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Abstract

delaying nutritional support during sepsis.

Despite sound basis to suspect that aggressive and early administration of nutritional support may hold therapeutic
benefits during sepsis, recommendations for nutritional support have been somewhat underwhelming. Current
guidelines (ESPEN and ASPEN) recognise a lack of clear evidence demonstrating the beneficial effect of nutritional
support during sepsis, raising the question: why, given the perceived low efficacy of nutritionals support, are there
no high-quality clinical trials on the efficacy of permissive underfeeding in sepsis? Here, we review clinically relevant
beneficial effects of permissive underfeeding, motivating the urgent need to investigate the clinical benefits of
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Introduction
Despite sound basis to suspect that aggressive and early
administration of nutritional support may hold thera-
peutic benefits during sepsis, recommendations for
nutritional support have been somewhat underwhelm-
ing. The Surviving Sepsis Campaign recommends against
early parenteral nutrition, based on studies of low to
moderate quality, yet the early initiation of progressive
enteral nutrition was encouraged [1]. The latest ESPEN
guidelines did not attempt a meta-analysis on the
efficacy of enteral nutrition (EN) versus permissive
underfeeding “due to paucity of related studies”, yet
advises, based on expert consensus, the initiation of
“early and progressive” enteral nutritional support in
sepsis without shock [2]. Similarly, based on expert con-
sensus, ASPEN guidelines also propose the initiation of
EN within 24-48h after the diagnosis of sepsis in
hemodynamically stable patients [3]. In summary, it is
generally advised, based on expert consensus, extrapola-
tion from other critical care settings, or through refer-
ence to pre-clinical findings in studies of varying quality,
that early enteral nutritional support may be beneficial.
This observation raises a question: why, given the
“paucity of studies”, are there no high-quality clinical tri-
als on the efficacy of permissive underfeeding in sepsis?
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Indeed, initiating early parenteral nutrition has even
been found to solicit detrimental effects in at least some
large clinical trials [4, 5], and it has also recently been
pointed out that full early nutritionals support may exert
detrimental effects in a clinical setting by inhibiting
autophagy [6]. One reason may be that, whereas the
potential benefits of nutritional support may be obvious,
it is less clear as to whether permissive underfeeding
would deliver any clinical benefits. Here, we review the
rationale for permissive underfeeding in the critical care
setting, the physiological mechanisms implicated, and
the potential therapeutic benefits which may result.
Specifically, we argue that the delaying of nutritional
support facilitates an elevated catabolic tone, which in
turn solicits a range of clinically relevant benefits. Taken
together, we argue that there are legitimate reasons to
urgently investigate the potential clinical benefits of
permissive underfeeding in otherwise well-nourished
patients during sepsis.

Activation of the immune system antagonises Gl
function

Gastrointestinal (GI) complications are common in
critical care patients [7]. However, such “dysfunction” of
the GI-tract can also be viewed as an extension of
sickness associated anorexia (SAA)—an aspect of evolu-
tionarily conserved sickness-related behaviour. Support-
ing this view, it is critical to note that the decrease in GI
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function is not a passive occurrence, but instead
represents a detailed response that manifests under the
instruction of inflammatory mediators. Indeed, inflam-
matory mediators have a well-established role in sup-
pressing gastric motility. Early studies have shown that
subcutaneously injected LPS resulted in the suppression
of both spontaneous and bethanechol-stimulated con-
tractions in circular smooth muscle [8]. Similarly, LPS-
induced secretion of TNF in the medullary dorsal-vagal
complex also contributed to gastric stasis [9]. In fact,
studies have shown that various pro-inflammatory
cytokines such as TNF [10], II-1f, [11] and IEN-y [12]
directly attenuate smooth muscle contraction, thereby
compromising gastric motility.

There is also evidence that inflammatory mediators
may alter pancreatic exocrine function. In patients with
sepsis, exocrine dysfunction seems to mirror disease se-
verity [13], implicating inflammation in the suppression
of exocrine function. It is, however, not clear how
inflammatory mediators promote these changes, ie.
whether they mediate these changes directly or indirectly
via their effect on the nerves innervating the pancreas. It
has recently been reported that inflammatory mediators
can induce ductal-to-endocrine cell reprogramming in
mice, even in the absence of hyperglycaemia [14], sug-
gesting that inflammatory mediators may supress diges-
tion by inducing a phenotypic “switch” in exocrine cells.

Earlier studies have shown that both II-1p and TNF
inhibited gastric acid secretion by rabbit parietal cells
[15]. More recently, it has also become apparent that
chronic II-1p exposure not only inhibits acid secretion,
but promotes gastric atrophy by suppressing the Hedge-
hog signalling pathway [16]. The synthesis of bile acids
(BA) also seems to be disabled by inflammatory media-
tors. Earlier studies have implicated the decreased ex-
pression of BA transporters at the bile canaliculi as a
contributing factor to sepsis-associated cholestasis [17].
In fact, CYP7Al, the first gene in BA synthesis, is
surpassed by both TNF and II-1f [18]. Thus, both BA
release and synthesis is surpassed by inflammatory
mediators. In summary, inflammatory mediators not
only suppress appetite, but also interrupt digestion on
various levels.

Inflammatory mediators thus do not only supress ap-
petite (i.e. SAA), but play a much more involved role in
antagonising digestion. Such a comprehensive inhibition
of gastric function may well represent a strategy to avoid
investing resources into a system that is unlikely to be
utilised during an infection. However, this observation
also raises two further questions. Firstly, if inflammation
inhibits GI function on numerous levels, what is the
effect of enteral nutritional support? Feeding during a
severe inflammatory response may represent an under-
appreciated cause of complications through the forced
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engagement of physiological processes that are not
intended to be operational during an infection. Secondly,
we speculate that the suppression of digestive machinery
is more than just conservation of energy. Specifically, we
hypothesise that the decommissioning of the GI tract is
an extension of SAA and forms part of an immuno-
logical strategy to augment systemic catabolism in non-
immune tissue.

Catabolism repurposed for survival
Inflammatory mediators are potent inducers of catabol-
ism. Indeed, cytokines have a well-appreciated role in
inducing the breakdown of proteins in muscle, promot-
ing bone resorption and also driving lipolysis in adipo-
cytes [19]. In turn, the catabolic state also drives what
has until recently been described as a manifestation of
“metabolic derangements” such as the hyperglycaemia
invariably observed in critical care patients. However,
there is evidence to suggest that catabolism is more than
just a means to an end (i.e. the liberation of metabolic
substrate) but is in itself a survival strategy.
Macro-autophagy (hereafter simply autophagy) is an
evolutionarily conserved catabolic process that plays an
essential role in promoting cell survival [20]. Conceptu-
ally, the autophagic process consists of two major steps.
Firstly, the targeted substrate must be isolated prior to
catabolism; this is followed by fusion of the isolated sub-
strate (autophagosome or amphisome—pending on the
origin of the cargo) with lysosomal vesicles which subse-
quently degrade the vesicle’s cargo. Various different
substrates are known to be targeted for lysosomal deg-
radation. Lipophagy describes the targeting of intracellu-
lar lipid droplets for catabolism, and correspondingly,
glycophagy mobilises glycogen stores [21]. These obser-
vations then implicate autophagy as a key role-player in
liquidating cellular structures, thereby freeing resources
for utilisation in other processes. However, autophagic
machinery is also implicated in other activities.
Misfolded proteins represent a major cellular danger,
as these disorganised proteins are prone to form toxic
protein aggregates. Proteins may be misfolded, either be-
cause of a denaturing environment or because of direct
protein damage (e.g. free radical damage). Interestingly,
studies in mice show that febrile range increases in body
temperature resulted in an increased expression of heat
shock proteins [22]: this observation suggests that even a
slight increase in temperature may result in increased
protein misfolding which necessitates the increased
expression of chaperones. Of note, we speculate that
protein misfolding in the febrile range most likely does
not present a major challenge for proteins in their
native state. In other words, febrile range tempera-
tures do not necessarily induce the denaturation of
proteins already properly folded. Rather, because “the
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folding environment is finely tuned to the specific needs
of a given cell and tissue” [23], newly synthesised proteins
may fail to reach the native conformation during a febrile
response. Regardless, both endoplasmic reticulum (ER)
stress, as well as the cellular response to ER stress (i.e. the
unfolded protein response), is believed to be activated in
the critical care context, including during sepsis [24]. In
this regard, a catabolic state may be protective by render-
ing the cell more effective in removing damaged proteins.
While the proteasome may degrade misfolded proteins,
aggrephagy (a specialised form of autophagy implemented
in the clearance of toxic protein aggregates) would play a
key role in the removal of toxic protein aggregates too
large for the ubiquitin proteasome pathway. In fact, it has
recently come to light that autophagy also selectively
target the ER (ER-phagy) and is believed to play a key role
in maintaining proteostasis during ER stress [25]. Autoph-
agy also has a well-established role in reshaping the prote-
ome. As an example, recent findings in cancer cells
revealed an exquisite selectivity in the pool of proteins tar-
geted for degraded and that such remodelling of the
proteome may promote cell survival by attenuating in-
flammatory processes [26].

Though overt cell death is actually rare in sepsis, there
is evidence of increased mitochondrial dysfunction [27],
suggesting that mitophagy (a specialised form of autoph-
agic digestion, which degrades mitochondria) may be
critical in ensuring mitochondrial quality control during
a severe infection. Indeed, mitochondrial quality control
is known to play a critical role under normal physio-
logical conditions. As an example, thyroid hormone (T3)
induces an increase in oxidative phosphorylation, but
also in mitophagy [28]. The reason for this seemingly
paradoxical state, during which increased utilisation of
mitochondrial respiration is coupled with increase mito-
chondrial clearance, is to improve quality control, which
is necessary to maintain elevated levels of mitochondrial
function [28]. Notably, mitochondrial function (e.g. oxi-
dative phosphorylation), as well as ROS production, is
enhanced by febrile range temperatures (<40°C) [29],
suggesting that mitochondrial quality control might
similarly be crucial during a febrile response. Indeed,
failure to remove damaged mitochondria is also believed
to increase ROS production, suggesting that enhanced
mitophagy may be protective by preventing the produc-
tion of ROS by defective mitochondria. In summary,
mobilisation of catabolic machinery may allow a more
responsive regulation of mitochondria quality, thereby
avoiding excessive ROS production.

We have previously pointed out that autophagy may
play a critical role in the removal of inflammogens, such
as LPS, by the lysosomal enzyme, acyloxyacyl hydrolase
[30]. Moreover, autophagic machinery also plays a piv-
otal role in pathogen clearance (known as xenophagy).

Page 3 of 6

Indeed, the critical role of autophagy in pathogen con-
trol is evident from the fact that viruses and bacteria
have evolved numerous strategies to curtail and subvert
autophagic processes [31]. As an example, it was re-
cently shown that selective xenophagy of Mycobacterium
tuberculosis surface protein such as Rv1468c can be tar-
geted for ubiquitination, followed by p62 recruitment,
and the subsequent delivery of the Rv1468c-ubiquitin-
p62 complex to LC3-decorated autophagosomes for se-
lective degradation [32]. Importantly, autophagy not only
operates in immune cells, but also forms a key cellular
response to pathogen infection in non-immune cells
[33]. For example, IFN-y treatment of hepatocytes mobi-
lised various autophagy-related proteins that play a key
role in LC3-associated phagocytosis (LAP)-like degrad-
ation of the malaria parasite [34]. However, as men-
tioned, pathogens have also evoked strategies to
undermine and even co-opt autophagic processes for
their own survival. In this regard, we have previously
argued that a pre-existing catabolic state (i.e. upregulat-
ing autophagic processes) may be adaptive [35]: since
degradation processes are already in full swing in cells
exhibiting a catabolic state, intracellular pathogens
would be confronted with a narrow window of
opportunity to engage countermeasures (i.e. subverting
autophagy or escaping from cellular compartments tar-
geted for autophagic destruction). Catabolism is there-
fore an adaptive strategy, aimed at generating a hostile
intracellular environment, thus preventing the propaga-
tion of infectious agents.

Finally, autophagy contributes to the processing and
presentation of peptides on both MHC I and II. As an
example, autophagy can also act as a proteasome-
independent alternative pathway for the processing and
loading of viral-derived peptides onto MHC I [36]. Spe-
cifically, autophagy-mediated processing may be a crit-
ical back-up during viral subversion of proteasomes [36].
Furthermore, an underexplored consequence of autoph-
agy in epitope generation is that proteasomes and
autophagy can produce different peptides from similar
antigenic proteins. Peptides loaded on MHC I are typic-
ally in 8-12 amino acids in length; MHC II are between
14 and 20 [37]. This implies that the autophagic process-
ing of proteins for presentation on MHC II may alter
the immunogenicity of potentially infected cells. In sup-
port of this possibility, it was recently shown that treat-
ment of cancer cells with [FN-y altered the processing
and length of peptides loaded on MHC proteins [38]:
since IFN-y is a potent inducer of autophagy [39], it is
possible that autophagy may alter the immunogenicity of
epitopes expressed by cells, rendering infected cells more
visible to the immune system. In fact, studies on oncoly-
tic adenoviruses have shown that induction and inhib-
ition of autophagy can qualitatively impact epitope
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expression by altering the repertoire of peptides gener-
ated for MHC presentation [40]. Collectively, there is a
clear need to investigate the immunological significance
of autophagy-generated peptides for MHC complexes
and the potentially altered immunogenic properties of
these peptides.

Since fasting is a potent inducer of autophagy, we have
previously argued that SAA ensures adequate levels of
autophagic activity during an infection [35]. In this re-
gard, nutritional support may well inhibit autophagy by
elevating amino acids levels, thereby attenuating autoph-
agy via mTOR signalling. Feeding also solicits
physiological processes that supress catabolism while
promoting anabolism. A classic example includes the re-
lease of insulin following a meal: insulin is a canonical
inhibitor of autophagy, while catabolic hormones such
as glucagon (which is suppressed by feeding) induce au-
tophagy. Similarly, we have highlighted that a key aspect
of nutritional support which is seldom addressed is the
physiological response to feed-fast cycles, specifically,
the signalling effects of post-prandial reabsorbed bile

Page 4 of 6

acids [30]. For example, secondary BAs can modulate
immune function via its activity on G protein-coupled
bile acid receptor 1 and the Farnesoid-X-Receptor [41].
Notably, FXR activation by BAs is also known to po-
tently supress the transcription of key autophagic genes
[42]. In addition, activation of these BA-receptors also
exerts an anti-inflammatory effect by promoting a more
tolerogenic phenotype in various immune cells [41].

The preceding discussion also highlights that other
aspect of nutritional support besides nutrient content
and suppression of catabolic processes may be impacted
by nutritional support. BA release following nutritional
support may also impact on immune cell function,
inhibiting autophagy and vascular tone (e.g. increase
splanchnic blood flow) [30]. Similarly, a recent expert
consensus have pointed out the emerging role of intes-
tinal biota in a critical care setting [43]. This raises an
intriguing question: could nutritional support during
sepsis exert a clinically relevant effect on the host micro-
biome? In a fasted state, bacteria populations can be ma-
nipulated by the host secretion of O-linked glycans to
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Fig. 1 Autophagy is an evolutionarily conserved stress response that is upregulated by a range of cellular stressors, including fasting as well as
various pro-inflammatory signals. In turn, this catabolic process may be dynamically repurposed to resolve a range of cellular stresses that may
emerge during sepsis. This includes the removal of large protein structures as well as remodelling of the proteome to better accommodate
emerging stressors faced during sepsis. ER-phagy as well as aggrephagy plays a role in preventing the accumulation of toxic protein aggregates,
whereas xenophagy represents an indispensable mechanism in cell-autonomous defence against intercellular pathogens. Autophagy is also
involved in the processing and presentation of both endogenous and exogenously derived epitopes, thereby playing a potential role in
regulating the immunogenicity of infected cells. Autophagy also has a well-established role in reshaping the proteome. As an example, recent
findings in cancer cells revealed an exquisite selectivity in the pool of proteins targeted for degradation and that such remodelling of the
proteome may promote cell survival by attenuating inflammatory processes
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“intentionally influence this ecosystem for better health
and nutrition” [44]. In a fasted state, the survival of more
“domesticated” intestinal biota may be promoted by
selecting the population of bacteria that are better able
to survive on host-derived glycans. Furthermore, during
sepsis, higher ethanol levels were observed in the urine
of patients with poor prognosis [45]. Since ethanol is
only derived from fermentation by gut biota (patients
nutrition was controlled for 24 h), it suggests that the
microbiome may impact on sepsis. It is thus clear from
these observations that nutritional support may affect
host-microbiome during sepsis.

The loss of appetite as part of sickness behaviour,
coupled with the comprehensive shutdown of the gastric
system, is likely an adaptive response aimed at sustaining
elevated levels of catabolism and, specifically, autophagy.
Remarkably, it is also worth noting that several pro-
inflammatory cytokines (e.g. TNE,II-1p, 1I-6, II-17, and
IFN-y) have been shown to regulate autophagy (reviewed
[39]). Similarly, damage-associated molecular patterns
such as HMGBI1 [46] and various pathogen-associated
molecular patterns that are recognised by respective
TLRs [47] all have well-established roles in activating au-
tophagy. The observation that SAA manifests in context
of inflammatory mediators that also induce autophagy is
likely no co-incidence: we argue that the innate suppres-
sion of feeding represents a tactic to synergistically con-
verge cytokine-induced catabolism with fasting-induced
catabolism, resulting in a synergistic potentiation of
catabolism thereby promoting cell survival and enhanced
immune function (Fig. 1).

Conclusion

For clinicians, the term “catabolism” usually carries
strong negative connotations. Remarkably, however, it is
worth noting that across the animal kingdom, organisms
in a non-anabolic state (e.g. spores or a dauer and pupa
phase) display greater resilience to various stressors.
Similarly, mice in a fasted state are far more tolerant of
the toxic effects of both radiation and chemotherapy:
this observation forms the basis for a number of clinical
trials which evaluate the efficacy of fasting prior to re-
ceiving chemotherapy. Here, we have outlined a number
of key physiological processes invoked by catabolism and
provide a rational justification for the evaluation of the
efficacy of permissive underfeeding during sepsis in
otherwise well-nourished individuals.
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