% CI: 0.02, 0.14) [48].
Higher maternal DII has also been associated with higher maternal TNF-α [49] and IL-6 [50].
Greater fiber intake has been associated with lower CRP (2nd trimester) [51] and IL-8 (third
trimester) [52] in a Danish pregnancy cohort. A majority of the data has been generated
from high-income or Western settings which tended towards the pro-inflammatory state of
excess fat/protein. Our study in Bangladesh is one of the first in a malnourished popula-
tion where undernutrition and nutrient deficiencies are prevalent. Of note, in our cohort,
mean intake of almost all nutrients was lower than recommended levels in pregnancy, and
those nutrients associated with inflammation were those with greater degrees of deficiency.
Furthermore, to the best of our knowledge, this is one of the first studies that has assessed
the associations of maternal diet during pregnancy with inflammation in cord blood.

Low intake of B vitamins (B1, B2, B3, B6, and folate (B9)) were associated with cord
blood inflammation. B vitamins have antioxidant properties and reduce oxidative stress,
free radical generation, and regulate inflammatory cytokines [53–58]. B vitamins are also
critical for energy production and DNA/RNA synthesis and repair [59]. Low riboflavin
(B2) intake was associated with elevations of most of the inflammation proteins analyzed.
B2 is a precursor or flavin adenine dinucleotide, that plays a central role in regulating
oxidative stress and regulation of the inflammasome [60]. B2 deficiency has been associated
with oxidant-mediated lung inflammation [61] and oral inflammation [62]. Vitamin B-6
has also been associated with inflammation (CRP) in the NHANES study (2003-2004) [63],
and B-6 supplementation in rheumatoid arthritis patients has been shown to reduce levels
of IL-6 and TNF-α [64]. We also found that higher B12 intake was associated with lower
IL-6 and IL-8. A randomized controlled trial (RCT) of Vitamin B12 supplementation in
pregnant Bangladeshi mothers resulted in lower risk of elevated AGP and CRP compared
to the placebo arm [65]. Therefore, these data together suggest that B vitamins may play
an important role in the modulation of inflammation in the maternal–fetal unit and an
important intervention target in deficient populations.

Higher levels of intake of fat-soluble vitamins D and E were associated with reduced
risk of cord inflammation in our Bangladeshi cohort. Vitamins D and E both have cell
membrane antioxidant properties, inhibiting lipid peroxidation, mast cell activation and
the expression of inflammatory cytokines [66], including IL-1 β, IL-6 and TNF- α. Vitamin
D deficiency has been associated with elevated systemic proinflammatory cytokines in
pregnancy and at delivery (IL-6 and TNF-α) [67] and low birth weight [68]. Our cohort
carries higher risk of Vitamin D deficiency given the darker skin tone and clothing com-
monly covering exposed skin; other similar populations have demonstrated high rates of
deficiency (~64%) [69]. An RCT of vitamin D supplementation (2000 IU/d) in pregnancy
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failed to demonstrate supplementation effects on inflammation, however in post hoc analy-
sis, there was a negative association of serum 25(OH)D concentrations in late pregnancy
and plasma concentrations of TNF-α, ICAM-1 and VCAM-1 [70]. Vitamin E deficiency has
also been associated with inflammation, pre-eclampsia [71] and preterm birth, and small
for gestational age. However, systematic reviews have failed to support the benefits of
routine supplementation of prenatal Vitamin D and E on pregnancy outcomes [72,73] and
routine supplementation is not currently recommended by WHO during ANC, though
the American College of Obstetrics recommends consideration of Vitamin D deficiency
screening in high-risk populations [74,75].

We observed increased inflammation risk among women in the lowest tertile of iron
intake. Iron intake was highly correlated with the intake of several antioxidant vitamins
(B, D and E) in our population. The association of low iron intake and inflammation may
result from inflammation related to low intake of the B, D and E vitamins. Inflammation
stimulates the master regulator of iron homeostasis, hepcidin, and decreases intestinal iron
absorption [76,77]. Although we cannot determine causation in this observational study
and we did not measure iron status or hepcidin to directly test this hypothesis, we postulate
this relationship given the known pathways of iron homeostasis and the co-occurrence of
B vitamins and iron in this cohort.

Zinc is an essential immune-modulatory micronutrient that targets nuclear factor
kappa B (NF-kB), regulates pro-inflammatory responses and peroxisome proliferator acti-
vated receptor-α function [78], and plays a critical role in oxidative stress [79,80]. Maternal
zinc deficiency has been associated with elevated maternal serum TNF-α and IL-8 and
small-for-gestational-age births [81]. In a zinc supplementation RCT of neonates with
clinical sepsis in India, zinc supplementation was found to reduce concentrations of serum
TNF-α and IL-6 [82]. Our finding that low maternal zinc intake is associated with increased
inflammation risk supports these clinical data, further emphasizing the role of zinc in
healthy pregnancy outcomes.

We also found that higher intake of linoleic acid, an omega-6 LCPUFA, was asso-
ciated with lower risk of newborn IL-6 and IL-8 elevation, respectively. While omega-6
LCPUFAs were previously thought to be pro-inflammatory, recent data implicate them
in not only pro-inflammatory, but also in anti-inflammatory pathways [83–85], such as
those related to prostacyclin and lipoxin A4. In an Italian cohort of 1123 adults, higher
plasma omega-6 (arachidonic acid) was associated with lower IL-6 and IL-1 receptor antag-
onist [86]. Omega-6 LCPUFAs are associated with lower risk of cardiac events and now
recommended at 5–10% dietary intake by the American Heart Association [85]. We did
not see similar associations with omega-3 PUFAs in our cohort. While fish intake was high
in this population, fish intake in this setting is different from typical western fish high in
omega-3 LCPUFAs [87].

The cytokine that we consistently observed associations with maternal diet was IL-8.
IL-8 (CXCL-8) is a chemokine that is a major effector of acute inflammation, attracting
neutrophils and monocytes [88,89]. Unlike the IL-1 cytokines and IL-6 which are primary
initiators of the inflammatory cascades leading to activation of proinflammatory tran-
scription factors, IL-8 is a secondary mediator of inflammation, a downstream product
of the cascades initiated by the primary cytokines or microbial products. Its expression
is regulated by the synergism of several transcription factors including AP-1, NF-IL-6,
and NF-kB [90]. Thus, higher levels of nutrients such as zinc that target transcription
factors downstream from IL-1 and IL-6 may be reasonably expected to lower IL-8. Elevated
IL-8 concentrations signify unopposed activation of the inflammatory cascade-and thus
may be a better biomarker of sustained proinflammatory activation. We observed few
significant associations with IL-1α, IL-1β, or CRP. In the recent systematic review by Yeh
and colleagues, CRP was the most studied inflammation biomarker in pregnancy, however
only 6 of 13 studies reported a significant relationship of CRP with diet. The cohort studied
here included only pregnancies delivered after 37 weeks of gestation. The lack of significant
associations of CRP and IL-1 with diet may be explained with the timing of blood collection
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and inundated by the natural spike of these mediators at parturition reported in term
pregnancies, which may have obscured the signal of the prenatal nutrients [91,92]. The
longitudinal assessment of blood specimens throughout pregnancy may increase the value
of these biomarkers as predictors of diet-associated inflammation.

The identification for modifiable pregnancy risk factors for inflammation in utero is
critical given that between 24–44 weeks gestation the brain undergoes its most rapid phase
of growth, including cell proliferation, differentiation, synapse formation and myelina-
tion [93]. During this critical “growth spurt,” the brain is highly susceptible to the effects
of inflammation, that activates microglia, leading to oligodendrocyte cell death [94,95],
and white matter injury (WMI) [96,97]. For example, maternal and neonatal IL-8 eleva-
tion has been associated with ventriculomegaly, microcephaly [31], cerebral palsy [98],
and neurodevelopmental delays in childhood-adulthood [32,99], and schizophrenia [100].
Thus, prenatal interventions targeting infection and improved nutritional status will have
not only benefits for the mother, but potential long-term benefits for the offspring and
human capital. Perumal and colleagues recently estimated that the scale up of provision of
multiple micronutrients in pregnancy to 90% in LMICs would result in 5.02 million years
of increased schooling and USD 18.1 billion in lifetime earnings, per birth cohort. This
impact was modeled via the reduction in adverse birth outcomes (small for gestational age
or preterm birth); inflammation is likely one of the key pathways by which these effects on
neurodevelopment are mediated.

There are several limitations to our study. The data collected on pregnancy infections
was based on recall and we did not have clinical data or medical records, although delivery
data was also collected from birth attendant interview. Rates of self-reported antenatal
infections were generally lower in our cohort than in other reports from Bangladesh or
the US [101]. Dietary intake data was based upon FFQ, and we did not have portion
size available. However, we had longitudinal repeated data collection to better estimate
habitual intake [102], and used data from local Bangladeshi recommended serving size, a
method that has been used in other studies [103]. While FFQ may not as accurately estimate
absolute nutrient intake, it has high validity for ranking levels of dietary intake within
populations [104]. Intake of several nutrients were highly correlated (r > 0.80) because
intake values calculated were primarily based upon the food item frequency, and certain
food items tended to be rich in several vitamins together (such as B vitamins). This resulted
in similar inflammation risk effect sizes for correlated nutrients. Finally, not all nutrients
were available in Bangladesh food tables, and for those with missing data we utilized
Indian food composition tables that share common food items and ingredients.

5. Conclusions

In Sylhet, Bangladesh, a population where maternal undernutrition is prevalent, we
found that low maternal dietary intake of several micronutrients in pregnancy (B vitamins,
fat-soluble vitamins, zinc, iron, and linoleic acid) was significantly associated with risk of
cord blood inflammation at the end of pregnancy. This data supports the hypothesis that
targeting multiple micronutrient status via supplementation, may impact maternal-fetal
inflammation responses. Maternal and fetal-neonatal inflammation are key mediators of
adverse birth outcomes and offspring neurodevelopment [105]. In future analyses we plan
to examine these relationships in sub-groups of vulnerable newborns (preterm, small for
gestational age), and assess the associations of perinatal inflammation and longer-term
neurodevelopmental outcomes and growth at 2 years. Identifying prenatal intervention
targets to reduce in utero exposure to inflammation during the most sensitive and critical
period of early brain development is a key strategy to optimize offspring neurodevelopment
and human capital globally.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13113792/s1, Table S1: ENAT Data collection timepoints, Table S2: Frequency of intake of
39 FFQ items by time period of assessment, Table S3: The adjusted odds of cord blood inflammation
(≥75th percentile) by tertile of maternal nutrient intake.
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