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Abstract
LexOPS is an R package and user interface designed to facilitate the generation of word stimuli for use in research. Notably, the
tool permits the generation of suitably controlled word lists for any user-specified factorial design and can be adapted for use with
any language. It features an intuitive graphical user interface, including the visualization of both the distributions within and
relationships among variables of interest. An inbuilt database of English words is also provided, including a range of lexical
variables commonly used in psycholinguistic research. This article introduces LexOPS, outlining the features of the package and
detailing the sources of the inbuilt dataset. We also report a validation analysis, showing that, in comparison to stimuli of existing
studies, stimuli optimized with LexOPS generally demonstrate greater constraint and consistency in variable manipulation and
control. Current instructions for installing and using LexOPS are available at https://JackEdTaylor.github.io/LexOPSdocs/.
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Introduction

The number and size of psycholinguistic corpora that have
been created and employed in research have greatly increased
in recent years. Figure 1 shows the growing proportion of
psycholinguistic research over the past three decades that pro-
vides or cites databases related to various properties of words.
Indeed, the use of large datasets has been made considerably
more feasible as a result of the internet and an increase in
computing power. Although such large-scale databases of
psycholinguistic features, with interfaces for querying and
downloading contents, have existed for many years (e.g.,
Balota et al., 2007; Coltheart, 1981), few tools currently exist
to aid in adapting these datasets to generate lexically con-
trolled stimuli, and these are often greatly limited in their

capabilities. This makes the generation of suitably controlled
word stimuli currently time-consuming and labor-intensive.

This article presents LexOPS, a flexible R package that
offers a comprehensive range of capabilities relevant to the
generation of psycholinguistically controlled word stimuli.
The appellation, ‘LexOPS’, is derived from four types of word
properties commonly recognized in psycholinguistics–
Lexical, Orthographic, Phonological, and Semantic. The most
noteworthy feature of LexOPS is that it can produce suitably
controlled word stimuli for any possible user-specified facto-
rial design. To support this functionality, the package features
an easy-to-use graphical user interface in the form of a Shiny
app (Chang, Cheng, Allaire, Xie, &McPherson, 2018), which
provides multiple interactive visualizations and summaries of
available word properties, as well as how stimuli LexOPS has
generated relate to these properties. Another novel feature of
the package is that it can work with any database of word
variables which the user provides. This means that the user
is not limited to built-in variables or words, but can design
stimuli according to any numerically or categorically defined
properties, for words from any language. Nevertheless, sever-
al useful psycholinguistic variables are included from a range
of datasets to illustrate the capabilities of LexOPS. These also
serve as a template demonstrating the expected format of the
data if users wish to run LexOPS on their own databases.
Given that LexOPS can work with any suitably formatted
data, and the ease with which new datasets can be downloaded
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and combined, the built-in dataset included with LexOPS is
explicitly not exhaustive in its coverage.

This article first provides an overview of the package’s
functionality in generating well-controlled stimuli. We then
describe the variables native to LexOPS, citing sources for
the data and explaining the processes by which original vari-
ables were calculated. Using variables drawn from the built-in
dataset, we then provide illustrative examples of possible ap-
plications for LexOPS. Following this, an introduction to the
package’s accompanying Shiny app is presented. We also re-
port the results of a validation analysis, comparing the stimuli
used in several well-controlled experiments to examples gen-
erated with the package. Implications for reproducibility and
replicability are discussed. While we do provide an overview
of the package’s functionality, it should be noted that this
article is not intended to be read as a tutorial. Detailed instruc-
tions on how to install and use the package are available in the
LexOPS walkthrough: https://JackEdTaylor.github.io/
LexOPSdocs/.

Functionality overview

LexOPS is designed to support two main methods of stimulus
generation: a fully automated grouping of items into factorial
cells according to specific constraints (with the “generate
pipeline”), and a more bespoke matching of stimuli from sev-
eral candidates (with the match_word() function). Example

practical applications are provided with code later in this
article.

The “generate pipeline” consists of three main functions:
(1) split_by(), for specifying independent variables; (2)
control_for(), for specifying variables that should not differ
between conditions; and (3) generate(), for running the algo-
rithm that generates lists of stimuli. The factorial designs spec-
ified by these functions can adopt any number of word prop-
erties, expressed either numerically (e.g., concreteness) or cat-
egorically (e.g., part of speech), as independent variables with
user-defined levels. Similarly, the user can define any number
of control variables, with tolerances of any size. The
generate() function employs options defined in split_by()
and control_for() to create a stimulus list, with the requested
number of items, that fit the specified options.

The generate() function creates lists of stimuli in the
following way. First, the condition to which items should
be matched (i.e., the “match-null” condition), is defined
pseudo-randomly, such that each condition is used as a
match-null with equal frequency, and in a random order.
If the number of stimuli requested is not divisible by the
number of conditions, the match-nulls will be allocated as
equally as possible across conditions, with over-
represented conditions selected randomly. The function
then iteratively generates combinations of stimuli. On
each iteration, a word is randomly selected that fits the
current match-null condition’s specifications (e.g., a word
with a low valence rating that is a noun). Possible
matches that fit the other conditions’ specifications (e.g.,

Fig. 1 The percentage of documents on Scopus published each year in the period 1990-2019 containing the term “psycholinguistics” in the title, abstract,
or keywords, which also contains the term “corpus”, “database”, or “norms”
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high valence nouns, low and high valence verbs), but that
are matched to the word selected from the match-null
condition on control variables (e.g., within ± 0.2 Zipf
frequency and of equal length), are then identified for
each condition, from a pool of unused words. One word
is randomly selected from this pool for each condition. If
it is not possible to generate a match from each condition
for the word from the match-null condition, the function
will discard the result of this iteration, and randomly se-
lect another word that has not yet been tried, from the
same match-null condition. Words that are successfully
generated for each condition are stored, and the function
will attempt to generate another matched set for the next
match-null condition. This will be repeated until as many
stimuli are generated as was requested, or until the func-
tion fails to generate new stimuli. In addition, the user can
elect to generate as many stimuli as possible. If this is
specified, the function will generate items until it can no
longer generate a matched set across all conditions.

Additional functions and arguments exist to facilitate
the generation of stimuli for more complex experimental
designs with the generate() function. One such function is
split_random(), which permits the user to generate stimuli
with randomly allocated splits. This might be useful for
controlling stimuli across stimulus-irrelevant experimental
manipulations (e.g., across tasks or contexts). Another
such function is control_for_map(), a higher-order version
of control_for() which allows control variables to be cal-
culated within iterations of stimulus generation, relative to
the string selected as the match-null. This is useful for
controlling similarity or distance values, such as ortho-
graphic or phonological Levenshtein distance. Further de-
tails and example applications of these functions are
available in the online walkthrough. It is also possible to
specify different methods of controlling for variables with
the match_null argument, with words matched relative to
one specific condition, relative to a different condition
each iteration (selected randomly or pseudo-randomly in
equal proportions per condition), or relative to all other
conditions. More extensive documentation, highlighting
the flexibility of the “generate pipeline”, is available in
the online walkthrough.

Finally, LexOPS permits more bespoke stimulus genera-
tion, with the match_word() function. This function suggests
possible matches for a given string, within tolerances for any
number of variables specified by the user. This is useful for
cases when the automatic stimulus generation detailed above
is unsuitable. For instance, experiments presenting stimuli
within sentences often require that matched controls for target
words are plausible replacements within a given sentential
context. The match_word() function will return a list of pos-
sible matches ordered by Euclidean distance (calculated from
all numerical matching variables). The user can then easily

select the best match that is a suitable replacement for the
target word.

Inbuilt variables

While the package can generate stimuli from any dataset
provided by the user, LexOPS has a dataset already in-
built. This dataset is not exhaustive, but is an amalgam-
ation of several variables useful for generating word stim-
uli. These variables can be broadly sorted into five cate-
gories: (1) lexical, (2) orthographic, (3) phonological, (4)
semantic, and (5) behavioral. Some variables were taken
directly from freely available published corpora, whereas
others were calculated indirectly from such sources. All
built-in variables are for English words only. The package
will work with variables from any language, but these
need to be provided by the user.

The built-in dataset was filtered, such that word entries
were excluded based on the following criteria: (1) they
contained non-alphabetic characters; (2) they were longer than
28 characters; or (3) they were only observed once out of all of
the word frequency corpora that were used. This left a total of
262,532 unique word strings.

Lexical variables

Built-in lexical variables include word frequency and part
of speech. Word frequency corpora comprise the
SUBTLEX-US corpus (Brysbaert & New, 2009), the
SUBTLEX-UK corpus (van Heuven, Mandera, Keuleers,
& Brysbaert, 2014), and the British National Corpus
(BNC; “The British National Corpus, version 3 (BNC
XML Edition),” 2007). Frequencies are available in
LexOPS in two standardized measures—in frequency per
million words (fpmw), or in the Zipf scale, calculated as
Zipf = log10(frequency per billion words) (van Heuven
et al., 2014). The Zipf scale is a log-normalized measure
of word frequency bounded between 1 and 8, which in the
context of LexOPS makes it easier to visualize and im-
plement as an independent variable or control variable
than fpmw or log(fpmw) (Brysbaert, Mandera, &
Keuleers, 2018). The BNC frequencies were calculated
by parsing the tagged xml of the latest version of the
BNC. LexOPS additionally separates the written and spo-
ken sources in the BNC, though the combined frequency
across these modalities is also available.

The part of speech for a given word in LexOPS is
defined as its most commonly identified part of speech
within a specific corpus. Part of speech is available as a
categorical variable, according to SUBTLEX-UK, the
BNC, and the English Lexicon Project (ELP; Balota
et al., 2007).

2374 Behav Res  (2020) 52:2372–2382



Orthographic variables

Inbuilt orthographic variables consist of length (number of
characters), bigram probability, and orthographic neighbor-
hood size.

Character bigram probability was calculated using the
word frequency corpora listed in the previous section. For
each word frequency corpus, the probability of each pos-
sible character bigram (from aa to zz) was calculated by
counting the number of times each bigram appears,
weighted by the frequency of the words it appeared in,
in fpmw. These bigram frequencies were then scaled from
0 to 1 to get the respective probabilities of all bigrams. A
word’s bigram probability could then be calculated as the
mean probability of all its constituent bigrams (i.e., both
overlapping and non-overlapping).

Orthographic neighborhood size is available in two
measures. The first is Coltheart’s N (Coltheart, Davelaar,
Jonasson, & Besner, 1977), defined as the number of
words at a Hamming distance of 1 (i.e., a one-character
substitution) from a given word.. The second is
Orthographic Levenshtein Distance 20 (OLD20; Yarkoni,
Balota, & Yap, 2008), defined as the mean Levenshtein
distance between a given string and its 20 closest
Levenshtein neighbors, where Levenshtein distance is
the minimum number of character insertions, substitu-
tions, or deletions between two strings. The OLD20 mea-
sure is generally preferable to Coltheart’s N, as it allows
for distance calculation between strings of different
lengths. Both of these measures were calculated using
the R package, “vwr” (i.e., “visual word recognition”;
Keuleers, 2013).

Phonological variables

The inbuilt phonological variables of LexOPS comprise the
following: number of phonemes, number of syllables, number
of pronunciations, rhyme, and phonological neighborhood
size. The phonological features were calculated using phonet-
ic transcriptions from two different sources: the eSpeak speech
synthesizer’s (“eSpeak version 1.48.15,” 2015) standard
British English pronunciations of all entries in the database;
and the Carnegie Mellon University (CMU) Pronouncing
Dictionary of American English (Weide, 2014).

The transcription system adopted by eSpeak (Kirshenbaum
phonetic encoding) uses one-character ASCII representations
for individual phonemes, but two-character representations for
affricates and diphthongs. The affricates /ʧ/ and /ʤ/ (as in the
beginnings of char and jar, respectively) are encoded with
one-character ASCII representations. The CMU transcriptions
are represented by an ARPAbet transcription system for
American English, and are represented as either two-letter or
one-letter ASCII characters. For example, the word how,

containing the diphthong /aʊ/, is represented as ‘HOW’ in
the two-character system or as ‘hW’ in the one-character sys-
tem. Similarly, the word China, containing the affricate /ʧ/, is
represented as ‘CH-AY-N-AE’ (with phonemes separated by
hyphens) in the two-character system, or as ‘CYN@’ in the
one-character system.

Number of phonemes is simply a count of how many pho-
nemes a word contains. The number of syllables was calculat-
ed by simply counting the number of vowel phonemes that
occurred in the transcription. The number of pronunciations is
a variable only available for the CMU Pronouncing
Dictionary, calculated by simply counting how many possible
pronunciations are listed for each entry. This includes differ-
ences in both pronunciation and stress patterns.

Rhyme is represented as a categorical variable consisting of
a transcription of all phonemes from the final vowel phoneme
until the end of the word (i.e., the final syllable’s ‘rime’). For
instance, eSpeak’s British English pronunciation of partake is
represented as /pɑteɪk/ in the International Phonetic Alphabet
(IPA) and, as such, belongs to the rhyme category of /-eɪk/,
which it shares with entries such as steak and opaque.

Phonological neighborhood size is available in terms of the
phonological Coltheart’s N and Phonological Levenshtein
Distance 20 (PLD20), calculated similarly to the orthographic
neighborhood measures, using the “vwr” package for R
(Keuleers, 2013).

Semantic variables

Semantic features which LexOPS has built-in mostly come
from norming studies in which participants provide ratings
for a particular semantic aspect of a word on a Likert scale.
A summary of the available semantic features is presented in
Table 1.

Behavioral variables

Behavioral variables consist primarily of lexical decision re-
sponse time and accuracy from the ELP (Balota et al., 2007)
and the British Lexicon Project (BLP; Keuleers, Lacey,
Rastle, & Brysbaert, 2012).

Behavioral variables also include measures of proportion
known (the proportion of people who know a given word) and
word prevalence (probit-transformed proportion known), tak-
en from Brysbaert, Mandera, and Keuleers (2019). Brysbaert
et al. (2019) demonstrate that proportion known and word
prevalence have advantages over variables such as word fre-
quency, age of acquisition, and familiarity (which have tradi-
tionally served as proxies to gauging word difficulty) since
these two measures more directly operationalize word
difficulty.
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Example applications

As an example, a user could define a 2 × 2 design to investi-
gate the interaction between character bigram probability, ac-
cording to SUBTLEX-UK, and concreteness ratings, accord-
ing to Brysbaert et al. (2014). The user could also specify that
stimuli should be controlled across conditions for word fre-
quency within ±0.2 Zipf according to SUBTLEX-UK, as well
as exact word length. The dataset that stimuli are generated
from can be additionally filtered, for instance according to
word prevalence reported by Brysbaert et al. (2019) such that
the generated stimuli consist entirely of words that at least
90% of people know. The following R code will generate 50
words per factorial cell (200 in total) that fit these specifica-
tions. The variables used in this example have all been drawn
from the inbuilt dataset described in the previous section to
make the code more easily readable.

stim <- lexops %>%

subset(PK.Brysbaert >= 0.9) %>%

split_by(BG.SUBTLEX_UK, 0:0.003 ~
0.009:0.013) %>%

split_by(CNC.Brysbaert, 1:2 ~ 4:5) %>%

control_for(Length, 0:0) %>%

control_for(Zipf.SUBTLEX_UK, -0.2:0.2) %>%

generate(n = 50)

The distributions of generated stimuli on relevant numeri-
cal variables can be readily examined using the plot_design()
function. Figure 2 presents an example figure generated by the
plot_design() function for a stimulus list generated by the code
above. This function produces a multi-faceted figure showing

Table 1 Summary of the sources and semantic features used in LexOPS

Source and semantic features Scale N words Observations/Worda

Scott, Keitel, Becirspahic, Yao, & Sereno (2019)

AROU 1–9 5553 33.31 (3.72)

VAL 1–9 5553 33.54 (3.73)

DOM 1–9 5553 33.24 (3.73)

CNC 1–7 5553 33.34 (3.80)

IMAG 1–7 5553 33.30 (3.74)

FAM 1–7 5553 32.36 (3.60)

AOA 1–7 5553 33.94 (3.69)

SIZE 1–7 5553 33.30 (3.79)

GEND 1–7 5553 33.25 (3.85)

Warriner, Kuperman, and Brysbaert (2013)

AROU 1–9 13,915 22.97 (23.73)

VAL 1–9 13,915 21.81 (23.44)

DOM 1–9 13,915 24.32 (25.07)

Brysbaert, Warriner, and Kuperman (2014)

CNC 1–5 37,058 at least 25

Clark and Paivio (2004)

IMAG 1–7 2311 47–49

FAM 1–7 2311 16

Kuperman, Stadthagen-Gonzalez, and Brysbaert (2012)

AOA ages 1–25 30,124 18–22 for most items

Brysbaert and Biemiller (2017)

AOAb ages 2–14c 43,991 around 200

Engelthaler and Hills (2018)

HUM 1–5 4997 32.93 (5.64)

For each source, the relevant semantic feature(s), scale, number of words, and observations per word are specified

AROU arousal; VAL valence; DOM dominance; CNC concreteness; IMAG imageability; FAM familiarity; AOA age of acquisition; SIZE semantic size;
GEND gender association; HUM humor
aWhere the number of observations for each word was available, the mean, and standard deviation in parentheses, are presented; otherwise, summary
statistics are reported. b This measure is test-based, not from a rating study. c Age estimates cover ages 2, 4, 6, 8, 10, 12, 13, and 14
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the distributions (in violin plots) of all numeric independent or
control variables used for each generated condition. Within
each distribution, individual words are visualized as points,
joined by lines to other words (points) from the same matched
set (i.e., that share the same match-null). The figure can be a
quick way to check that LexOPS has generated stimuli as
expected. For instance, excessive differences between gener-
ated conditions in the distributions of control variables may
indicate that more restrictive tolerances might be appropriate.

The match_word() function is convenient in cases where
matches need to be controlled for factors that would be diffi-
cult to include as numeric or categorical variables, such as
maintaining sentence plausibility when a target word is re-
placed. As a practical example, imagine an experiment where
the researcher wants to replace target words in existing
sentences with words having a later age of acquisition.
Suppose they also want the words to be controlled for length,
frequency, concreteness and part of speech (according to the
written texts of the BNC). If the researcher wanted to find a
suitable replacement for the word “butterfly” in the sentence,
“The man had never seen such an enormous butterfly before”,
they could use the following code to identify a suitable match.
Again, all the variables used have been drawn from the inbuilt
dataset for readability.

suggested_matches <- lexops %>%

match_word(

"butterfly", Length,

Zipf.SUBTLEX_UK = -0.2:0.2,

CNC.Brysbaert = -0.25:0.25,

PoS.BNC.Written

) %>%

subset(AoA.Kuperman >= 9)

This would return a data frame containing four possible
matches, ordered by Euclidean distance in the matching vari-
ables: “satellite”, “orchestra”, “champagne”, and “machin-
ery”. Of these, the researcher would probably select the word
“satellite”, as the closest match that is a plausible replacement
for “butterfly” in the sentence.

The Shiny app

LexOPS features a graphical user interface in the form of a
Shiny app (Chang et al., 2018), which provides an interactive
front-end to the package’s functions. For instance, tolerances
for independent variables can be specified via a slider (i.e., a
moveable graphical button on an analogue scale), and are then
visualized as shaded areas in a plot of a variable’s density.
Figure 3 presents such an example for defining experimental
conditions in the split_by() function. The “generate pipeline”
is accessible through a “Generate” tab in the sidebar, while the
match_word() function is accessible through a “Match Word”
tab. Interactive functionality is also provided for querying the

Fig. 2 An example figure generated by the plot_design() function, for a
stimulus list generated by the example code, consisting of 200 words split
into four factorial cells: A1_B1 (low bigram probability, low
concreteness), A1_B2 (low bigram probability, high concreteness), A2_
B1 (high bigram probability, low concreteness), and A2_B2 (high bigram
probability, high concreteness). In this example, words are controlled in

terms of frequency (within ±0.2 Zipf), and length (exactly). When words
are more closely matched on a variable, the distributions of control
variables appear more similar, and the slopes of lines between matched
items are less steep. The differences between conditions in character
bigram probability and concreteness ratings (sought by the user) are
reflected in the upper two plots
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LexOPS dataset (through the “Fetch” tab), and for integrating
custom variables or datasets into the app (through the
“Custom Variables” tab). The Shiny app’s graphical user in-
terface is likely to be more accessible for users unfamiliar with
R, as it can be run with a minimal amount of R code with the
run_shiny() function, though we believe that the speed and

ease with which it allows for stimulus generation make it a
convenient feature for all users. Furthermore, the Shiny app
automatically translates the user’s selections into reproducible
R code that can then be run as a stand-alone R script.

In addition to providing an interface to LexOPS functions,
the Shiny app also provides an interface in its “Visualise” tab

Fig. 3 An example box for specifying the levels of an independent
variable in the Shiny app. Here, two levels (A1, A2) are being specified
for the variable of Familiarity from the Glasgow Norms (Scott et al.,
2019). In this case, the density plot shows that the distribution is skewed
towards words rated as more familiar, with far fewer words rated as less

familiar. As such, it might make sense to use a wider range or bin for a
low familiarity condition, to ensure there are enough candidate words.
Similar boxes are used for specifying controls and filters. Such boxes can
be added to or removed from the design specification with the plus and
minus buttons, respectively
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for interactive visualization of relationships between vari-
ables, and the distribution of generated stimuli across vari-
ables. Here, users can select variables to plot on x- and y- axes,
and can optionally elect to plot variables on a z-axis or color
scale. LexOPS will generate an interactive scatter plot of all
words which have a value for all requested variables, where
each point represents a single word. By hovering with the
cursor over a given point, the user can query the word visual-
ized at that location as well as its specific values (coordinates)
across the plotted variables.

Whereas axes can only be used to visualize numerical
values, color scales can be used to visualize the distributions
of variables which are either numerical or categorical. For
instance, the user can select to view the distributions of differ-
ent parts of speech by means of differential coloring of the
defined levels of this variable. The user can also have the app
visualize distributions of stimuli produced by the Generate
tab, as shown in Fig. 4, as well as suggested matches produced
by the Match tab, or words uploaded to the Fetch tab.

Validation

To demonstrate that the package is a valuable tool for gener-
ating word stimuli, we tested whether LexOPS could produce
stimulus sets comparable to those of previous studies that
employed well-controlled word stimuli. Four studies were se-
lected based on the following criteria: the experimental design
was unambiguously presented (e.g., with clear definitions
and/or boundaries of conditions); the characteristics of stimuli
(e.g., concreteness, valence) were taken from freely available
published norms; the stimuli across conditions were matched

on an item-by-item basis; and the complete set of stimuli was
provided. The first study, by Kousta, Vigliocco, Vinson,
Andrews, and Del Campo (2011), examined concreteness
(high/low), using 38 words per condition, and controlling for
12 different psycholinguistic variables. The second study, by
Scott, O’Donnell, Leuthold, and Sereno (2009), investigated
the interaction between word frequency (high/low) and emo-
tional valence (negative/neutral/positive), using 40 words per
each of the six conditions, and controlling for word length and
frequency. The third study, by Sereno, Scott, Yao, Thaden, and
O’Donnell (2015), employed a similar frequency (high/low)
by emotion (negative/neutral/positive) design, with a different
set of 40 words per condition, and similarly controlled for
word length and frequency. Finally, Yao et al. (2018) exam-
ined the interaction between concreteness (high/low) and
emotion (negative/neutral/positive), using 45 words per facto-
rial cell, and controlling for word length and frequency.

For each study, we used LexOPS to generate the same
number of stimuli according to the original constraints that
had been specified. We used the same databases that were
detailed within the studies with one exception (the norms for
one of Kousta et al.’s control variables, context availability,
were obtained locally and were not freely available). In all
cases, LexOPS was able to generate stimuli that fit within
the boundaries of the original conditions, which were matched
at least as closely on all control variables. In many cases, it
was found that closer tolerances on many variables were pos-
sible than those implemented in the original studies. To en-
capsulate the comparison between the original stimuli and
those generated by LexOPS, for both lists the Euclidean dis-
tance in all numeric control variables (scaled by standard de-
viation for comparability) was calculated between each word

Fig. 4 Example showing a user interface options and b resulting
interactive plot produced by the Visualise tab, for stimuli generated by
the “generate pipeline” specified by the code in the Example Applications
section (2 × 2, character bigram probability by concreteness design,

controlling for length and frequency). Each point corresponds to one
word, which can be queried by the user by moving the cursor directly
over that point. In the example, the user has queried a word from
condition A2_B2, corresponding to the word, “engine”
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in the list, and each word it should be matched to. As the

controls were implemented item-wise, this resulted in n k k−1ð Þ
2

observations of Euclidean distance for each stimulus list,
where n is the number of items per factorial cell, and k is the
number of factorial cells. The calculated values are presented
in Fig. 5.

Reproducibility and replicability

LexOPS offers a valuable contribution to research in terms of
reproducibility and replicability. By sharing LexOPS code, for
example in existing repositories such as the Open Science
Framework and GitHub, researchers can provide the exact
specifications, in readable code, used to generate stimuli lists
that were found to produce a given effect. Moreover, the code
can include a random seed that allows other users to reproduce
a specific stimulus list. If a random seed is not set, or is set to a
different value, a given pipeline will generate a different set of
stimuli each time it is run. This means that an experimental
design can be replicated, with the same relationships between
variables but consisting of different stimuli. Other users can

also modify shared code to see how such changes in the ex-
perimental design might alter a reported effect, for instance,
by modifying the cut-off values of a variable’s levels or the
tolerances of control variables, or by including additional con-
trol variables.

Applications to other areas of research

Although LexOPS was developed for experiments employing
word stimuli, the package can also be used to generate stimuli
in any experimental domain for which there is a finite set
of possible stimuli, having properties that have been coded
numerically or categorically. For example, the Chicago face
database (Ma, Correll, & Wittenbrink, 2015) is a resource that
specifies both objective and subjective measures of a set of
faces. LexOPS could be used on this database to generate stim-
uli to investigate, for example, a possible effect of attractiveness
on face recognition processes. Analogous to its functionality
with words, LexOPS could easily be adapted to define levels
of facial attractiveness, while controlling for variables such as
the race, gender, and luminance of individual faces.

Fig. 5 The Euclidean distance values between each matched pair of
words in the four studies, for the original study (in orange) and the
stimuli generated by LexOPS (in blue). Each point represents a single
value of distance, while the density plot above depicts the shape of the
distribution. The overlaid boxplots present summary statistics of the
median (central, dark vertical line), first and third quartiles (the left-
and right-most ends of the boxes) and the range of the values, bounded

to within a distance of 1.5 times the interquartile range from the boxes
(the whiskers). The bands of points seen in the values for Scott et al. and
Sereno et al. reflect that stimuli were allowed to differ in length. The
bands are absent in the distance values for the LexOPS stimuli
generated for Sereno et al., as these stimuli were matched for length
exactly
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Discussion

We believe that LexOPS is a valuable resource to researchers
who use word stimuli, providing a method for flexible and
controlled generation of items, with the added value of intui-
tive interfaces. In addition, LexOPS facilitates the reproduc-
ibility and replicability of experiments, allowing specific stim-
ulus lists to be recreated, and providing an easy method for
generating novel stimulus lists for the purposes of replication.
One point that should not be overlooked is that LexOPS is

still limited by the nature of the variables, tolerances, and
condition boundaries that are used. For instance, some vari-
ables have entries for relatively few words (e.g., Clark and
Paivio's (2004) norms provide familiarity ratings for only
2311 words), and there is often limited overlap of items be-
tween different corpora. This means that if variables from
small corpora, or from multiple corpora with little overlap,
are used as independent or control variables, the pool of pos-
sible stimuli will be greatly reduced. Similarly, variables are
often highly correlated, for instance, as imageability and con-
creteness are (Scott et al., 2019). It would be difficult to gen-
erate stimuli for designs probing interactions between such
highly correlated variables, or for those in which independent
variables and control variables are highly correlated. Finally,
the precision of control variables’ tolerances, and the position-
ing of independent variables’ boundaries relative to the vari-
ables’ density distributions, will also modulate the number of
possible stimuli that can be generated.
While the features detailed here are unlikely to change, work

will continue on the package, and it is very likely that we will
add extra functionality to LexOPS in the future in response to
users’ requests. Similarly, wemay expand the inbuilt database to
include further variables if they are likely to be of use to many
researchers. Any such additions or changes will be described in
the package’s documentation and in the LexOPS walkthrough.
To conclude, we have developed and made freely available a

flexible and intuitive tool for the controlled generation of word
stimuli. This R package allows researchers to robustly generate
lists of stimuli for factorial designs in a reproducible and replica-
ble manner. We expect LexOPS to be of great benefit to a broad
range of researchers, particularly those who use word stimuli.
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