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Host genetic variants can determine their susceptibility to COVID-19 infection and severity
as noted in a recent Genome-wide Association Study (GWAS). Given the prominent
genetic differences in Indian sub-populations as well as differential prevalence of COVID-
19, here, we compute genetic risk scores in diverse Indian sub-populations that may
predict differences in the severity of COVID-19 outcomes. We utilized the top 100 most
significantly associated single-nucleotide polymorphisms (SNPs) from a GWAS by Pairo-
Castineira et al. determining the genetic susceptibility to severe COVID-19 infection, to
compute population-wise polygenic risk scores (PRS) for populations represented in the
Indian Genome Variation Consortium (IGVC) database. Using a generalized linear model
accounting for confounding variables, we found that median PRS was significantly
associated (p < 2 x 10−16) with COVID-19 mortality in each district corresponding to
the population studied and had the largest effect on mortality (regression coefficient �
10.25). As a control we repeated our analysis on randomly selected 100 non-associated
SNPs several times and did not find significant association. Therefore, we conclude that
genetic susceptibility may play a major role in determining the differences in COVID-19
outcomes and mortality across the Indian sub-continent. We suggest that combining PRS
with other observed risk-factors in a Bayesian framework may provide a better prediction
model for ascertaining high COVID-19 risk groups and to design more effective public
health resource allocation and vaccine distribution schemes.
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INTRODUCTION

Susceptibility to immune reaction-mediated diseases and viral infections are both observed to be
heritable traits, and are associated with specific genetic variants (Kenney et al., 2017; Ellinghaus et al.,
2020; Shelton et al., 2020; Kwok et al., 2021; Pairo-Castineira et al., 2021). The GWAS by Pairo-
Castineira et al. in critically ill COVID-19 patients from a UK cohort identified strong genetic signals,
related to antiviral defence mechanisms and inflammatory organ damage, that are potentially
associated with COVID-19 severity. Among the top eight robust associations identified in the GWAS
(Pairo-Castineira et al., 2021), two SNPs, namely, rs10735079 and rs2109069 are also present in the
Indian Genome Variation Consortium (IGVC). The IGVC was a large-scale comprehensive study of
the Indian sub-populations that was conducted to shed light on the genetic diversity among
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geographically and ethnically diverse Indian sub-populations.
This study had identified a high degree of genetic distinctness,
with respect to SNPs, in different Indian sub-populations (Indian
Genome Variation Consortium, 2005; Indian Genome Variation
Consortium, 2008). With the increasing number of COVID-19
cases and the evolving variants of SARS-CoV2 in India, a
populous and a genetically diverse country, prioritizing
vulnerable populations for COVID-19 vaccination is critical,
given the limited production of vaccines and identification of
genetic risk estimates associated with COVID-19 susceptibility
can be beneficial in identifying susceptible population(s).

Genome-wide association studies have identified the genetic
underpinnings of several diseases, and these variants together
weighted by their effect sizes yield estimates for polygenic risk
score (PRS). PRS provides an estimate of the genetic propensity of
an individual to develop a disease and/or a trait (Chatterjee et al., 2016;
Lewis and Vassos, 2020). Transethnic replication of GWAS effect sizes
has been employed previously, however, it is challenging and might
not lead to accurate predictionswhen applied to non-discoveryGWAS
populations, owing to biological differences, such as different patterns
of linkage disequilibrium (LD), allele frequencies, and gene-
environment interactions, in different populations (Novembre and
Barton, 2018) and/or technical differences. For example, there will be
no transethnic replication if there is significant difference in the LD
structure across different ethnic populations (Martin et al., 2017).
However, it has been shown that using training data sets that include
samples from the discovery population in which the GWAS was
conducted (confers the advantage of large sample size in theGWAS) as
well as samples from the target population in which the PRS is aimed
to be calculated (advantage of being the same ancestry), improves the
prediction accuracy of the PRS (Li and Keating, 2014; Márquez-Luna
et al., 2017). Hence using the causal variants identified in a discovery
GWAS that overlap with the target population and not the SNPs in
LD, and those with a conserved LD pattern across the discovery and
target populations (Piffer, 2021), would improve the accuracy of PRS
calculated in the target population using the effect sizes of
corresponding SNPs from the discovery GWAS (Wang et al.,
2020). Earlier studies also report association of observable traits
with polygenic scores (Piffer, 2013; Piffer, 2015; Piffer, 2019).

Here, with prior information from the data of stratified Indian
sub-populations, we calculated the PRSs with an aim to explore
and identify Indian sub-populations that could be at a higher risk
for COVID-19-mediated mortality. Considering the challenges
associated with the transferability of the effect sizes, we also
analyzed the differences in the patterns of LD, and used the SNPs
with similar LD patterns in the discovery population and Indian
population to ensure good prediction accuracy of the PRS. Based
on these PRSs, we evaluated the population-wise susceptibility
that can be of potential utility in more effective vaccine
distribution schemes among Indian sub-populations.

MATERIALS AND METHODS

Study Populations and Datasets
Summary statistics for genetic variants was obtained from a
GWAS in 2,244 critically ill patients from 208 intensive care

units, a majority of them of European Ancestry (∼75%), ∼11% of
South Asian, 8% African and 7% of East Asian ancestries (Pairo-
Castineira et al., 2021). The study had identified genetic signals
related to host antiviral defense pathways and those mediating
inflammatory organ damage in critical COVID-19 patients using
Mendelian randomization, GWAS and transcriptome-wide
association studies. DNA samples were genotyped using
Illumina Global Screening Array v.3.0 + multi-disease bead
chips (GSAMD-24v3-0-EA) and Infinium chemistry (Pairo-
Castineira et al., 2021). Further, genotype data of 390 samples
across 25 populations from the IGVC (Phase 3) were used for
analyzing the Indian sub-populations. Briefly, they represent
diverse ethno-linguistic and geographical regions of India, and
house information about genome-wide SNPs across Indian
populations. The data span four major linguistic lineages -
Indo-European (IE), Dravidian (DR), Austro-Asiatic (AA),
and Tibeto Burman (TB) from different geographic locations
(north, south, east, west, and central) from contrasting ethnic
backgrounds and ethnicity sub-categorized as caste groups (LP),
religious groups (SP), and tribal isolated populations (IP)
(Supplementary Table S1; Indian Genome Variation
Consortium, 2005; Indian Genome Variation Consortium,
2008). Clusters of representative populations were identified
through extensive analysis of a larger sample set of more than
2000 samples from 55 populations. Samples collected from these
groups were genotyped on an OMNI array, Illumina Inc.
(unpublished data) as a representation of Indian genomic
diversity. The 25 populations of the IGVC used for this study
map to 22 districts in India, for which COVID-19 mortality data
was collected from official sites and publicly available repositories
including https://www.covid19india.org/, https://covid19.Assam.
gov.in/district/,https://api.covid19india.org/ (Supplementary
Table S1).

Polygenic Risk Score Calculation and
Population Susceptibility
The GWAS we use for our analysis identified numerous
independent genome-wide significant SNPs for different ancestral
populations, 75% of which were of European ancestry. These SNPs
were overlapped with the IGVC data to identify common variants
which were then sorted, filtered and selected on the basis of GWAS
p-values (below the genome-wide threshold p < 10−06). The top 100
such SNPs from the study represented in the IGVC data were
analysed for and ascertained to have similar LD patterns (for
applicability of effect sizes from non-SAS ancestry) across the
Indian sub-populations and the GWAS discovery population and
were used for polygenic score analysis. The effect sizes of 30 SNPs
were derived from Europeans, 40 from South Asian, 21 from East-
Asian and seven fromAfrican ancestries. PRS of each individual was
calculated using PLINKv1.9 (Purcell et al., 2007), and PRS for a
population was calculated by taking the median PRS of all the
individuals in that population. Populationwise statistical significance
was calculated using one-way ANOVA. The distribution of the PRS
in the individuals across different IGVC populations was plotted
using an R script as follows: For the spatial map showing PRS
distribution (Figure 1B) we used an IDW algorithm and a tutorial

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7141852

Prakrithi et al. Genetics of Critical COVID-19 in India

https://www.zotero.org/google-docs/?5MwnZG
https://www.zotero.org/google-docs/?5MwnZG
https://www.zotero.org/google-docs/?2m2rat
https://www.zotero.org/google-docs/?2m2rat
https://www.covid19india.org/
https://covid19.Assam.gov.in/district/
https://covid19.Assam.gov.in/district/
https://api.covid19india.org/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


from https://mgimond.github.io/Spatial/interpolation-in-r.html,
licensed under a Creative Commons Attribution-NonCommercial
4.0 International License was referred to. The PRS for each district
calculated, was multiplied with the corresponding population to
calculate the potentially susceptible population. The districts/regions
at a higher risk for the trait studied were also identified.

Addressing Linkage Disequilibrium
While applying effect sizes derived from one ancestral population
to another to calculate PRS, the accuracy is better when SNPs with
similar LD patterns or allele frequencies between the discovery
(majority of Europeans) and target (Indian) populations are used.
Directly comparing LD patterns between Europeans (CEU) and
IGVC populations was not possible because of the smaller
number of SNPs represented in the OMNI array of the IGVC.
So we first overlapped the GWAS results with the IGVC SNP
data, from which the top 100 significant SNPs (sorted by p-value)
were selected and verified for LD conservation. The genetic
closeness of individuals of the IGVC to the SAS populations
of the 1,000 Genomes has been shown in a recent study (Narang
et al., 2020). Another study (Sengupta et al., 2016) has also
displayed similar inferences with four distinct Indian ancestral
categories - Ancestral North Indian, Ancestral South Indian,
Austro-Asiatic and Tibeto Burman as represented by IE, DR,
AA, and TB in the IGVC. Hence, one of the South Asian
populations from the 1,000 Genomes was used to represent
the Indian population (IGVC) for LD analysis, since the array
data does not cover enough SNPs to compare with other global
populations. The CEU (Utah residents (CEPH) with Northern
andWestern European ancestry), CHB (Han Chinese in Beijing -
representative of East Asian ancestry), YRI (Yoruba in Ibadan,
Nigeria—representative of African ancestry) and ITU (Indian
Telugu from the UK - representative of the Indian ancestry)
populations from the 1,000 Genomes project (Phase 3 release)
were utilized to compare the patterns of LD (ftp://ftp-trace.ncbi.
nih.gov/1000genomes/ftp/release/20130502/).

The LD pattern 5 MB around the top 100 most significantly
associated SNPs were compared between each of these non-
Indian ancestral populations with ITU using the varLD (v1.0)
tool–a tool to compare the extent of LD differentiation at loci
between pairwise populations, to assess LD structure across the
discovery GWAS population and the target Indian population.
(Ong and Teo, 2010). The minor allele frequencies for some of
these SNPs were checked for ITU versus the other representative
populations (CEU, YRI and CHB) from the Ensembl Genome
browser (Howe et al., 2021) and with wANNOVAR (Chang and
Wang, 2012). Many of them had similar frequencies across the
populations. However, we did not necessarily apply the similar
allele frequency criterion for the SNP selection, since LD
conservation was seen for all the 100 SNPs. (Results section
and Supplementary Figure S1).

Modelling COVID-19 Mortality
The district level COVID-19 information till 2nd September,
2021 for those mapping to the 25 populations studied were
collected from the publicly available sources as specified in the
‘Study populations and datasets’ section. A generalized linear

model (GLM) was fit for deaths per million population of each
district due to COVID-19 and PRS of the corresponding district.
To account for potential confounders, we added percentage of
population above 45 years of age, and sex ratio (number of
females for every 1,000 males) to the GLM. Poisson
distribution was used with the respective population of each
district as an offset to control for overdispersion. The data were
collected from the census records of India (https://censusindia.
gov.in). A similar model was constructed for the data with the
IENLP1 population removed as this was seen as an outlier due to
a very high value for deaths/million. The pseudo R2 values were
calculated as (model$null.deviance-model$deviance)/
model$null.deviance (Windmeijer and Cameron, 1996). The
results were then compared with the model fit earlier.

We further investigated whether the PRSs calculated from
effect sizes of non-risk SNPs could have any effect on COVID-19
mediated mortality. For this, we selected 1,000 sets of 100 random
SNPs that were not significantly associated with the trait from the
same GWAS, and the GLM analyses were performed on each of
the 1,000 datasets.

RESULTS

The polygenic predictors used in the present study were derived
from Pairo-Castineira et al. (Pairo-Castineira et al., 2021), and
applied on 25 geographically and ethnically diverse sub-
populations of the Indian sub-continent (Indian Genome
Variation Consortium, 2005; Indian Genome Variation
Consortium, 2008). VarLD analysis indicated that almost all
the 100 SNPs lie below the threshold (Supplementary Figure
S1), suggesting that the LD structure was maintained between the
discovery GWAS and target Indian populations. As shown in
Figures 1A,B; Supplementary Table S1, we found a varying
distribution of PRS in different sub-populations of India (one-
way ANOVA, F (24, 365) � 3.072, p � 2.95✕ 10−06). Based on the
PRS for each district, the susceptible population, i.e., the number
of individuals in a population at risk for developing severe illness
when infected with SARS-CoV-2 was also evaluated
(Supplementary Table S1).

To determine the relationship between these PRSs and
COVID-19 mortality, generalized linear regression analysis
was performed. The GLMs suggested that PRS has the
strongest significant effect (p < 2 x 10−16) on mortality
while the potential confounders considered had significant
(p < 2 x 10−16) but negligible effects. The same trend was
observed on removing an outlier population, IENLP1 and the
coefficient estimate for PRS had improved two-fold and the fit
improved (pseudo R2 � 0.46) (Table 1). Based on the
coefficient estimates (regression coefficient � 10.25), the
average deaths per million population of the district would
significantly increase by 10.25 units with increase in PRS by
1 unit. The coefficients of age and population density are
negligible (effect of population density is not significant for
the GLM that included all data points). Sex ratio (number of
females for every 1,000 males) has a significant but negligible
negative effect. (Figure 2; Table 1).
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FIGURE 1 | Distribution of polygenic risk scores across Indian sub-populations. (A) The boxplot shows a polygenic risk score distribution across 25 Indian sub-
populations from the IGVC divided on the basis of linguistic and geographical regions (IP, tribal populations; LP, caste; and SP, religious groups). (B)Spatial distribution of
PRSs calculated for IGVC populations spanning different districts of India.

TABLE 1 | Results of the GLMs constructed.

Predictor variables All data (deaths/million ∼ predictor variables) Pseudo
R2 = 0.07

1 outlier IENLP1 (deaths/million = 4200) removed
(deaths/million ∼ predictor variables) Pseudo R2 = 0.46

Estimate Std.Error Z value Pr (>|z|) Estimate Std.Error Z value Pr (>|z|)

(Intercept) −7.130 0.195 −36.512 <2 x 10−16 −3.340 0.196 −17.020 <2 x 10−16

PRS 5.050 0.290 17.410 <2 x 10−16 10.250 0.403 25.480 <2 x 10−16

Population above 45 years of age (%) 0.200 0.004 53.761 <2 x 10−16 0.190 0.004 48.540 <2 x 10−16

Population density (/km2) 0.000 0.000 −1.366 0.172 0.000 0.000 36.310 <2 x 10−16

Sex ratio −0.010 0.000 −34.941 <2 x 10−16 −0.020 0.000 −100.470 <2 x 10−16
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No significant association of PRS derived from non-risk SNPs
with the COVID-19 mortality was observed in the GLMs as
shown in Supplementary Figure S2. Our results indicate a
significant association of PRS with the number of COVID-19-
related deaths, and thereby can provide support for population
specific prioritization in COVID-19 vaccination program. For
example, the IEWLP1 population, displays higher PRS as well as
high covid-19 mediated mortality. This population maps to
Raigad district in Maharashtra which has a high population
density (369.13/ km2) and the other closely located districts
within Maharashtra have also been severely affected that could
have promoted higher viral spread, and given the high PRS, they
may present higher susceptibility to COVID-19 infection and
associated inflammatory responses.

DISCUSSION

Previous observation of genetic differences in the individuals
from different regions of India, and the strong association
between genetic variants and COVID-19 illness led us to
evaluate the genetics risk for SARS-CoV-2 mediated illness in
Indian sub-populations. In this report, we have calculated the
PRSs of SNPs in different Indian sub-populations, followed by a
regression analysis with COVID-19 related mortality in different
districts of India. Our results indicate a significant association
between the number of COVID-19-related deaths with the PRS,
and thereby can provide support for population specific
prioritization in COVID-19 vaccination program.

In a recent GWAS, these SNPs have been robustly associated
with critical illness in patients with COVID-19 (Pairo-
Castineira et al., 2021). It has also been noted that the
individuals belonging to different linguistic lineages in
different geographic locations of India exhibit genetic
distinctness (Indian Genome Variation Consortium, 2005;
Indian Genome Variation Consortium, 2008). Here, our

results indicate that these subtle genetic differences can affect
their susceptibility to COVID-19 mediated inflammatory organ
damage. Our study adds to the existing literature of association
between genetics and COVID-19 severity. This vast genetic
differentiation among the ethno-linguistic groups suggested
that considering the ∼1.4 billion people in India as “Indians”,
as one single genetically homogenous group would lead to false
positives in association studies and would require taking into
account the genetic heterogeneity of the Indians. Given the lack
of such studies in Indian populations, our report forms a strong
foundation for future studies, and could aid in identifying the
“at-risk” populations, in making drug and dosage interventions,
and predisposition maps for Indian sub-populations as was
aimed by the IGVC (Indian Genome Variation Consortium,
2005; Indian Genome Variation Consortium, 2008). Our results
present an indication of individuals in Indian sub-populations
that are at a high risk of developing critical illness due to
COVID-19. Since here we are using the associations derived
from a majority European individuals and a few South Asian,
East Asian and African individuals to study the risk in the
Indian populations, the effect sizes from the GWAS would be
ideal to use if the LD pattern around the SNPs used are
conserved between the populations. In line, we found
conservation of LD structure across populations, and this
observation further strengthens our results. These genetic
risk scores can, in turn, be employed as a basis of further
management of COVID-19 and in the COVID-19
vaccination disbursal scheme. Also, a similar trend was
observed in the number of cases over several months in the
populations, suggesting that there could be a genetic basis for
this trend (Supplementary Figure S3). In the current study, we
have also modelled the effect of potential confounders such as
population density, age and gender that could also affect the
COVID-19 spread and mortality. However, the confounders
had only negligible effects in our GLM, reflecting an association
between PRS and mortality.

FIGURE 2 | Coefficient estimates of the predictor variables for COVID-19 mediated mortality from the GLM models. PRS has the strongest effect on mortality.
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There are certain limitations of the present study. The GWAS
was not directly conducted in the individuals of the Indian sub-
populations, and the PRSs were based on effect sizes from
different ancestral groups with COVID-19 infection. The
mortality may also be affected by comorbidities like diabetes,
hypertension, cardiovascular diseases (Guo et al., 2020; Yang
et al., 2020; McGurnaghan et al., 2021), environmental risk
factors and socio-economic factors like multidimensional
poverty index (MPI) that can act as confounders. Availability
of such information can allow the study of their effects in such
models. Since data for age and sex of the affected patients were
not available, we employed census data. However, using patient-
specific information to model for confounders would have
yielded more accurate results. The prediction accuracy can be
improved by using sequencing data and since IGVC is array data,
some of the top causal variants were not represented which could
possibly affect the PRS predictions. A larger sample size could
also provide better accuracy, since IGVC captured only a few
individuals of each ancestral group.

CONCLUSION

In this study, we provide a methodological framework for
predicting Indian sub-populations that could be at a higher
risk for developing COVID-19 mediated critical illness but not
any clinical evidence. These scores in conjunction with the
commonly noted comorbidities could provide a good
prediction in ascertaining high COVID-19 risk groups. Such
accurate identification of vulnerable populations is crucial for
the development of effective prevention and vaccination
strategies. Such strategies applied to populations with defined
genetic histories such as in the Indian subcontinent can be easily
extended to model population level susceptibility to several other
important diseases that strain the public health system in India,
and provide a necessary use case justifying national scale projects
such as GenomeIndia.
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