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Abstract: The inner parts of the human body are usually inspected endoscopically using special
equipment. For instance, each part of the female reproductive system can be examined endoscopi-
cally (laparoscopy, hysteroscopy, and colposcopy). The primary purpose of colposcopy is the early
detection of malignant lesions of the cervix. Cervical cancer (CC) is one of the most common can-
cers in women worldwide, especially in middle- and low-income countries. Therefore, there is a
growing demand for approaches that aim to detect precancerous lesions, ideally without quality
loss. Despite its high efficiency, this method has some disadvantages, including subjectivity and
pronounced dependence on the operator’s experience. The objective of the current work is to propose
an alternative to overcoming these limitations by utilizing the neural network approach. The classifier
is trained to recognize and classify lesions. The classifier has a high recognition accuracy and a
low computational complexity. The classification accuracies for the classes normal, LSIL, HSIL, and
suspicious for invasion were 95.46%, 79.78%, 94.16%, and 97.09%, respectively. We argue that the
proposed architecture is simpler than those discussed in other articles due to the use of the global
averaging level of the pool. Therefore, the classifier can be implemented on low-power computing
platforms at a reasonable cost.

Keywords: convolutional neural networks; colposcopy; pathologies; suspicious for invasion; cervical
cancer

1. Introduction

This work is devoted to the classification of cervical lesions using colposcopic images.
Cervical cancer is prevalent nowadays, especially in middle- and low-income countries.

In 2020, more than half a million CC cases were registered worldwide, with 342,000
attributed deaths [1]. At the same time, CC has excellent potential for prevention on
different levels, from the individual patient to the national and global levels. This is
primarily due to the particular factors outlined below. First, a direct etiological factor
is known—the human papillomavirus (HPV) oncogenic strains are responsible for the
most neoplasms [2]. Second, there are currently vaccine prevention methods that have
demonstrated their effectiveness [3]. Third, a number of countries have already embraced
the benefits of preventive assessment measures to detect cervical lesions [4]. Among the
latter, an important role goes to a visual assessment method of the cervical surface with
the primary goal of excluding malignancy. Implementing this set of measures led several
countries to dramatically reducing their incidence and mortality from CC.

At the same time, the situation with CC in Russia, unfortunately, is still far from being
resolved. In 2018, more than 18,000 CC cases were registered in Russia, and more than
7500 women died from CC [1]. The HPV vaccine is still not included in the national list.
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The coverage of the female population with preventive examinations, including colposcopy,
is recognized as insufficient [5], partly due to a lack of awareness but also primarily due to
the geographical features of the country. There are many remote areas in Russia where there
are no qualified specialists capable of performing and correctly interpreting colposcopic
examination results.

CC might be considered the tail-end of the continuum, which covers the changes
in cervical epithelium happening under the influence of HPV. The interim steps include
so-called cervical intraepithelial neoplasia (CIN) of different grades. CIN may be low-grade
and high-grade, with the latter having a higher potential of progressing into CC. The period
under which CIN develops into CC most probably extend over several years [6]. As a
representation of this fact, most high-grade lesions appear in women aged 25–35, while
invasive cancer usually occurs after the age of 40 [7,8].

HPV infection is the most important independent risk factor for developing cervical
precancerous lesions and, ultimately, CC. After acquiring HPV, two features play a signifi-
cant role: HPV type and persistence period within the cervical epithelium. Of more than a
hundred HPV types, 14 are named high-risk since they are responsible for the vast majority
of advanced cervical lesions [9,10]. In most cases, HPV infection is transient, and clearance
of HPV predicts CIN regression [11]. Up to 90% of new HPV infections clear out within
five years [12,13]. The longer HPV stays within the cervical epithelium, the higher the risk
of developing malignancy, although the factors responsible for the duration of stay are
still unclear [14].

A specific part of the uterine cervix is the most susceptible to acquiring HPV infection
and furthering develop dysplasia and CC. It is called the transformation zone and covers the
metaplastic area, where the glandular epithelium has been replaced by the squamous. Since
both de novo HPV infection and low-grade cervical lesions are often asymptomatic, specific
measures must be taken to diagnose lesions before their progression to the advanced stage.
In most cases, they include primary cytology screening, HPV testing, and visual assessment
of the cervix during colposcopy.

The primary purpose of colposcopy is the early detection of malignant lesions of
the cervix. The ultimate effectiveness of colposcopy largely depends on the operator’s
experience. The interobserver variation seems to increase while inspecting the CIN1 [15].
The colposcopic examination using IFCPC criteria (2011) differentiated a healthy cervix
from CIN/cancer with a specificity of 30% and a sensitivity of 86%. While distinguishing the
normal cervix/CIN1 from CIN 2-3/cancer, they resulted in 94% and 61%, respectively [16].
The method’s sensitivity could be potentially increased by performing punch biopsies from
multiple sites [17,18]. However, this comes with the price of increasing the invasiveness of
the procedure.

Visual assessment of the state of organs was essential in managing patients with
various conditions. The inner parts of the human body are usually inspected endoscopically
using special equipment. For instance, each part of the female reproductive system can be
examined endoscopically (laparoscopy, hysteroscopy, and colposcopy). Despite its high
efficiency, this method has some disadvantages, including subjectivity and pronounced
dependence on the operator’s experience.

During colposcopy, the surface of the cervix is examined with a magnifying device,
which facilitates noticing the minor changes that may indicate a disease. Additional
information is obtained by applying solutions of acetic acid and iodine. Based on specific
patterns, the clinician concludes the need for further examination or treatment, for instance,
cervical biopsy.

The main objective of this work is to develop a machine learning algorithm aimed at
classifying cervical lesions. The algorithm should preferably overcome the limitations of
the convenient approach, including its subjectivity, dependence on the operator experience,
and demand on resources.
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2. Related Work

There is a growing number of studies dedicated to the processing of medical im-
ages obtained during diagnostics. The main aim is to effectively diagnose diseases with
decreased turnover time without losing the ultimate quality.

Prevention and early diagnostics are among the most ambitious goals of today’s
medicine. It seems promising to create software for automated processing and analysis
of diagnostic images, based on algorithms for computer vision and deep learning [19].
The literature provides mathematical and graphical outputs on the degree of network
learning to detect pathological changes in the medical images [20]. Preliminary results
published in early work show a relatively high confidence level (95%) in diagnosing cervical
pathology [21,22].

A similar system for processing medical X-ray images has now been developed [23].
This system facilitates the early detection of thoracic lesions by analyzing medical images
using artificial intelligence technologies. However, there is currently a lack of ready-to-use
software for processing colposcopic images, to the best of our knowledge. Simultane-
ously, the literature review suggests that the computer vision systems trained to recognize
structures show promising results.

It is essential to understand how semantic segmentation occurs in convolutional
networks [22]. The University of Vietnam has developed affinity propagation clustering
(APC+) to support decision-making in treating dental diseases. This method segments
X-rays and selects equivalent diseases according to their classification. The most likely dis-
ease is detected using fuzzy aggregation operators. Experimental validation was performed
on real dental datasets of Hanoi Medical University Hospital, Vietnam [24].

The artificial intelligence (AI) approach could also help support decision making while
managing patients with acute and life-threatening conditions.

In 2007 R. Mofidi et al. [25] developed a decision support system (DSS) to classify the
severity of acute pancreatitis (AP) and to predict mortality, which was based on ten clini-
cal parameters (age, hypotension, two or more signs of systemic inflammatory response
syndrome, PaO2, levels of lactate dehydrogenase, glucose, urea, calcium, hematocrit,
and leukocyte count) measured during hospitalization and 48 h after admission to the
hospital. This model performed significantly better than the commonly used APACHE
II and Glasgow systems. In this paper, the sensitivity analysis was carried out to select
a network’s input parameters with greater predictive informational content. The study
included a relatively large number of patients with AP (n = 664): training and validation
of ANNs were performed on different patients’ groups. An equally important advan-
tage is that all ten input variables are available within the first 6 h after hospitalization.
B. Andersson et al. [26] conducted a study to develop and test the effectiveness of ANN-
based DSS for early prediction of the AP severity. The authors conducted a retrospective
analysis of the treatment results in 208 patients with AP (from 2002 to 2005, n = 139, 2007 to
2009, n = 69). The severity of AP was determined by the criteria proposed at the conference
on AP in Atlanta.

At present, the vast majority of modern medical systems are positioned by manu-
facturers as DSS (for example, DxPlain, IndiGO, SLIDSS, etc. [27,28]) is based on the use
of statistical data analysis methods and are designed to establish a diagnosis. In surgery,
the term DSS is also used to refer to preoperative planning systems. Modern preoperative
planning systems allow for geometric planning, particularly for performing a complex of
geometric measurements and manipulations, restoring the physiologically “normal” posi-
tion of anatomical elements, and positioning and planning the choice of implants before
reconstructive surgical treatment. In this regard, this article aims to identify the concept of
modern decision support systems. In the DSS, based on statistical data analysis methods,
they are designed to establish a diagnosis. Simultaneously, the statistical analysis of data
must be carried out to structure data and patterns when working with large amounts of
data that do not have an explicit structure. For this purpose, specific mathematical and
algorithmic approaches can be used within the data mining field.
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The images obtained during endoscopic evaluation of the gastrointestinal (GI) tract
represent a valuable source for AI training. In the Norwegian Oslo University Hospital,
research is being carried out on developing detection systems and assessment colorectal
polyps using deep learning methods [29]. The authors were the first to use Faster R-CNN
(convolutional neural network) combined with the CNN (Inception ResNet) model to detect
colon polyps in images and videos. This study’s novelty lies in the post-training that can
effectively reduce the number of false-positive (FP) samples. After applying several data-
augmentation methods, their detection accuracy reaches 91.4%, but the average detection
time is about 0.39 seconds per frame and needs further improvement. The authors used
Mask R-CNN for polyp segmentation, which achieved the following results: 72.59% recall,
80% precision, 70.42% dice, and 61.24% Jaccard.

The study by Muhammad et al. [30] proposed a convolutional neural network-based
approach (CNN) for classifying multiple gastrointestinal diseases using endoscopic videos
that can simultaneously extract both spatial and temporal characteristics to achieve higher
classification efficiency. Two different residual networks and a long-term short-term mem-
ory model are integrated into a cascade mode to extract spatial and temporal characteristics,
respectively. The experimental results of the model (area under the curve 97.057%) demon-
strate high performance compared with modern methods and indicate its potential for
clinical use.

The article [31] proposes an automated system for detecting and classifying ulcers in
wireless capsule endoscopy (WCE) images based on convolutional neural networks.

The article [32] proposes a convolutional neural network architecture of 43 convolu-
tional layers and one fully connected layer. The network was trained and evaluated on
a colonoscopy image dataset with 410 subjects provided by Gachon University Hospital.
The experimental results showed an accuracy of 94.39% for 410 subjects.

Note that the colposcopic image analysis is rather complicated, mainly due to the
diversity of the surface textures, their heterogeneity, and a wide range of scales. Overall,
endoscopic imaging has the following features: tissue view can change significantly during
underlying muscle/fiber contraction; images may have blurring; the glare effect can occur;
and the brightness and contrast may vary significantly. Taken together, this requires an
extensive image database embracing different conditions, as well as image defects and
artefacts obtained on different hardware. Therefore, it seems reasonable to develop a
system for the precise analysis of colposcopic images, which are homogeneous to a certain
extent, since they are performed under clearly specified conditions, and the criteria for
making a diagnosis are strictly regulated. At the same time, the task of analyzing such
images has not yet been fully resolved and has not been introduced into the diagnostic
practice of Russian medical institutions.

In [33], the authors used Inception-Resnet-v2 and Resnet-152 deep learning models to
automatically classify cervical neoplasms in colposcopic photographs. These models are
configured for two scoring systems: the cervical intraepithelial neoplasia (CIN) system and
the lower anogenital squamous cell terminology (LAST) system. The multi-class classifica-
tion accuracies of the networks for the CIN system in the test dataset were 48.6 ± 1.3% by
Inception-Resnet-v2 and 51.7 ± 5.2% by Resnet-152. The accuracies for the LAST system
were 71.8 ± 1.8% and 74.7 ± 1.8%, respectively. The area under the curve (AUC) for
discriminating high-risk lesions from low-risk lesions by Resnet-152 was 0.781 ± 0.020 for
the CIN system and 0.708 ± 0.024 for the LAST system.

The paper [34] proposes a model of a cervical lesion detection network (CLDNet). This
network localizes and classifies the pathology in the image. The average precision of this
model extraction lesion region is 92.53%, and the average recall rate is 85.56%.

There are relatively few studies in the field of classification of colposcopic images
using AI [21,33,35].

Therefore, there is a growing demand for approaches that increase the population’s
coverage with assessment measures, ideally without quality loss. In our opinion, these re-
quirements are fully met by modern computer technologies, in particular, machine learning.
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3. Methodology

Figure 1 shows examples of colposcopic images.

(a) (b)

(c) (d)

Figure 1. Example colposcopic images of normal cervices and various degrees of abnormal lesions:
normal (a), LSIL (b), HSIL (c), and suspicious for invasion (d).

First, we created a dataset. The colposcopic images were obtained from the female
patients admitted to either out-patient or in-patient gynecological units of the Almazov
NMRC. The images were stored in their respective local storage, connected to the col-
poscopes. Of note, the images were obtained retrospectively, i.e., not specifically for the
current study, but rather as a part of routine examination. However, all patients were
informed that the images will be stored and could potentially be used for scientific pur-
poses, including publication. We enclosed the informed consent form with the respective
point. The vast majority of patients were admitted to Almazov National Medical Research
Centre, either due to suspected cervical pathology (according to previous reflex cytology
and/or HPV testing) or as a part of pre-operative assessment for unrelated gynecolog-
ical conditions (colposcopy is routinely performed pre-operatively, per legislation). All
patients were invited to participate. The procedure was conventional and included an
examination of the cervix with successive application of 5% acetic acid and 3% iodine.
The collected images were de-indentified (including image metadata) and provided for
further analysis. The images were pre-classified into four-classes by two experts. The
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experts were oncogynecologists, trained to perform colposcopy, with the first having 10
years of clinical experience and the other having 30 years of clinical experience. The pos-
sible disagreements, although rare, were solved during the consultation session with the
senior specialist. The ultimate conclusion was supported by a histological examination,
if available. From one to two images correspond to one patient. Therefore, there were 1500
patients in total. The images were collected and stored separately and analyzed after the
removal of confidential metadata, so patient characteristics are not given, and 1500 of the
2842 images were obtained from open source data [36].

The initial dataset was divided into two sets for training and testing. The sample was
divided according to the following principle: 70% of the sample was allocated for training
and 30% for testing. Initially, the size of the training set decreased, and the size of the test set
increased after each stage of training. Then, the learning process was repeated. As a result,
a ratio of 1:2 images was achieved for the training and test samples (1323:657). The images
were pre-classified into four classes: normal, LSIL (low-grade squamous intraepithelial
lesion), HSIL (high-grade squamous intraepithelial lesion), and suspicious for invasion.
Descriptions of the sets (train and test data) are presented in Table 1. To preprocess the data,
we performed a grayscale conversion (Figure 2), increased resolution [37] and elimination
of glare (Figure 3).

The elimination of the glare algorithm is as follows:

1. An image is converted into grayscale;
2. A grayscale image binarization is performed to select glares;
3. Each pixel in the glare is replaced with the normalized weighted sum of all known pix-

els in the neighborhood. This is carried out using an algorithm “An image inpainting
technique based on the fast marching method” [38] that is implemented in OpenCV
open source library [39].

Table 1. Description of the dataset.

Data Type Normal LSIL HSIL Suspicious for Invasion

Train 657 63 133 38

Test 1323 94 1046 379

(a) (b)

Figure 2. Examples of prepocessing (grayscale) of colposcopic images: normal (a) and suspicious
for invasion (b).
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(a) (b)

Figure 3. Examples of prepocessing (elimination of glares) colposcopic images: normal (a) and
suspicious for invasion (b).

However, during the preliminary experiments, we found that the proposed prepro-
cessing (grayscale conversion, increased resolution, and elimination of glares) did not bring
significant gains in classification accuracy.

Figure 4 shows the architecture of the developed network, which has five convolutional
layers (input size of 448 × 448 pixels), 32 filters with filter sizes of 3 × 3 (except the last
layer), activation function ReLU, batch normalization, 4 max-pooling layers, a global
average pooling layer, and a Softmax layer. Among the advantages of this network is its
simple structure and, hence, low computational complexity.

Here, we provide the structure of the proposed classifier:

1. Convolutional layer is a layer that uses convolution operation for extracting features
from the input.

2. ReLU is a rectified linear unit activation function. It is less prone to the vanish-
ing gradient problem because its derivative is always 1 for the positive values of
the argument.

3. Max-pooling is a subsampling layer using the maximum value. It is used to increase
the receptive field.

4. Batch normalization is a method that improves performance and stabilizes the op-
eration of neural networks. The idea of the method is that the layers of the neural
network are fed with data that has been preprocessed and have zero mathematical
expectation and unit variance.

5. Global average pooling is a layer that can replace a fully connected layer. As shown
in [40], this layer has the same functionality as traditional fully connected layers. One
of the advantages of global pooling over fully connected layers is that its structure is
similar to convolutional layers, ensuring correspondence between feature maps and
object categories. Additionally, unlike a fully connected layer, which requires many
training and tuning parameters, reducing the spatial parameters will make the model
more robust and resist overfitting.

6. Softmax is a layer for predicting the probabilities associated with a categorical distribution.



Bioengineering 2022, 9, 240 8 of 16

Figure 4. CNN Classifier architecture.

4. Results

Hardware systems for classification include Peter the Great Saint-Petersburg Poly-
technic University Supercomputing Center and personal computer with NVIDIA GeForce
GTX 2080 TI and Core i7 central processing units. First, we constructed an image dataset
(Table 1), which included healthy patients and women with different cervical lesions. Un-
fortunately, we faced difficulties in obtaining an initially planned number of images due to
the COVID-19 pandemic.

The results of the work of the classifier on the test dataset are presented in Tables 2
and 3.

The studies were performed in accordance with recognized ethical standards. All
patients signed informed consent for using the clinical images for research purposes.
Additional measures were taken to remove personal data (name and date of examination)
from the image metadata in order to prevent identification.

The Custom network was trained using the following parameters: Adam optimizer,
categorical cross-entropy loss function, size of mini-batch is 64 (selected depending on the
memory size of GPU), and 30 epochs (deviation of the loss function is not more than 5%).

The overall classification accuracy (Table 2) reached 94.68%. Figure 5 shows the
confusion matrix for the test dataset. The worst result was obtained in class LSIL.
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Table 2. Accuracy on the test dataset.

Normal LSIL HSIL Suspicious for Invasion All

95.46% 79.78% 94.16% 97.09% 94.68%

Figure 5. The confusion matrix for the test dataset.

Table 3. Comparison of Methods.

Method Accuracy Computational Complexity

Our 94.68% 39 × 106

[21] ≈50% 193 × 106

[35] 86% -

5. Discussion

In this paper, we describe the use of machine vision methods for the analysis of
colposcopic images. Given the fact that cervical cancer is an unresolved problem in middle-
and low-income countries and the obviously limited resources in these regions, the use of
an automated system for primary image sorting is a reasonable alternative.

Following the purpose of the work indicated in the introduction, it is necessary to
compare the obtained method with existing ones. This comparison lies not only in the plane
of the obtained classification accuracy but also in the plane of computational complexity
of the developed methods. Not all studies are suitable for quantitative and qualitative
comparison with the results of this work. Currently, there are relatively few studies in the
field of classification of colposcopic images. Moreover, there are very few studies with an
assessment of computational complexity and algorithms described in detail.

This method has many advantages: it does not require repeated financial costs while
being operated by the end-user. It could be implemented as software installed on computers
in remote areas or regional centers. The final product has a high level of performance since
the processing of one image takes approximately 20 ms. Simultaneously, technology is
continuously being improved and becomes better as new images are uploaded.

Among the advantages of the method should be noted the simple structure and low
computational complexity (around 39 × 106 floating-point operations), which allows for
using low-power and low-cost devices. The Nvidia Jetson family is suitable for this task
due to the presence of graphics accelerator. In addition to Nvidia solutions, other em-
bedded systems can be used, on the basis of which medical tools such as colposcopes
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can be created. The requirements of low computational complexity and simplicity of the
structure are preserved. For comparison, the approaches from the article [21] have compu-
tational complexity equal to around 193 × 106 (despite the fact that the network consists
of only 3 convolutional layers, a fully connected layer will contain a lot of computational
operations).

In a related work [14], a relatively small accuracy in validation was noted—only
50%. This indicates poor learning ability of the network. Due to the proposed approach,
a number of advantages were achieved:

– The training set is two times smaller than the test set, which has a positive effect in
conditions of a shortage of colposcopic images in the field of cervical cancer;

– The neural network showed good learnability with the maximum achieved classifica-
tion accuracy of 94.68% on the tested data set;

– The computational complexity is 5 times less than that of existing solutions [14]. This
is especially important since the placement of neural networks in medical tools, such
as a colposcope, imposes performance requirements with limited resources of the
computer system embedded in the tool.

The main task today is to increase the accuracy of the system by reducing the number
of errors. Below, we show examples of the misclassification, that, although rare, represent
the field for further improvement (Figure 6).

In the first case (Figure 6a), the prediction was suspicious for invasion and the real
classification was normal. The roughness in the central area can be somewhat confusing,
and the decision was made in favor of suspicious for invasion. From an experienced
doctor’s point of view, there is additional information: its location around the external
os and non-interruptured borders most likely indicate a simple case of the “columnar
epithelium”, which means that this case is “normal”.

In two other examples (Figure 6b,c), the prediction was suspicious for invasion and
the real classification was HSIL. Although there were no apparent signs of invasion, an
advanced lesion was evident, requiring additional measures (e.g., biopsy). Therefore,
although being overestimated, the predicted result does not negatively affect clinical
decisions but instead increases alertness.

In one more example (Figure 6d), the prediction was LSIL and the real classification
was HSIL. Here, one may note that dense acetowhite lesions are located within thin and
opaque acetowhite areas, favoring more advanced lesions. However, there were no signs
of invasion.

Of note, diagnosing LSIL also has the higher interobserver variability from assessing
clinicians. This is because LSIL has an appearance that sometimes overlaps with the healthy
cervix. In our work, this could also be because of the insufficient number of samples within
the group.

Therefore, the abovementioned cases are challenging and may require additional
clinical measures. When implementing the algorithm in the hardware, we plan to call alert
messages for further actions (additional analyses or verification on a council of experienced
doctors). Such parsed results must be taken into account in the next training iteration.

Among the possible limitations of the works, one should note that images were
initially classified manually. Even though two experienced clinicians assessed the images
independently, with several of the assessments, experts acknowledged the lack of consensus.
In this case, additional measures were taken to reduce possible errors, such as counseling
by a senior specialist. However, some minor inaccuracies may still be present.



Bioengineering 2022, 9, 240 11 of 16

(a) (b)

(c) (d)

Figure 6. Examples of errors in decisions (predicted/real): (a) suspicious for invasion/normal,
(b) suspicious for invasion/HSIL, (c) suspicious for invasion/HSIL, and (d) LSIL/HSIL.

The proposed approach can be used as an auxiliary diagnosis system, as shown in
Figure 7. In this case, the colposcope is connected to the device based on Nvidia Jetson via
HDMI cable (for example, colposcope “ZEISS OPMI pico colpo”, which we used in the
Almazov National Medical Research Centre, provided this functionality). This standalone
smart device with a user-friendly interface contains a CNN developed and implemented
in PyTorch C++. It does not require a mobile or desktop computer connection. A monitor,
touch screen, mouse, or keyboard can be used to work with it without requiring technical
qualifications. It is important to note that the system does not complicate the routine
procedure for the operator; does not require additional technical skills; and performs and
analysis in the background, providing a result upon request.
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Figure 7. Illustration of the application of the developed approach.

This type of system can be improved to a smart medical autonomous distributed
system for diagnostics based on machine leaning technology [41]. This concept presupposes
the construction of several data centers. Data centers can collect impersonal information
from doctors about some cases of misclassification. Such examples are then used to update
CNN. Updated firmware for the Nvidia Jetson module can be transferred via the 5G/6G
communication channel (a description of 5G/6G can be found in [42,43]). Additionally,
arguable cases can be handled by creating a distributed council of experienced doctors
connected to data centers to process complex colonoscopy images.

Combining of a digital colposcope, mobile computing platform and deep learning will
create a “smart colposcope”. It can be part of the Internet of Medical Things (IoMT).

Many researchers note the pragmatism of using artificial intelligence in processing
large amounts of data. Taking into account the number of colposcopic assessments per-
formed worldwide, the AI approach might potentially contribute to improvements within
the field. These requirements are fulfilled by modern computer technologies, in particular
machine learning. Taking into account the improvement of the performance indicators
of the machine vision system as new information becomes available, we would like to
welcome joint efforts around the world. This approach is entirely consistent with the
strategy for reducing the incidence of cervical cancer proposed b they WHO.

Of course, this is not about excluding the participation of a certified doctor in the
diagnosis of cervical diseases. In its current form, this does not seem very easy to implement
from technological and legal points of view. At the same time, the use of such a system as
a decision support tool looks feasible, especially in countries with insufficient resources,
where decreasing the incidence rate of cervical cancer is particularly important. Recently,



Bioengineering 2022, 9, 240 13 of 16

several approaches have been proposed to eliminate the need to use expensive colposcopes
(for instance, [44]). Such an approach could be implemented for use by midwives.

The strength of the proposed method its relatively low computational complexity
and simple architecture. Its weakness can be attributed to the still significant amount of
data set required for training. However, such a drawback is typical for all solutions based
on learning.

Further research will focus on segmentation to localize and visualize pathologies
on images. In medical imaging, these segments are usually commensurate with different
tissues, pathologies, organs, or other biological structure. The following architectures can be
distinguished: FCN [45], Deconvolution network [46], SegNet [47], U-Net [48], PSPNet [49],
DeepLab [50], Mask-R-CNN [51], EncNet [52], and YOLACT [53].

6. Conclusions

The current article covers the experience of using a convolutional neural network to
classify cervical lesions based on colposcopic images. Currently, the classification accuracy
reached 94.68%. The proposed architecture is simpler than those discussed in other articles
due to the application of a global averaging pooling layer. Due to its simple structure,
the classifier can be implemented on low-power computing platforms at a reasonable price.
Of interest, it could potentially be utilized to process images from both a wide range of
machines (endoscope, X-Ray, and MRI) and handheld devices, such as dermatoscope or
even smartphones, which is also proposed in other works. This will allow for diversifying
and speeding up the analysis.

Machine vision is a valuable method that could be applied to analyzing medical im-
ages, including colposcopic. Such an approach becomes even more important in countries
where universal cervical assessment is not yet established and/or in remote areas. The chal-
lenging next step is to improve the sensitivity and specificity of the method by enlarging
the training set. Additionally, due to the low architectural complexity of the neural network
in the proposed approach and due to its low computational complexity, it becomes possible
to implement it for use in medical instruments such as a smart colposcope.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Network
AUC Area Under the Curve
APC Affinity Propagation Clustering
CC Cervical Cancer
CIN Cervical Intraepithelial Neoplasia
CNN Convolutional Neural Network
DSS Decision Support System
HPV Human Papillomavirus
HSIL High-Grade Squamous Intraepithelial Lesion
IOMT Internet of Medical Things
LAST Lower Anogenital Squamous Cell Terminology
LSIL Low-Grade Squamous Intraepithelial Lesion
WCE Wireless Capsule Endoscopy
WHO World Health Organization
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