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Abstract: Wireless sensors are limited by node costs, communication efficiency, and energy consumption
when wireless sensors are deployed on a large scale. The use of submodular optimization can reduce
the deployment cost. This paper proposes a sensor deployment method based on the Improved
Heuristic Ant Colony Algorithm-Chaos Optimization of Padded Sensor Placements at Informative
and cost-Effective Locations (IHACA-COpSPIEL) algorithm and a routing protocol based on an
improved Biogeography-Based Optimization (BBO) algorithm. First, a mathematical model with
submodularity is established. Second, the IHACA is combined with pSPIEL-based on chaos
optimization to determine the shortest path. Finally, the selected sensors are used in the biogeography
of the improved BBO routing protocols to transmit data. The experimental results show that the
IHACA-COpSPIEL algorithm can go beyond the local optimal solutions, and the communication
cost of IHACA-COpSPIEL is 38.42%, 24.19% and 8.31%, respectively, lower than that of the greedy
algorithm, the pSPIEL algorithm and the IHACA algorithm. It uses fewer sensors and has a longer
life cycle. Compared with the LEACH protocol, the routing protocol based on the improved BBO
extends the life cycle by 30.74% and has lower energy consumption.

Keywords: wireless sensor deployment; submodularity; ant colony algorithm; routing protocol;
biogeography-based optimization

1. Introduction

Wireless sensors are widely deployed on a large scale in commercial fields [1,2], but are limited
by node costs, communication efficiency between nodes, and energy consumption [3–5], e.g., in forest
and grassland fire risk monitoring and early warning. The problem of wireless sensor deployment
is considered as deploying a certain number of nodes to meet monitoring needs, that is, finding the
number and location of deployed nodes. The goal of solving this problem is to find as few sensors as
possible to meet the monitoring requirements and reduce the communication cost. It is transformed
into an optimal sensor node solution set, which is an NP-hard problem. The sensor deployment
problem has diminishing returns, e.g., submodularity [6–8]. Initially, when a small number of sensors
are deployed, each new sensor will significantly improve its deployment utility. As more sensors are
placed, the improvement in utility from adding new sensors diminishes. Krause [9] showed that for
problems with submodularity, at least the (1− 1/e) approximation of the optimal solution can be
obtained using the greedy algorithm.

Many methods have been proposed for sensor deployment. In [10], Huang et al. assumed that the
node’s perception ability is a circular area. That is, targets within the circular area are fully perceived,
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and targets outside the circular area will not be perceived. In [11], Guestrin et al. proposed the use of
mutual information-based optimization criteria so that the set of deployed nodes contains information
about unselected points, and the monitoring is quite accurate. In [12], Cheng et al. proposed a
Markov random field model to describe the data correlation between sensor nodes. In [9], Krause
deployed sensors with a greedy algorithm to maximize the amount of information, but neglecting
the influence of the communication distance between nodes. In [13], Krause et al. improved the
greedy algorithm and proposed the Padded Sensor Placements at Informative and cost-Effective
Locations (pSPIEL) algorithm to solve the problem of sensor deployment optimization under the
constraint of communication distance; however, a large number of sensors needed to be deployed.
In [14], Mariohat et al. established a Gaussian model, improved the greedy algorithm under the
constraint of fixed costs, and proposed the SUPSUB method to minimize the submodular set function,
while neglecting the influence of the communication distance between nodes on the deployment.
The sensor placement problem considering communication distance is a constrained optimization
problem. The bi-projection neural network proposed by Xia et al. [15] can effectively solve large-scale
constrained optimization problems, and has good stability and faster convergence [16]. Liu et al. [17]
proposed a ML-OAXSMT-PSO construction algorithm, which can significantly reduce the total cost.

During communication transmission, wireless sensors have limited energy, but effective clustering
nodes can better save energy and extend the life cycle of the entire network. There are various
energy-saving methods. Guo et al. [18] proposed the FTAOA algorithm to minimize task completion
time to save node energy. Cheng et al. [12] proposed the NSA algorithm to reasonably deploy nodes and
significantly improve network lifetime. Liu et al. [19] proposed the KPNS algorithm to appropriately
select more active nodes for monitoring, so that the energy is fully utilized. Effective node clustering
can greatly save energy and extend the life cycle of the entire network. The LEACH protocol balances
the energy of each sensor in the entire network by randomly selecting cluster heads [20]. However, it
has the problem of uneven number and distribution of cluster heads [21], for not having considered
the transmission distance. This causes either the nodes far away from the base station to be selected as
the cluster head or the nodes far away from the cluster head to die prematurely [22]. In [23], Simon
proposed the biogeography-based optimization algorithm with advantages of simple operation, few
parameters, and high search accuracy [24]. In [25], Pal and others used the Biogeography-Based
Optimization (BBO) algorithms to select cluster heads and cluster nodes, and obtained good energy
efficiency. However, the authors only took the distance between cluster heads and the distance between
nodes in the cluster into consideration, while neglecting the energy consumed by data transmission
between nodes.

Deploying wireless sensors is limited by cost and power consumption [26]. Therefore, the following
two issues need to be considered during deployment: one is to achieve efficient data collection; the other is
to use as few sensors as possible and minimize the communication distance between sensors to reduce
the total energy consumption. Because of the existing problem of deploying fewer sensors in terms
of the distance between nodes, and the deficiency of some popular algorithms in the field of sensor
deployment, we shall proceed as follows in this paper. The mutual information is used to describe the
correlation between the observed and the unobserved points. The communication distance is described
by the connection of the graph and the Improved Heuristic Ant Colony Algorithm-Chaos Optimization
of Padded Sensor Placements at Informative and cost-Effective Locations (IHACA-COpSPIEL)
algorithm is used to choose the optimized submodular model. By considering the distance between
clusters, the distance between nodes in the cluster, and the energy consumption of data transmission
by the nodes, we obtain an optimized routing protocol in which the BBO algorithm is used to transmit
data with an improved cost performance.

The structure of this article is as follows. In Section 2, wireless sensor deployment optimization
is introduced. The routing protocol of the wireless sensor network based on the BBO algorithm is
presented in Section 3. In Section 4, we introduce the experimental verification, discuss the deployment
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effects using different algorithms, and analyze the performance of the protocol for the BBO algorithm.
Finally, this article is summarized in Section 5.

2. Wireless Sensor Deployment Optimization

2.1. Wireless Sensor Deployment

2.1.1. Problem Description

Given a certain area of interest, V(|V| = N) is the set of monitored locations in the area. The goal
of node deployment is to select a subset A ⊂ V(|A| = K < N), and the base station can efficiently
estimate the value of any element in the set V\A(|V\A| = N − K) based on the observed values of
the subset.

Mutual information is a way to describe the correlation between two sets of events. This paper
uses mutual information to describe the correlation between set A with deployed sensors and set
V\A without deployed sensors. Suppose set V = [V1, V2, . . . , VN ] represents N positions, and XV =

[X1, X2, . . . , XN ] describes the random variables of the observation results of these positions. For any
subset A ⊂ V, XA is used to represent the set of random variables associated with the location subset
A. The objective function is to maximize the amount of information containing the unselected location
set through the selected deployment set A.

max
A⊆V

F(A) = max
A⊆V

(H(XV\A)− H(XV\A|XA)). (1)

In Equation (1), H(XV\A) represents the entropy of the random variable XV/A, and H(XV\A|XA)

represents the random variable XV/A relative to the conditional entropy of XA.

2.1.2. Objective Function of Sensor Deployment Considering Communication Cost

When deploying sensors, we must consider not only the number of sensors, but also the energy
consumption during wireless sensor network transmission, because energy consumption is related
to the distance between sensors. However, we cannot determine which sensors will communicate
to accurately reduce the communication distance between them. Therefore, the communication
distance between all the sensors is selected to be reduced so that the communication distance between
subsequent sensors is reduced. Assume that there are N optional points. Node i and node j are selected
to deploy sensors. The communication cost between the two nodes is defined as follows.

di,j =
√
(xj − xi)

2 + (yj − yi)
2. (2)

In Equation (2), (xi, yi) is the node i coordinate, and (xj, yj) is the node j coordinate.

C(A) =
n=|A|

∑
k=1

√
(xj − xi)

2 + (yj − yi)
2. (3)

In Equation (3), (xi, yi) and (xj, yj) are the coordinates of the nodes in the set A.
In this paper, the problem of improving the efficiency of the sensor submodularity and reducing

the communication cost (C) is transformed into a combination optimization problem. The objective
function is as follows.

max
A⊆V

F(A), s.t.C(A) ≤ B. (4)

For the communication cost budget B > 0, Equation (4) aims to find the solution set with the
maximum mutual information within a low communication cost.
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2.2. IHACA-COpSPIEL Deployment Method

Krause et al. proposed the pSPIEL algorithm, which is an improved greedy algorithm, but with
both a larger number of sensors and a longer communication distance. The ant colony algorithm is
easy to combine with other methods and performs well in path optimization. Therefore, this paper
combines the improved ant colony algorithm with the chaotic operator improved pSPIEL algorithm,
and proposes the IHACA-COpSPIEL.

2.2.1. Chaos Optimized pSPIEL Algorithm

The standard pSPIEL algorithm applies non-decreasability, submodularity, and locality to solving
the problem of sensor node deployment. Compared with the greedy algorithm, pSPIEL can optimize
the sensor layout and reduce the communication cost, but with a large number of sensors and slightly
higher communication costs. The ergodicity of chaotic motion can effectively traverse each state within
a specified range. Therefore, this paper introduces a chaotic operator to traverse all cluster numbers to
determine the optimal cluster number. We propose a chaotic optimized pSPIEL algorithm (COpSPIEL).
The basic idea of the chaotic locality parameter r adjustment strategy is to use a chaos generator to
generate a set of chaotic variables and then use the carrier transform method to map to the locality
parameters, and map it to the value range of the locality parameters. Logistic mapping is a typical
chaotic system.

zi+1 = µzi(1− zi), i = 0, 1, 2, . . . , zi ∈ (0, 1). (5)

In Equation (5), µ is the control parameter. When µ = 4, the system is completely chaotic.
The search ri is mapped to the domain (0,1) of the logistic equation by Equation (6).

zi = (ri − rmin)/(rmax − rmin), ri ∈ (rmin, rmax). (6)

It iteratively generates a chaotic sequence by Logistic equation:

zm(m = 1, 2, 3, . . .). (7)

The generated chaotic sequence is inversely mapped by Equation (8):

rm
i = rmin + (rmax − rmin)zm. (8)

This returns to the original solution space and produces a solvable chaotic sequence containing
chaotic variables.

rm
i = (rm

1 , rm
2 , . . . , rm

i ) (9)

The locality parameter r optimizes the search space in this sequence.

2.2.2. Improved Heuristic Ant Colony Algorithm

The ant colony algorithm was inspired by the research on real ant colony behavior, and has been
applied to the optimization of communication networks and others. The essence of the ant colony
algorithm is to use pheromone as a medium for ants in an ant colony to communicate. In the sensor
layout, the ants must be moved toward the sensor node with a large submodular gain. The traditional
ACA algorithm has the problem of blind search and it is easy to fall into local optimal solutions.
To improve the heuristic function and pheromone, a new mechanism, improved heuristic ant colony
algorithm, IHACA is proposed.

The heuristic function of the traditional ant colony algorithm takes no consideration of the distance
relationship between the next node j and the adjacent cluster head, and the search is blind. Therefore,
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this paper adds the Euclidean distance between the next node j and the cluster head of the adjacent
cluster. The improved heuristic function is as follows.

ηij =
1

wdist(i, j) + (1− w)dist(j, gi1)
, w ∈ (0, 1). (10)

where gi1 is the first node of cluster i and w is the weight.
In order to avoid premature, stagnation or local optimization problems due to excessive

pheromone concentration [27], this paper introduces a local and global pheromone update mechanism.
Local update of pheromone helps ants to select unselected points, and a full update of pheromone
helps to enhance the global search ability of the algorithm.

Each ant moves from node i to node j, and needs to update the pheromone on the path (i, j) that
it just walked.

τij(n + 1) = ξτij(n) + ετ0. (11)

In Equation (11), n is the number of iterations, ξ is a local pheromone evaporation coefficient, τ0 is
a pheromone under initial conditions, and ε is a constant.

When all the ants complete this iteration, we select the shortest path and the longest path in this
iteration to globally update the pheromone on the path.

τij(n + 1) = (1− ρ)τij(n) + ρ
m

∑
k=1

∆τk
ij. (12)

∆τk
ij =


Q

Lbest
, L ∈ Lbest

− Q
Lworst

, L ∈ Lworst

0, other
(13)

In Equations (12) and (13), m is the number of ants, ρ is the evaporation coefficient of the global
information system, τk

ij is the pheromone left by ant k on (i, j), Q is the pheromone quality coefficient,
Lbest is the shortest path, and Lworst is the longest path.

2.2.3. IHACA-COpSPIEL Algorithm

(1) Clustering

Using the local parameter αr chaotic sequence pair of Equation (9) randomly divides the position
set V into small clusters of diameter αr, where α ∈ (0, 1]. The nodes near their cluster boundaries are
stripped, so the clusters are well separated. The locality of F makes the clusters almost independent
and provides a wealth of information [13].

(2) Establishing module approximation

In the ith cluster (Ci), a greedy algorithm is used to obtain the ranks of gi,1, gi,2, . . . , gi,ni on the ith
cluster’s nodes (ni), and the nodes are connected in this order to form a chain of clusters. A module
approximation graph G′ is created from G through these chains. A modular directional arithmetic
algorithm is used on G′ to solve the corresponding objective function, the selected path in G′ is
extended according to the corresponding shortest path in G, and the solution set A′ is output.

(3) Select the next position

The initial node of A′ is used as the initial value of the Improved Heuristic Ant Colony Algorithm
(IHACA). The IHACA algorithm selects the next position from the first node according to Equation (14),
and adds the selected position to the taboo table or tabuk of ant k. η

β
ij is calculated by Equation (10),

and τij is calculated by Equation (15).
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Pk
ij =

τα
ij η

β
ij

∑
j∈A

τα
ij η

β
ij

(14)

τij = F(Ci ∪ k j)− F(Ci). (15)

In Equation (14), α is the weight of the path, β is the weight of the heuristic information, and τij
represents the pheromone intensity of the path from the cluster Ci to the k j sensor.

(4) Pheromone update

After the next position is determined, the pheromone traversed by the ant (i, j) is updated
according to Equation (11). When all ants reach the endpoint, the global pheromone is updated
according to Equation (12), and the tabu list is cleared.

The pseudo-code of the IHACA-COpSPIEL algorithm is as follows. Line 2 calls clustering
with complexity O(mc max). Lines 3–6 form a chain with complexity O(NlogN). Line 7 calls the
block-oriented algorithm with complexity O(nlogN) where n is the number of connectable edges
of graph nodes (n ≤ N). Lines 8–10 select nodes for A

′′
of the greedy algorithm with complexity

O(log(N − ni)). Lines 13–17 reach the given maximum mutual information with complexity O(kN2)

where k is iteration times. Line 22 calls updating global pheromone with complexity O(N2).
The computational complexity of Algorithm 1 is O(kN2) approximately.

Algorithm 1 Improved Heuristic Ant Colony Algorithm-Chaos Optimization of Padded Sensor Placements at
Informative and cost-Effective Locations (IHACA-COpSPIEL).

Input: Position set V and covariance matrix
Output: Solution set A
1: Initialize parameters: α, β, w, ξ, τ0, ε, nmax
2: Divide V into mcmax clusters {Ci|i ∈ [1, mc max]}
3: for each cluster Ci do
4: Sort position points in Ci by greedy algorithm and then get the ranks of gi,1, gi,2, . . . , gi,ni

5: Connect gi,1, gi,2, . . . , gi,ni to form a chain which is then included into Gi
′

6: end
7: Uses G

′
as input of block-oriented algorithm to solve F(A) and then get the solution A

′′
,

where G
′

= {Gi
′ |i ∈ [1, mc max]}

8: while a given maximum mutural information in A
′′

is not reached do
9: Select nodes for A

′′
with greedy algorithm

10: end
11: A

′
=A

′′

12: for n=1:nmax do
13: while a given maximum mutural information in An

′
is not reached do

14: Select IHACA initial points in An
′

from head nodes in A
′

15: Select next point with Equation (14)
16: Update local pheromone τij(n) with Equation (11)
17: end
18: if C(An

′
) ≤ B then

19: A=An
′

and output A
20: return
21: end
22: Update global pheromone τij(n) with Equation (12)
23: end
24: A=An

′
and output A

25: return
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3. Routing Protocols for Wireless Sensor Networks

3.1. Communication Model

The energy consumption of data sent by sensor nodes is shown in Equation (16).

ETX(k, d) = Eelec(k) + Eamp(k, d) =

{
kEelec + kE f sd2, d < d0

kEelec + kEmpd4, d ≥ d0
, (16)

where k is the number of bits of transmitted data, d is the transmission distance, Eelec(k) is the
energy consumption of the transmitting circuit to send k bit data, and Eamp(k, d) is the transmission
power amplifier transmitting k bit data when the transmission distance is d. Eelec is the unit energy
consumption of the transmitting or receiving circuit, and d0 is the threshold. E f s is the energy
consumption parameter of the transmission power amplifier under the free space channel model and
Emp is the energy consumption parameter of the transmission power amplifier under the multipath
fading channel model.

The calculation of the energy consumption of the receiving circuit to receive k bit data is shown in
Equation (17).

ERX(k) = ETX−elec(k) = kEelec. (17)

3.2. Optimal Clustering

The number of cluster heads has a great impact on network performance. According to [14],
the optimal number of cluster heads is shown in Equation (18).

kopt =

√
NA · E f s√
2π · Emp

M
d2

toBS

. (18)

In Equation (19), NA is the number of nodes in set A, M is the area side length, and dtoBS is the
distance from the node to the base station.

The probability of a node being elected as a cluster head is shown in Equation (19).

p =
kopt

Nrounds
. (19)

3.3. Fitness Function

The fitness values are based on parameters used to achieve the best solution. It considers
intra-cluster compactness, inter-cluster separation and total energy consumption.

Tightness refers to the internal distance, that is, the distance between the nodes in the cluster and
the cluster head (CH).

C =
CHs

∑
i=1

∑
∀n∈Ci

d(n, CHi). (20)

Separability refers to the distance between clusters, that is, the minimum distance between
cluster heads.

S = min
∀Ci ,Cj ,Ci 6=Cj

(d(CHi, CHj)). (21)

The total energy consumption refers to both the cluster head communication energy consumption
ECH and ordinary node communication energy consumption ENN , of which the energy consumption of
the cluster head includes the energy consumption ERN required to receive data sent by the nodes in the
cluster, the energy consumption EHD required to collect data for fusion, and the energy consumption
ETB required to send data to the base station. The energy consumption of ordinary nodes includes the
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energy consumption ETH required to send data to the cluster head. Assume that the total number of
nodes is NA, the number of cluster heads is m, and the ordinary nodes in each cluster are n1, n2, ..., nm.

ECH = ERN + EHD + ETB = kEelecni + kEDA(ni + 1) + (kEelec + kEmpl4
HB). (22)

In Equation (16), EDA is the energy consumed by unit bit data fusion, and lHB is the distance
between the cluster head and the base station.

ENN = ETH = kEelec + kE f sl2
NH . (23)

In Equation (17), lNH is the distance between the nodes in the cluster and the cluster head.

Etotal =
m

∑
i=1

ECHi +
N

∑
j=1

ENNj . (24)

In Equation (18), the closer the distance between the cluster nodes and the cluster head in a cluster,
the better. The greater the separation between cluster heads, the better the total energy consumption.
The fitness function is as follows.

F = w1C +
w2

S
+ w3Etotal , w1, w2, w3 ∈ (0, 1). (25)

In Equation (19), w1+w2+w3=1.

3.4. Routing Protocol Based on BBO Algorithm

BBO algorithm is an information intelligence heuristic algorithm first proposed by Dan Simon
in 2008. The habitats of biological populations have their corresponding Habitat Suitability Index
(HSI), which is used to describe the quality of the habitat environment, and the factors that affect the
fitness index are called Suitable Index Variables (SIVs). The BBO algorithm has the advantages of
simple operation, fast convergence, and fewer parameters [28]. The standard BBO algorithm uses a
simple linear migration model, but in the real biogeographic environment, species migration often
occurs randomly and does not follow this rule. Complex and natural migration models are much
better than simple migration models [23,29]. In this paper, a cosine migration model is used. When the
number of species in the habitat is either large or small, the change in the immigration rate λ and the
emigration rate µ is relatively stable. When the number of species in the habitat is neither large nor
small, the immigration rate λ and the emigration rate µ changes quickly. The expression of the cosine
migration model is shown in Equations (26) and (27).

λk =
I
2
(cos(

kπ

n
) + 1) (26)

µk =
E
2
(− cos(

kπ

n
) + 1). (27)

In Equations (26) and (27), I is the maximum value of the immigration rate, E is the maximum
value of the emigration rate, k is population number and n is the maximum population number.

The mutation operator provides a certain global search capability for the algorithm through the
mutation of the habitat’s own information.

mi = mmax(1−
ps

pmax
). (28)

In Equation (28), mmax is the maximum mutation rate, ps is the probability that habitat i has s
species, and pmax = max(ps).

The steps of optimizing wireless sensor network routing protocol based on the BBO algorithm
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are as follows. Lines 3–7 select CH with complexity O(n2). Lines 9–31 reach the minimum fitness
value with complexity O(qn2) where q is the number of iterations. Lines 10–20 calculate the migration
rate with complexity O(n2). Lines 21–28 calculate the mutation rate with complexity O(n) and lines
32–35 calculate with complexity O(m2) where m2 is the number of nodes (m2 ≥ n). The computational
complexity of Algorithms 2 is O(qn2) per round approximately.

Algorithm 2 Biogeography-Based Optimization (BBO)-based routing protocol process.

Input: node coordinates, energy model
Output: residual energy per round, number of dead nodes, number of surviving nodes
1: Initialize parameters: number of habitats n, maximum emigration rate E, maximum immigration rate I,

probability of species number for each habitat ps, maximum number of species pmax,
maximum number of rounds roundmax

2: for l = 1: roundmax do
3: for j = 1: n do
4: Select CH according to Equation (19)
5: Initialize population randomly
6: Calculate the fitness value of habitat j according to Equation (25)
7: end
8: Keep habitat with the smallest fitness values as elite habitat
9: while habitat does not reach minimum fitness value do
10: for k = 1: n do
11: Calculate the migration rate λk according to Equation (26)
12: If λk is greater than a uniformly distributed pseudo random number in [0,1] then
13: for t = 1: n do
14: Calculate the migration rate µt according to Equation (27)
15: If µt is greater than a uniformly distributed pseudo random number in [0,1] then
16: The roulette selection method is used to select the population to move out of the habitat t

and move into the habitat k
17: end
18: end
19: end
20: end
21: for i = 1: n do
22: If Habitat i is not an elite habitat then
23: Calculate the mutation rate mi according to Equation (28)
24: If mi is greater than a uniformly distributed pseudo random number in [0,1] then
25: Select population mutations in habitat i randomly
26: end
27: end
28: end
29: Calculate fitness value
30: Replace the worst habitats with elite habitats
31: end
32: Calculate the shortest distance from ordinary nodes to CH
33: Calculate the energy consumed by ordinary nodes to CH to transmit and receive data packets
34: Calculate the energy consumed by CH to sink nodes to transmit and receive data packets
35: Calculate the remaining energy, dead nodes, and surviving nodes of the sensor network
36: If All network nodes are dead then
37: return
38: end
39: end
40: return

4. Experimental Verification

4.1. Parameter Settings

One of the application backgrounds of this research is for forest and grassland fire risk monitoring
and early warning. The precision and accuracy of forest and grassland fire risk monitoring depend
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on the multi-source and space-time data which are collected under the high-resolution sensor layout.
How to deploy as few sensors as possible to monitor a large area of forests and grasslands and how
to measure such multi-source parameters related to fire risk warning as atmospheric temperature,
light, soil temperature and humidity, wind speed and rainfall are the application problems that need
to be solved. To meet the application requirements, this paper takes the distance between and among
the wireless sensor nodes into consideration. The service time and life of the whole network are
extended to the maximum extent under such constraints as communication energy consumption
and node distances. In order to verify the comprehensive performance of the algorithm proposed
in this paper, we conducted simulation experiments and comparisons among the four algorithms,
i.e., the greedy algorithm, the pSPIEL algorithm, the ant colony algorithm, and the improved heuristic
ant colony algorithm. The BBO-based routing protocol is used for data transmission. In this paper,
the forest environment monitoring area is separated into |V| = N = 86 locations, and a subset is
selected to deploy sensors. The experimental parameter settings are shown in Table 1. We explain the
experimental parameter settings as follows.

In Algorithm 1, α is a parameter in Equation (14). If α is large, it would make the ant search
according to the pheromone and fall into the local minimum easily, whereas if α is small and its value
is 0.1, it would increase the randomness of the search. For the same reason, β in Equation (14), ξ in
Equation (11), and ρ in Equation (12) are all 0.1. w is the weight parameter of the heuristic function
in Equation (10). To achieve equilibrium of the distance effects from node j to node i and from node
j to head of adjacent cluster on the heuristic function, w takes the value of 0.5. Q is a parameter in
Equation (13) and its value is 1 in order to strengthen the positive feedback mechanism of the algorithm.
τ0 is a parameter in Equation (11) and it takes a small value of 0.0003 to increase the probability for
ant to choose an optimal path. ε is a parameter in Equation (11), which takes constant value 1. nmax is
greater than N.

In Algorithm 2, ps is a parameter in Equation (28). The smaller the ps value is, the more it is prone
to mutation. Hence the ps value is 0.1. pmax is a parameter in Equation (28). It is the maximum value
of ps and it takes a value of 1. I is a parameter in Equation (26) and E is a parameter in Equation (27).
In order to make both the immigration rate and the emigration rate take value at [0,1], both I and
E take value 1. E0, Eelec, Emp and E f s take the commonly used default values. The value roundmax

depends on the lifetime of all nodes of the network.

Table 1. Parameter settings.

Parameter Description Value

N Total of location number for possibly-deployed sensors 86
α Path weight 0.1
β Heuristic information weight 0.1
ξ Local pheromone evaporation coefficient 0.1
ρ Global information system evaporation coefficient 0.1
w Weight 0.5
Q Pheromone quality coefficient 1
τ0 Pheromone under initial conditions 0.0003
ε Constant 1
ps Probability that habitat i has species s 0.1

pmax Maximum of ps 1
I Maximum immigration rate 1
E Maximum emigration rate 1
E0 Sensor node’s initial energy 0.5 J

Eelec Energy consumption per bit for transmitting data 50 nJ/bit
Emp Energy consumption of multipath model transmitter 0.013 pJ/bit/m4

E f s Energy consumption of free space model transmitter 10 pJ/bit/m2

roundmax Maximum round number 2500
nmax Maximum iteration number 100
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4.2. Results and Analyses

(1) Comparison of communication cost and the number of sensors

Table 2 is a set of experimental data of the simulation. Tables 2 and 3 compare the greedy algorithm,
the pSPIEL algorithm, and the IHACA algorithm, respectively. The algorithm proposed in this paper
not only meets the same deployment requirements but also achieves the best results, that is, the lowest
communication cost and the number of sensors. With the same amount of mutual information
and compared with the greedy algorithm, the pSPIEL algorithm, and the IHACA algorithm,
the communication cost of the IHACA-COpSPIEL algorithm is also the lowest. When mutual
information is 0.16, sensor deployment has a high-cost performance, and the communication cost of the
IHACA-COpSPIEL algorithm is 38.42% lower than that of the greedy algorithm, 24.19% lower than that
of the pSPIEL algorithm, and 8.31% lower than that of the IHACA algorithm. The sensor deployments
of the four algorithms are shown in Figure 1, where the blue dots indicate the possibly-deployed points
and the red squares indicate the selected points for deployment.

The r value of the pSPIEL algorithm is randomly selected and the number of clusters is also
random. Thus the number of clusters affects the selection of nodes and it is difficult to obtain the
optimal number of clusters. Therefore the communication cost is high. The IHACA-COpSPIEL
algorithm adds a chaotic operator, which can traverse the local parameter r value to obtain the number
of clusters under different r values. The deployed nodes are selected within the optimal number of
clusters. The heuristic function concerns the distance between the next node and the adjacent cluster
head to minimize the communication distance between sensors. The first node of the solution set of
the COpSPIEL algorithm is used as the first node of the IHACA. The node with maximum mutual
information is selected as the deployment point. This can reduce the number of sensors and reduce
the total communication cost, so it has better performance than any other algorithm.

The objective function of sensor deployment is submodular. When mutual information was 0.14
and the number of sensors was small, or when mutual information was 0.20 and the number of sensors
was large, a sensor is added each time and the communication cost was the lowest compared with
the greedy algorithm, the pSPIEL algorithm, and the IHACA algorithm. The more the amount of
mutual information increases as the number of sensors increases, the better the sensor deployment
effect. When the number of sensors is small, the increment of submodular benefit is large by adding a
new sensor each time. As the number of sensors increases, the increment of submodular benefit starts
to decrease whenever a new sensor is added.

Table 2. Comparison of communication cost for the four algorithms.

Mutual Information
Communication Cost

Greedy pSPIEL IHACA IHACA-COpSPIEL

0.14 49.22 36.01 39.7 35.42
0.15 59.47 50.4 45.16 40.06
0.16 71.83 58.34 48.24 44.23
0.17 74.31 62.44 60.36 53.26
0.18 78.48 70.43 67.75 64.11
0.19 80.82 78.28 78.41 75.22
0.20 98.57 95.21 97.76 89.05
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Table 3. Comparison of sensor number for the four algorithms.

Mutual Information
Sensor Number

Greedy pSPLIE IHACA IHACA-COpSPIEL

0.14 5 6 7 6
0.15 6 8 8 7
0.16 7 10 10 8
0.17 10 13 12 10
0.18 12 14 13 12
0.19 17 25 25 20
0.20 25 30 30 28

Figure 1. Sensor deployments of the four algorithms.

Figure 2 shows that under the mutual information of 0.14–0.20, the ratio of the IHACA-COpSPIEL
algorithm is higher than that of the greedy algorithm, the pSPIEL algorithm, and the IHACA algorithm.
Therefore, IHACA-CpSPIEL achieves the best cost-benefit ratio.

Figure 2. Cost performance and mutual information of the four algorithms.
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(2) Comparison of the lifecycle and average energy

The life cycle refers to the time from which the wireless sensor starts to work until the death of
the first node. Figure 3 shows the comparison results of the life cycle of the sensor nodes selected
by the routing protocol based on the BBO algorithm for the greedy algorithm, the pSPIEL algorithm,
the IHACA algorithm, and the IHACA-COpSPIEL algorithm proposed in this paper. It shows from
Figure 3 that the first dead node under the greedy algorithm appears in round 1368, the first dead node
in the pSPIEL algorithm appears in round 1430, the first dead node in the IHACA algorithm appears in
round 1272, and the first dead node of the IHACA-COpSPIEL algorithm proposed in this paper appears
in round 1681, which indicates that the wireless sensors deployed in the IHACA-COpSPIEL algorithm
have a longer life cycle. The reason for this is that the communication distance of the wireless sensors
deployed by the IHACA-COpSPIEL algorithm is the shortest, which reduces the energy consumption
of transmission. Figure 4 shows a comparison of the remaining energy percentages of data transmission
after the sensors are deployed in each of the four algorithms. The IHACA-COpSPIEL algorithm has a
higher percentage of remaining energy per round than the greedy, pSPIEL, and IHACA algorithms.
Therefore, the overall energy consumption of the proposed algorithm is lower than any of the other
three algorithms.

Figure 3. Comparison of the percentage of dead nodes in the four algorithms.

Figure 4. Percentage of remaining energy in the four algorithms.

As the number of simulation rounds increases, Figures 5 and 6 show both the deaths of nodes by
using the LEACH routing protocol and the BBO routing protocol, respectively, and the network energy
consumption results by using the LEACH routing protocol and the BBO routing protocol, respectively,
to deploy sensors in the IHACA-COpSPIEL algorithm. As is seen from Figure 5, under the LEACH
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protocol, the first node died in round 1435 and the last node died in round 1584, and under the BBO
routing protocol, the first node died in round 1659 and all nodes died in round 2071. The network
survival time is longer than the former. As is seen from Figure 6 that the remaining energy under
the routing protocol based on the BBO algorithm has always been more than that under the LEACH
protocol. This is because the routing protocol based on the BBO algorithm fully takes the cluster into
account. The distance between the nodes and the cluster heads, the distance between the cluster heads
and the cluster heads, and the total energy consumption effectively balances the network load. Hence
the life of the entire wireless sensor network is significantly extended.

Figure 5. Comparison of dead nodes under two protocols.

Figure 6. Comparison of residual energy under two protocols.

5. Conclusions

In order to reduce costs and save energy, this paper proposes a large-scale sensor deployment
method called the IHACA-COpSPIEL algorithm and a routing protocol based on the BBO algorithm.
Mutual information is introduced to describe the correlation between observed points and unobserved
points, a mathematical model with submodularity is established, and the edges of graph theory are
used to represent communication costs. The pSPIEL algorithm with enhanced optimization ability by a
chaos operator and the ant colony algorithm with improved heuristic function and pheromone update
mechanism are used to find the optimal path. What has been studied can further solve the sensor
deployment problem under the constraint of communication cost. Finally, the BBO algorithm-based
routing protocol transmits data to the deployed sensors. The computational complexity of the
IHACA-COpSPIEL is O(kN2), and the computational complexity of the routing protocol based on the
BBO algorithm is O(qn2). The experiments show that the deployment algorithm proposed in this paper
has better sensor deployment capabilities. This deployment algorithm reduces the communication
cost by 38.42% compared with the greedy algorithm. It also reduces the number of sensors and has a
longer life cycle. Compared with the LEACH protocol, the BBO algorithm-based routing protocol has
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lower energy consumption and longer network life.
In the future, we intend to use a discrete event simulator (DES) such as NS-3 to further combine

practical application scenarios to improve the effectiveness of the algorithm. Our vision for future
work is as follows.

We will complete the IHACA-COpSPIEL protocol design in the NS-3. We will refer to the RFC
document of Multi-Protocol Label Switching protocol, and elaborate on the design and implementation
of each basic component of IHACA-COpSPIEL, including the forwarding equivalence class (FEC), next
hop label forwarding entry (NHLFE), FEC to NHLFE mapping (FTN), etc. By statically configuring the
label forwarding table, the communication between private networks through the backbone network
by IHACA-COpSPIEL forwarding will be realized.
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The following abbreviations are used in this manuscript:

BBO Biogeography-Based Optimization
IHACA Improved Heuristic Ant Colony Algorithm
pSPIEL padded Sensor Placements at Informative and cost-Effective Locations
IHACA-COpSPIEL Improved Heuristic Ant Colony Algorithm-Chaos Optimization of padded Sensor

Placements at Informative and cost-Effective Locations
SIVs Suitable Index Variables
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