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SUMMARY

Large-scale inference of eukaryotic transcription-regulatory networks remains challenging. One 

underlying reason is that existing algorithms typically ignore crucial regulatory mechanisms, such 

as RNA degradation and post-transcriptional processing. Here, we describe InfereCLaDR, which 

incorporates such elements and advances prediction in Saccharomyces cerevisiae. First, 

InfereCLaDR employs a high-quality Gold Standard dataset that we use separately as prior 

information and for model validation. Second, InfereCLaDR explicitly models transcription factor 

activity and RNA half-lives. Third, it introduces expression subspaces to derive condition-

responsive regulatory networks for every gene. InfereCLaDR’s final network is validated by 

known data and trends and results in multiple insights. For example, it predicts long half-lives for 

transcripts of the nucleic acid metabolism genes and members of the cytosolic chaperonin 

complex as targets of the proteasome regulator Rpn4p. InfereCLaDR demonstrates that more 

biophysically realistic modeling of regulatory networks advances prediction accuracy both in 

eukaryotes and prokaryotes.
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Graphical abstract

In Brief: This work demonstrates that extending the biophysical accuracy of the assumed model of 

transcriptional regulation improves large-scale regulatory network inference. As a proof of 

concept, Tchourine et al. show that incorporating RNA degradation into the model results in better 

network recovery while simultaneously predicting accurate RNA degradation rates.

INTRODUCTION

Inference of large-scale transcription regulatory networks is an active research area with 

many broad applications. Network inference typically assumes that changes in RNA 

expression levels inform of regulatory relationships between transcription factors (TFs) and 

their target genes. Ideally, orthogonal data on protein-protein and protein-DNA interactions, 

such as protein binding assays (Valouev et al., 2008; Mundade et al., 2014), DNA 

accessibility assays (Davie et al., 2015), and motif enrichment analysis (Setty and Leslie, 

2015; Guo et al., 2012), com plement these expression data. Various machine learning 

approaches are then used to infer the network. The approaches have multiple levels of 

complexity, ranging from Boolean networks and network module approaches (Shmulevich et 

al., 2002; Lähdesmäki et al., 2003; Segal et al., 2003; Pe’er et al., 2001) to approaches that 

explicitly or implicitly model dynamics, TF interactions, and activity (Honkela et al., 2010; 

Äijö et al., 2013; Intosalmi et al., 2016; Studham et al., 2014).

Recent comprehensive, blind assessments of various network inference approaches 

concluded that inference in eukaryotes is systematically more challenging than in 

prokaryotes, with nearly random performance in yeast (Marbach et al., 2012). Other recent 

studies showed that results from incorporating prior interaction data also dramatically differ 

between prokaryotes and eu-karyotes, and performance in yeast remained poor (Greenfield 

et al., 2013; Wilkins et al., 2016; Siahpirani and Roy, 2016; Äijö and Bonneau, 2016). This 

discrepancy is likely due to increased complexity of eukaryotic transcriptional regulation, 
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but most existing inference methods, such as those based on random forest (Huynh-Thu et 

al., 2010; Petralia et al., 2015), cannot directly incorporate new parameters.

The Inferelator is a method based on constrained regression (Bonneau et al., 2006; 

Greenfield et al., 2013; Arrieta-Ortiz et al., 2015). In contrast to other large-scale inference 

methods, it allows explicit modeling of biophysical processes via differential equations (see 

Inferelator Implementation in the Experimental Procedures). We and others have shown that 

inference of transcription- and translation-related parameters via ordinary differential 

equations produces robust genome-wide models in various organisms (Tchourine et al., 

2014; Schwanhäusser et al., 2013; Peshkin et al., 2015). Importantly, the differential 

equations also allow for incorporation of additional regulatory parameters.

One such crucial regulatory component is RNA degradation. For yeast, experimental data 

highlight the large range in RNA half-lives and their extensive changes across different 

conditions and genetic backgrounds (Miller et al., 2011; Schwalb et al., 2012; Sun et al., 

2012; Neymotin et al., 2014; Munchel et al., 2011). In addition, high correlation between 

degradation and transcription rates across mutant strains suggests extensive feedback 

between the two processes, controlled by factors such as XRN1 (Sun et al., 2013). Because 

expression regulation also depends on external conditions, networks are remodeled in a 

condition-specific manner (Lehtinen et al., 2013; Shivaswamy and Iyer, 2008) and can be 

captured in a low-dimensional space of expression clusters that correspond to different 

biological function that are highly utilized under those conditions (Hart et al., 2015).

These findings render the inclusion of RNA half-lives into condition-specific modeling of 

transcription regulation critical. Here we developed InfereCLaDR, an inference framework 

derived from the Inferelator, with the addition of expression sub-space clustering and 

explicit modeling of RNA degradation rates. InfereCLaDR infers the RNA degradation rate 

for every gene and condition cluster in the expression data by optimizing the cluster’s 

network inference accuracy and then combines the networks derived using optimized RNA 

half-lives. InfereCLaDR also uses a high-quality Gold Standard (GS) data-set we created. 

We showed that InfereCLaDR not only improved inference but also resulted in accurate 

condition-and gene-specific RNA half-life predictions. The final, combined network 

produced by InfereCLaDR has an area under the precision-recall curve (AUPR) of 0.33, 

which is far larger than other existing approaches in yeast, providing insights into various 

regulatory mechanisms. InferCLaDR is generalizable, as demonstrated by estimation of 

global RNA half-lives in other systems, such as Bacillus subtilis, and provides the first proof 

of concept that explicitly accounting for RNA degradation is necessary for accurate 

regulatory network inference from large and heterogeneous datasets.

RESULTS

Curation and Assembly of Comprehensive Datasets for High-Quality Network Inference

To develop InfereCLaDR, we leveraged the information available for baker’s yeast across a 

broad range of experimental conditions. We first assembled a list of 563 potential TFs from 

various sources, a Gold Standard of interactions, and an RNA expression dataset (see Data 

Acquisition and Normalization and Curation of the Gold Standard of Regulatory Interactions 
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in the Experimental Procedures). The expression data originated from 119 labs and diverse 

experimental conditions but used the same transcriptomics platform throughout. With 5,716 

genes and 2,577 samples (Figure 1C), it is one of the largest expression datasets used for 

network inference in yeast (Marbach et al., 2012; Danziger et al., 2014; Petralia et al., 2015; 

Siahpirani and Roy, 2016).

We developed a new Gold Standard of regulatory interactions that combines multiple types 

of regulatory evidence from several databases (Table S1). It includes 1,403 signed 

interactions that distinguish between activation and repression, which is important for 

accurate calculation of TF activities (TFAs) (Arrieta-Ortiz et al., 2015). Although the Gold 

Standard represents only a fraction of all potential regulatory interactions in yeast, it is 

highly enriched in true positives: each interaction is confirmed by at least three orthogonal 

sources, one of which is direct (e.g., chromatin immunoprecipitation with DNA microarray 

[ChIP-chip]) and two are indirect (e.g., based on TF knockout expression changes). Further, 

Figures 3A and S3 show that a small, high-quality gold standard provides more self-

consistent regulatory networks than larger and lower-quality reference sets, such as those 

commonly used (MacIsaac et al., 2006; Marbach et al., 2012; Ma et al., 2014; Petralia et al., 

2015; Siahpirani and Roy, 2016).

InfereCLaDR Accurately Estimates RNA Degradation Rates for Condition and Gene 
Clusters

To assess whether network prediction is, in general, sensitive to RNA degradation rates, we 

first tested the original Inferelator on the entire dataset for a range of preset half-lives. 

Indeed, prediction was sensitive to RNA half-lives and affected the AUPR. The AUPR was 

maximized for an RNA half-life of 20 to 50 min (Figure 1A; Figures S1A–S1D). 

Intriguingly, this range is highly consistent with experimental measurements (Miller et al., 

2011; Neymotin et al., 2014; Munchel et al., 2011).

To demonstrate that network inference is sensitive to transcript stability across organisms, 

we also estimated the optimal half-life for B. subtilis (Figures 1B and S1B), predicting 6–13 

min as the optimal half-life. Again, this range is similar to experimentally measured RNA 

half-lives of < 7 min for about 80% of the transcripts (Hambraeus et al., 2003). These 

results, derived entirely from changes in RNA expression, encouraged the inclusion of RNA 

half-life in network prediction.

Because the data used in our work span a variety of conditions, we extended RNA half-life 

optimization and network inference to 20 bi-clusters consisting of four condition and five 

gene clusters (Figures S1E and S1G; Expression Data Clustering in the Experimental 

Procedures). This simultaneous clustering of genes and conditions with the subsequent 

optimization of RNA half-lives comprises the core of the InfereCLaDR. To maximize the 

accuracy of RNA half-life predictions, we used the Split A approach (Figure S2), which 

makes use of connectivity information from the entire gold standard. In the Split A 

approach, we use the entire gold standard for training TFAs and half-life fitting but exclude 

the validation step. For most bi-clusters, the AUPR trajectory peaked inside a narrow range 

of half-lives (Figure S4), and the median half-lives for each bi-cluster are summarized in 

Figure 1D. For some bi-clusters, especially in the “fermentation” cluster, the AUPR 
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trajectory did not peak at a specific half-life, indicating that accurate regulatory network 

modeling is not contingent on RNA degradation in these regimes. We excluded the RNA 

half-life predictions made in the fermentation cluster from the following analyses.

To validate the newly predicted RNA degradation rates, we compared them with measured 

RNA half-lives. Note that our approach predicted bi-cluster and not gene-specific RNA half-

lives, therefore preventing direct gene-wise comparison with experimental measurements 

(see RNA Half-Life Estimation in the Experimental Procedures; Figure S1I). Therefore, we 

tested whether predicted RNA degradation rates for condition and gene clusters that are 

significantly different from the norm are similarly different for distributions of 

experimentally measured RNA half-lives across the genes in the corresponding clusters. 

Figure 2 shows that this is indeed the case; e.g., when comparing all genes under minimally 

perturbed conditions (Figures 2A and 2E) with all genes under “transcription inhibition” 

conditions (Figures 2D and 2H). The predicted increase in RNA stability under 

transcriptional inhibition conditions (Wilcoxon p < 1 × 10−10) is corroborated by the fact 

that experimental designs that used transcription inhibition to measure RNA decay rates 

vastly overestimated true RNA half-lives (Neymotin et al., 2014). In another example, 

ribosomal mRNAs are known to be more stable than other transcripts under normal 

conditions (Neymotin et al., 2014; Munchel et al., 2011). Indeed, the predicted half-life for 

the 115 ribosomal genes in the “translation” gene cluster was signifycantly higher than that 

of other genes (Figure 2C; Wilcoxon p < 4 × 10−3; see RNA Half-Life Estimation in the 

Experimental Procedures), confirming our approach.

InfereCLaDR’s half-life optimization also revealed new trends across bi-clusters. Most 

prominently, “nucleic acid metabolism” genes under the “chemostat” and “log phase” 

conditions showed very high RNA half-lives (Figures 1D and 2B; Wilcoxon p < 0.02). 

Genes in this cluster function in nucleobase-containing small-molecule metabolism 

(NCSM), a category of genes that has not been noted for increased RNA half-lives in 

existing literature. We extracted the 207 NCSM genes from experimental RNA half-life 

measurements (Neymotin et al., 2014) and confirmed that, in line with the InferCLaDR 

predictions, the NCSM mRNAs were significantly more stable than all transcripts (Figure 

2F; Wilcoxon p ≤ 5 × 10−10). The increase in RNA half-lives for both the translation and 

nucleic acid metabolism gene categories under normal conditions, as well as the global 

increase in RNA half-lives under the transcription inhibition conditions, was also confirmed 

when area under the receiver operating characteristic curve (AUROC) was used as an 

alternative measure for half-life fitting (Figure S1H), as well as by correlation analysis 

(Figure S1I; rs = 0.7). These examples support our confidence in accurate predictions of 

RNA half-lives within the InfereCLaDR framework.

InfereCLaDR Improves Network Inference by Recovering Condition-Specific Interactions

Next we tested whether rank-combining the bi-cluster-specific networks improves prediction 

accuracy. To avoid circularity, we used non-overlapping, randomly chosen subsets of the 

gold standard to train the model, fit RNA half-lives for individual bi-clusters, and validate 

the predictions (Figure S2, Split B). We repeated the procedure for each of the 20 re-samples 

(the choice of 20 is unrelated to the number of bi-clusters, which is also 20), and compared 
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InfereCLaDR with other methods (Figure 3A; Table 1). We calculated the AUPR on the 

respective validation subset of the gold standard, using the single value of half-life optimized 

on the corresponding fitting subset of the gold standard. RNA Half-Life Estimation in the 

Experimental Procedures details this method.

The two algorithmic modifications of the InfereCLaDR (bi-cluster-specific network 

inference and RNA half-life optimization) improve accuracy significantly over inference 

without these advances (p < 0.05; Figures 3A and S1F; Tables 1 and S2). In total, 115 of 120 

pairwise comparisons resulted in larger AUPRs when these modifications were used 

together and separately (Table 1), showing that half-life estimation and bi-clustering result in 

significantly improved network inference and that combining the two significantly improves 

inference further. The final AUPR value of 0.33 represents an almost 8-fold increase 

compared with Genie3 (Table 1), the best-performing method in a recent competition 

(Marbach et al., 2012). Using AUROC yielded a similar outcome (Figure S1; Table S2). 

Sub-Sampling the Gold Standard for RNA Half-Life Fitting and Error Estimation in the 

Experimental Procedures and the Supplemental Experimental Procedures provide further 

details.

To maximize the size and accuracy of the final integrated network, we repeated the whole 

procedure with the Split A approach (Figure S2). At 50% precision, this final network 

contained a total of 2,924 interactions (Figure 4; Data S1), 1,462 of which were “new”; i.e., 

absent from the Gold Standard. Of these 1,462 interactions, 631 (43%) were validated by 

independent data that had been excluded from the modeling (Figure 3B). The high fraction 

of independently confirmed interactions suggests that the remaining 831 new interactions are 

also strongly enriched in true positives.

Next we compared InfereCLaDR with original Inferelator predictions. We focused on three 

categories of interactions: those that were predicted by InfereCLaDR but not the Inferelator 

(“gained”), those that were predicted by both InfereCLaDR and the Inferelator 

(“conserved”), and those that were not predicted by InfereCLaDR but were by the 

Inferelator (“removed”) (Figure 3C). Conserved interactions correlated in rank; i.e., both 

approaches had similar confidence in accuracy of these predictions. InfereCLaDR predicted 

more interactions than Inferelator, both outside of the Gold Standard (Figures 3B and S6I–

S6K) and in total; the number of gained interactions was much larger than that of removed 

ones (Figure 3C). Notably, this increase was not due to overfitting or error because 

orthogonal support for the gained interactions also increased in InfereCLaDR compared with 

the original approach (Figure 3D). These lines of evidence suggest that bi-clustering and 

RNA half-life fitting implemented in InfereCLaDR resulted in hundreds of new high-quality 

interactions and also removed many false positives.

One of InfereCLaDR’s major strengths lies in recovering condition-specific regulatory 

interactions. For example, most of the gained interactions passed the precision = 0.5 cutoff 

(Supplemental Experimental Procedures) in only one or two condition clusters; i.e., they 

were highly condition-specific. In contrast, most conserved interactions were above 

threshold in 3 or 4 condition clusters; i.e., they were more general (Figure 3E). We examined 

these gained interactions more closely to determine which bi-clusters accounted for new 
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predictions (Figure 3F). Consistent with our expectations, gained interactions occurred 

frequently among NCSM metabolism genes in the chemostat cluster, which uses one of the 

longest RNA half-lives (Figures 1D, 2F, and S4). Similarly, gained interactions involved 

target genes from protein catabolism and cell wall biogenesis when predicted under 

perturbed conditions but not under normal conditions; e.g., during log phase growth (Figure 

3F), confirming predicted transcript stabilization for these genes under perturbed conditions 

(Figures 1D and S4). In comparison, other gained interactions occurred in bi-clusters with 

short RNA half-lives; i.e., for protein catabolism genes and cell wall biogenesis genes in the 

chemostat cluster, confirming that InfereCLaDR also captured condition-specific network 

rewiring events that were independent of RNA half-life changes. In sum, InfereCLaDR not 

only outperformed Inferelator and other methods in terms of accuracy of newly gained 

interactions but did so by recovering interactions that only appear under specific conditions, 

under which RNA half-lives typically deviated from the norm.

New Predictions Are Corroborated by Literature

To illustrate the value of new interactions, we list the top new targets of highly and medium-

connected TFs (Tables 2 and S3). Importantly, many of the predictions are validated by 

independent datasets (Tables 2 and S3) and function annotation. For example, Sfp1p is a 

known regulator of ribosomal protein genes (Marion et al., 2004; Cipollina et al., 2008; Reja 

et al., 2015), and all of its top predicted targets are ribosomal subunits and are supported 

independently (Table S3). Rpn4p is known to activate proteasome expression (Karpov et al., 

2008a, 2008b), and, indeed, most of its predicted targets of activation are proteasomal genes, 

consistent with known biology.

In contrast, InfereCLaDR also predicted that Rpn4p activates the expression of four 

previously unknown targets, CCT2, CCT3, CCT4, and CCT8, which are not part of the 

proteasome but subunits of the cytosolic chaperonin Cct ring complex and are required for 

actin and tubulin function (Chen et al., 1994; Vinh and Drubin, 1994). These four 

interactions were largely absent from the existing databases listed in Table S1, and 

InfereCLaDR detected them in a subset of regulatory regimes (Data S1). We found 

additional evidence that supports the validity of the prediction. Rpn4p is known to bind the 

proteasome-associated control element (PACE; 5′-GGTGGCAAA-3′; Mannhaupt et al., 

1999) and also regulates proteasome assembly chaperones through binding to a smaller 

region, 5′-(A/G)GTGGC-3′, known as the PACE core region (Shirozu et al., 2015). 

Examining the promoter region of the CCT genes, all four contained the PACE core element 

(Supplemental Experimental Procedures). These interactions were specific to the 

transcription inhibition and fermentation clusters (Figure 4; Supplemental Notes), explaining 

why they were undetected in previous studies, which typically excluded the condition-

specific regulatory regimes tested here.

Of the 100 new interactions in Table S3, 13 were absent from the orthogonal validation 

datasets discussed above. We examined some of these interactions further and found 

evidence supporting their validity. For example, Hsf1p is a key regulator of diverse stresses 

and monitors the cell’s translation status by interacting with the ribosome quality control 

(RQC) complex (Brandman et al., 2012). InfereCLaDR predicts that Hsf1p acti vates LSB1 
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and SAF1 in a condition-specific manner (Figure 4, transcription inhibition cluster). SAF1 
has four other transcription regulators (Bur6p, Med6p, Spt10p, and Sua7p), which are all, 

similarly to Hsf1p, detected under various stresses, especially heat shock (Mendiratta et al., 

2006; Venters et al., 2011), suggesting that Hsf1p could also be a member of the heat shock 

regulators of SAF1. In comparison, Lsb1p controls actin assembly and prion modulation in 

yeast (Ali et al., 2014) and has not been reported as a target of Hsf1p. Several recent studies 

have linked Hsf1p to actin assembly. Yeast deficient in the RQC-Hsf1 regulatory system has 

altered actin cytoskeletal structures (Yang et al., 2016), overexpressing HSF1 in worms 

increases actin cytoskeleton integrity and lifespan (Baird et al., 2014), and active Hsf1p 

affects the actin cytoskeleton in mammalian cells (Toma-Jonik et al., 2015). Therefore, it is 

tempting to hypothesize that LSB1 is the missing link by which Hsf1p affects actin skeleton 

assembly. The Supplemental Notes outline additional examples that validate InfereCLaDR’s 

new predictions, including condition-specific interactions and combinatorial regulation of 

gene categories, which we summarize in Figure 4. In sum, InfereCLaDR predicted hundreds 

of novel high-confidence interactions in yeast that are consistent with previously known 

roles of the regulators and suggest new regulatory relationships.

DISCUSSION

We present InfereCLaDR, a network inference framework with several conceptual advances 

over existing methods (Greenfield et al., 2013; Arrieta-Ortiz et al., 2015; Ciofani et al., 

2012), demonstrating, for the first time, that biophysically relevant models that incorporate 

RNA degradation improve large-scale network prediction. InfereCLaDR includes a new, 

high-quality Gold Standard of regulatory interactions and infers separate networks across 

subsets of genes and conditions. We built the Gold Standard that accompanies this work 

from several benchmark datasets (Teixeira et al., 2006, 2014; Monteiro et al., 2008; 

Abdulrehman et al., 2011; Cherry et al., 2012; Costanzo et al., 2014; Kemmeren et al., 

2014), and, importantly, accounted for the direction of the interaction (i.e., activation versus 

repression) and our confidence in the data source. We show that this approach, which 

improved the quality of a gold standard but not necessarily its size, vastly outperformed 

alternative approaches (Figure S3). In addition, InfereCLaDR showed that bi-clustering 

expression data, cluster-specific network inference, and optimization and use of cluster-

specific RNA half-lives improved prediction accuracy and sensitivity even further (Figures 3 

and S1).

Using these advances, InfereCLaDR resulted in a genome-wide regulatory network that is 

more accurate and comprehensive than previous approaches. At 50% precision, 

InfereCLaDR predicts >1400 new interactions in yeast (Figure 4), 43% of which are 

validated by independent datasets, and 57% are entirely new (Figure 3B). Approximately 

80% of these interactions were activating and 20% were repressive. Compared with other 

approaches (e.g., Genie3), this was an 8-fold improvement. We validated new interactions 

using existing direct (i.e., TF-DNA contact) and indirect (i.e., knockout/overexpression) 

evidence. The success of rank-combining cluster-specific networks suggested that previous 

approaches often missed condition-specific regulatory interactions (Figures 3 and S2; Tables 

1), especially for conditions with altered RNA half-lives (Figures 2D and 2H and 3F). The 

result was consistent with the findings that both RNA degradation and transcription 
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regulation are specific to different gene sets and adjust to changing environmental conditions 

(Munchel et al., 2011; Miller et al., 2011; Lehtinen et al., 2013; Hart et al., 2015; Yang and 

Leskovec, 2014).

Most importantly, we showed that including RNA degradation in network prediction boosts 

inference of transcriptional regulatory networks. To the best of our knowledge, 

InfereCLaDR is the only approach capable of doing so on a genome-wide scale. 

InfereCLaDR does not make prior assumptions on RNA stability but learns optimal 

degradation rates directly from expression data. The resulting rates were similar to 

experimentally measured rates, validating our approach. In addition, optimized (predicted) 

half-lives accurately reflected expected trends across conditions and across organisms; e.g., 

for ribosomal genes (Figure 2). InfereCLaDR is also generalizable to other organisms. In B. 
subtilis, it accurately predicted that bacterial RNA transcripts are less stable than yeast 

transcripts (Figure 1), as confirmed by experiments (Neymotin et al., 2014; Sun et al., 2012; 

Pelechano and Pérez-Ortín, 2008; Hambraeus et al., 2003).

InfereCLaDR has several applications. First, it can predict RNA degradation rates for 

different gene clusters or conditions from expression data alone. Such predictions are 

valuable because it is still challenging to measure RNA degradation, and only a few datasets 

exist (Miller et al., 2011; Schwalb et al., 2012; Sun et al., 2012; Neymotin et al., 2014; 

Munchel et al., 2011). Second, InfereCLaDR can reveal new trends, such as the long half-

lives of genes in nucleic acid metabolism (Figure 2). Third, InfereCLaDR can predict new 

regulatory interactions missed before. We showed that even the predicted interactions not 

seen in other studies are likely valid.

To the best of our knowledge, our approach is the first attempt at incorporating RNA 

degradation into large-scale automated network learning. Our work should therefore be 

viewed primarily as a proof of concept, demonstrating that expanding the biophysical 

complexity of the underlying model of regulation improves network prediction accuracy 

while also accurately estimating the dynamic parameters of transcriptional regulation. This 

step brings the field of machine learning-based network inference closer to the field of 

detailed mathematical modeling of biophysical processes. However, InfereCLaDR also has 

limitations that need to be addressed in future versions. One such limitation is the 

requirement of a large enough RNA expression dataset to distinguish between different 

modes of regulation under different conditions or cell types. A substantial portion of the data 

needs to stem from time series experiments, and the condition cluster label assignments 

require semi-manual inspection of the meta-data for heterogeneous expression datasets for 

better interpretability. Another limitation is the availability of a reliable gold standard of 

interactions. Both of these requirements are already met in well-studied model organisms, 

such as E. coli (Fang et al., 2017), C. elegans (Cheng et al., 2011), and some human cell 

lines (ENCODE Project Consortium, 2012). As more experimental data become available 

through technological advances such as assay for transposase-accessible sequencing 

(ATAC)-seq, Infer-eCLaDR in its current form will be applicable to other systems.

In addition, future research will determine the sensitivity of InfereCLaDR to the quality of 

the collection of prior known interactions and to the technique employed for bi-clustering 
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the data, which are beyond the scope of the present study. Other extensions could expend the 

Inferelator framework to infer RNA degradation rates from a continuous distribution and 

using the same prior known interactions for both RNA degradation rate fitting and TFA 

estimation, which would address limitations regarding the size of the Gold Standard and the 

requirement to select a discrete set of potential RNA half-lives. Finally, future extensions 

could eliminate the need for gene-wise clustering by estimating the optimal RNA half-life 

separately for every gene through application of the same Bayesian model selection the 

Inferelator uses to select the best regulatory model for every gene.

In a broader context, InfereCLaDR advances inference methods through improved 

biophysical modeling of biological processes by approximating the rates of synthesis and 

degradation using mass action laws and experimental designs that include time series. This 

approach outperforms other methods that are agnostic of underlying mechanisms (and 

unaware of underlying temporal designs), such as Random Forest (Huynh-Thu et al., 2010; 

Petralia et al., 2015), conditional entropy (Karlebach and Shamir, 2012), partial correlation 

(Yuan et al., 2011), or probabilistic graphical models (Siahpirani and Roy, 2016). The results 

of this study encourage further incorporation and recovery of biophysical parameters, such 

as interaction terms between co-regulating TFs, separation of transcriptional activators and 

repressors, which has only been done on a small scale (Noman and Iba, 2005; Liu and 

Wang, 2008; Äijö and Bonneau, 2016; Intosalmi et al., 2016), and modeling protein 

modifications that affect TF activity. Given the growing body of literature on RNA-binding 

proteins (Hogan et al., 2008; Mittal et al., 2009; Janga and Mittal, 2011), our results also 

inspire potential approaches to model the RNA decay term explicitly as a sum of 

contributions from RNA degradation factors. Therefore, we argue that it is time to move 

inference of transcription regulatory networks toward more biophysically relevant models, 

and the work presented here provides an important step toward this goal.

EXPERIMENTAL PROCEDURES

Data Acquisition and Normalization

We acquired four regulatory interaction datasets (known priors) from the sources listed in 

Table S1, originating predominantly from ChIP-chip, chromatin immunoprecipitation 

sequencing (ChIP-seq), knockout, and overexpression assays (Teixeira et al., 2006, 2014; 

Monteiro et al., 2008; Abdulrehman et al., 2011; Cherry et al., 2012; Costanzo et al., 2014; 

Kemmeren et al., 2014). The list of 563 TFs includes all genes annotated as either “DNA-

binding” or “Regulation of transcription, DNA-templated” in the Saccharomyces Genomes 

Database (SGD) (Cherry et al., 2012; Costanzo et al., 2014) and all regulators in the 

YEASTRACT database of regulatory interactions (Teixeira et al., 2006, 2014; Monteiro et 

al., 2008; Abdulrehman et al., 2011). We downloaded 179 RNA expression datasets from 

119 different labs from the GEO (Edgar et al., 2002; Barrett et al., 2013) using the R 

Bioconductor package GEOquery (Huber et al., 2015; Davis and Meltzer, 2007). To obtain a 

high-quality, consistent data-set and to avoid platform-specific batch effects, we exclusively 

used the Yeast Affymetrix 2.0 platform (GPL2529) because it contained the largest number 

of unique samples in the GEO database. Raw CEL files for every GEO sample (GSM) 

measured on this platform were downloaded on March 23, 2015, along with their meta-data. 
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We processed and normalized the raw CEL files using the R packages affy (Gautier et al., 

2004) and gcrma (Wu et al., 2004), adjusting for background intensities, optical noise, and 

non-specific binding in a probe sequence-specific fashion. Methods correcting for batch/lab 

effect did not improve inference performance (data not shown). The meta-data were 

processed manually to identify time series experiments. The full meta-data, as downloaded 

from the GEO, are included in the Data S1. The final yeast RNA expression dataset used for 

the work described here included 2,577 samples, each containing the expression data for 

5,716 genes.

For B. subtilis, all relevant data, including the gold standard of interactions, the list of TFs, 

expression data, and the meta-data, were taken from Arrieta-Ortiz et al. (2015). We used the 

BSB1 expression dataset employed in Arrieta-Ortiz et al. (2015), which was measured on 

the B. subtilis strain BSB1, a derivative of strain 168. This dataset can be found under GEO: 

GSE27219 (Nicolas et al., 2012).

Expression Data Clustering

We scaled the expression data so that every row (gene) had mean 0 and variance 1. The 

2,577 expression samples were then clustered using the Euclidean distance metric. We then 

performed principal-component analysis on the entire RNA expression matrix and excluded 

all but the first 16 dimensions to remove the cumulative effect of noisy low-variance 

components and facilitate condition-wise clustering. We then performed k-means clustering 

with k = 4. This number was optimized as described in the Supplemental Experimental 

Procedures (Figure S1E). We performed all downstream analyses on the resulting clusters 

using the original (normalized but unscaled) expression data.

To annotate the four condition clusters, we parsed the meta-data from the GEO, employing 

the R packages tm (Feinerer and Hornik, 2015; Feinerer et al., 2008) and SnowballC 

(Bouchet-Valat, 2014). First, we used the binomial test to determine which words are 

enriched in a given condition cluster compared with the remaining clusters. To avoid words 

with a p value of 0 and to minimize lab-specific effects, we then excluded words that had 

zero counts in all but one cluster. This resulted in a list of words sorted by p value 

enrichment in each cluster. The p values were then corrected for multiple hypotheses testing 

using the Bonferroni correction. Word clouds were created from terms with p values smaller 

than 10 20 using the wordcloud package in R (Fellows, 2012). The final label assignments 

were determined via a detailed, manual inspection of enriched terms in the word clouds 

(Supplemental Notes). See the Supplemental Experimental Procedures for more details and 

Data S2 for the complete lists of terms.

In addition to condition-wise clustering, we also performed row (gene-wise) clustering. To 

do so, we first hierarchically clustered the 997 genes in the Gold Standard and then 

generalized these clusters to the 5,716 genes present in the entire expression dataset. This 

procedure resulted in five clusters, for which we performed gene ontology enrichment 

analysis as described in the Supplemental Experimental Procedures. See the Supplemental 

Experimental Procedures for more details.
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The bi-clustering of genes and conditions was used to separate genes with heterogeneous 

functions and samples coming from heterogeneous conditions into several broad classes 

based on gene function and type of condition. The goal of this bi-clustering was to capture 

the known condition and gene specificity of RNA half-lives (Neymotin et al., 2014; Munchel 

et al., 2011) and condition-specific network remodeling (Lehtinen et al., 2013; Hart et al., 

2015). Note that this is unrelated to the bi-clustering used in Bonneau et al. (2006) to 

identify co-regulated genes and conditions.

Curation of the Gold Standard of Regulatory Interactions

A key aspect of the work was the construction of a high-quality Gold Standard of regulatory 

interactions, which we used as prior interactions data for transcription regulatory network 

(TRN) training, for fitting RNA half-lives, and for validating the predicted interactions (GS-

train, GS-fit, and GS-fit/GS-validate in Figure S2, respectively). The Gold Standard was 

derived by combining binding and expression information from three major sources (Table 

S1). We obtained the core data from the YEASTRACT repository (Teixeira et al., 2006, 

2014; Monteiro et al., 2008; Abdulrehman et al., 2011), which is a curated repository of > 

200,000 regulatory interactions in yeast with >1,300 bibliographic references. The 

repository contains two types of evidence for each potential regulatory interaction: direct 

and indirect. Direct evidence denotes an interaction coming from an assay that directly 

established a physical binding event, such as ChIP-seq or one-hybrid assay. Indirect 

evidence comes from differential expression analysis of a TF knockout or overexpression 

experiment. We first filtered these data to obtain a conservative list of 2,577 regulatory 

interactions that have at least one source of direct evidence and two sources of indirect 

evidence. At this stage, these interactions were unsigned; i.e., they did not include 

information about whether the regulatory interaction is positive or negative.

Because TFA estimation performs best when all prior known interactions are signed 

(Supplemental Experimental Procedures), we processed the list further to maximize the 

number of signed interactions. YEASTRACT provides information on the signs for some 

interactions; e.g., those derived from expression analysis of knockout mutants. To add signs 

from the YEASTRACT database, we used the following rule: a regulatory interaction was 

deemed “positive” when the target gene was downregulated upon TF knockout, and 

“negative” for the opposite case. Because some interactions were detected in multiple 

experiments with opposite sign annotations, we only considered the signs that were 

measured in assays conducted under normal conditions, labeled as “YPD medium; mid-log 

phase” in the YEASTRACT database. In case there was still a conflict, we employed the 

majority rule, and in the case of a tie, the interaction was discarded (set to 0). This procedure 

resulted in 1,155 signed interactions in total.

To expand this dataset, we obtained additional, curated regulatory interactions from the SGD 

(Cherry et al., 2012; Costanzo et al., 2014) and from a published dataset of 1,484 knockout 

experiments (Kemmeren et al., 2014). We used these interactions only to assign signs to 

interactions that were still unsigned in the list of 2,577 interactions with one direct and two 

indirect evidence types in YEASTRACT (see above). These additions expanded our list of 

signed interactions to 1,403.
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These 1,403 interactions constitute the set of signed prior known interactions used 

throughout this paper, which we denote as the “Gold Standard.” The Supplemental 

Experimental Procedures, Figure S3, and Data S1 describe more details about the creation of 

Gold Standard and its performance compared with other collections of interactions.

Inferelator Implementation

We used and modified code for the Inferelator version 2015.03.03 (Bonneau et al., 2006; 

Greenfield et al., 2013; Arrieta-Ortiz et al., 2015). We describe the original Inferelator core 

model in this section, and more details can be found in the Supplemental Experimental 

Procedures. The Inferelator algorithm calculates the optimal model of regulation for each 

target gene independently of other genes. The model for each gene i is based on the 

assumption that the dynamics of transcription regulation are governed by the following 

relation:

dXi
dt = − αiXi + ∑

j ∈ Pi

β
∼

i, jAi, (Equation 1)

where Xi is the RNA expression level of gene i, Pi is the set of potential regulators of gene i, 

Aj is the activity of TF j, β
∼

i, j is the coefficient of regulatory interaction between TF j and 

gene i, and αi is the RNA degradation rate of gene i.

To estimate the parameters β
∼

i, j, we can approximate Equation 1 using finite differences and 

divide both sides by αi:

τi
Xi tk + 1 − Xi tk

tk + 1 − tk
+ Xi = ∑

j ∈ Pi

βi, jA j tk , (Equation 2)

where the time axis t has been broken up into discrete time points at which the data was 

collected, indexed by k. The left side of Equation 2 is the response variable, whereas the 

right side is the design variable. Note that τi = αi
−1 and is related to the RNA transcript half-

life HLi via HLi = τilog(2) and βi, j = τiβ
∼

i, j. Also note that, throughout our analysis, no 

corrections for cell division times were made because it was impossible to determine them 

for each of the 2,577 experiments coming from 119 labs. Given that median RNA half-lives 

are much shorter than cell doubling times, we consider the omission tolerable. In the original 

Inferelator framework, the RNA half-life had been set to 14 min for all yeast genes and 

conditions (i.e., τ = 20).

Furthermore, note that Equation 1 holds true for both steady-state data and time series data, 

which can be used to perform regression simultaneously. For steady-state conditions, the 

first term on the left side of the equation is 0, and Aj(tk) becomes Aj,k, where k denotes the 

steady-state condition. In the data-sets employed in this paper, 963 of the 2,577 (37%) yeast 
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data points and 160 of the 266 (60%) B. subtilis data points were derived from time series 

experiments; the remainder were derived from steady-state conditions.

The response variable is first used together with prior known interactions to calculate TFAs 

for every TF (Supplemental Experimental Procedures). TFA is derived from expression 

changes of the prior known targets of a TF and has been shown to improve TRN inference 

dramatically in prokaryotes (Arrieta-Ortiz et al., 2015).

The same prior known interactions are then used in a constrained regression step that selects 

the most likely model of regulation for every gene using a data-driven approach called 

Bayesian best subset regression (BBSR). To calculate TFA and BBSR, we used the entire 

gold standard or a subset of it as prior known interactions. Figure S2 and Sub-Sampling the 

Gold Standard for RNA Half-Life Fitting and Error Estimation in the Experimental 

Procedures outline the workflows employed in this paper, specifying how the gold standard 

was split, sub-sampled, and used for inference. The procedure does not use any training data 

for testing. The new framework, InfereCLaDR, is defined by bi-cluster-specific network 

inference using the Inferelator and explicit modeling and optimization of the RNA half-life 

descriptor τ for each gene and condition cluster.

The final output of the Inferelator and InfereCLaDR is a list of confidence scores for all 

possible regulatory interactions, determined by a “computational knockout assay.” Each 

Inferelator run was performed on 50 bootstraps of the RNA expression data, and the final 

confidence scores for all interactions were computed by rank-combining the confidence 

scores across bootstraps. For more detail, see the Supplemental Experimental Procedures.

Sub-sampling the Gold Standard for RNA Half-Life Fitting and Error Estimation

To use our gold standard for both parameter fitting and method evaluation without 

overfitting, we used two strategies for re-sampling the gold standard (Figure S2). For 

assessing the overall dependency of inference accuracy on RNA half-life (Figures 1A and 

1B) and obtaining optimal gene- and condition-specific RNA half-lives (Figures 1D, 2, and 

S4), we used Split A. This method involved randomly selecting a pre-specified fraction of 

gold standard interactions to be in the training set (GS-train), with the rest of the interactions 

to be used for fitting half-lives (GS-fit). We set the fraction of data used in the “training” set 

to 0.5, although all results also hold for other values (Figures S6A–S6H). The procedure was 

repeated 20 times, and for each re-sample, RNA half-lives were fit as described in RNA 

Half-Life Estimation in the Experimental Procedures. Note that the choice of 20 re-samples 

is unrelated to the number of bi-clusters in the yeast expression dataset used here, which is 

also 20.

To assess whether fitting condition- and gene-specific RNA half-lives in this manner 

improves performance (Figures 3A; Table 1), we used Split B, where a third set of Gold 

Standard interactions (GS-valid) was held out and used only for estimating the accuracy of 

our algorithm’s predictions. We created GS-valid to avoid over-fitting, and this set was 

exclusively used to estimate the accuracy of the network computed using prior known 

interactions in GS-train and half-lives obtained using GS-fit. In other words, the evaluation 

set GS-valid was completely separate from the training sets. Each interaction was assigned 
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one of the three categories randomly (GS-train, GS-fit, or GS-validate), with probabilities of 

0.34, 0.33, and 0.33, respectively. This way of splitting the gold standard was also applied to 

the other methods (Genie3 and iRafNet), keeping the random assignments of interactions 

into GS-train, GS-fit, and GS-valid identical across the methods for each Gold Standard re-

sample.

In both splitting approaches, the random separation of interactions into two or three 

categories was performed on the basis of regulatory interactions between TFs and target 

genes. It is also possible to perform the separation on the basis of target genes. However, in 

the yeast dataset, 695/993 (70%) of all genes in the yeast Gold Standard have only one 

interaction in the Gold Standard (i.e., they are only known to be regulated by one TF). This 

number also comprises 50% of all interactions in the Gold Standard. Hence, splitting the 

training, fitting, and validation networks based on target genes is essentially equivalent to 

splitting them based on interactions, and so the two approaches are basically equivalent.

We used two measures of network prediction accuracy to assess the quality of our 

predictions: AUPR and AUROC. The two measures were calculated in the standard way, as 

described in the Supplemental Experimental Procedures. All results are similar for both 

measures (Figures S1C–S1D, S1F, S5, and S6; Table S2). We focus here on AUPR because 

it is more sensitive for high-scoring interactions compared with AUROC, which distributes 

the weights more equally across the entire list of predictions. A model with maximal AUPR 

is desirable for small-scale, targeted validation experiments. Further, AUPR is superior to 

AUROC in a class-imbalanced (skewed) regime, in which the sizes of true positives and 

false positives differ substantially (Davis and Goadrich, 2006), which is the case for our 

data.

RNA Half-Life Estimation

The primary advance described here is the explicit modeling and incorporation of RNA 

degradation rates into large-scale network inference. To do so, we first developed a 

procedure to compare different models across parameter settings. As shown in Figure S2, 

Split A involves sub-sampling two equal sets of interactions from the gold standard: one for 

training TFA and BBSR (GS-train) and one for calculating AUPR (GS-fit). We pre-specified 

values of the RNA half-life parameter τ at 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 

140, 160, 200, and 250 min, designed to span the range of expected half-lives in yeast 

(Neymotin et al., 2014; Munchel et al., 2011; Sun et al., 2013; Schwalb et al., 2012; Miller 

et al., 2011). Splitting the Gold Standard into a training and a fitting set is required because 

our RNA half-life estimations rely on optimization of network inference. Because our 

algorithm already uses some interactions for TFA and BBSR estimation (GS-train), a second 

leave-out set of interactions is necessary for unbiased evaluation of network inference 

accuracy (GS-fit) and, subsequently, for RNA half-life optimization.

InfereCLaDR uses the Inferelator while setting τ to a given value (as specified above) for 

every gene under every condition either in the given bi-cluster (Figures 1D and S4, S1H, and 

S5) or for the entire dataset (Figures 1A and 1B and S1C and S1D), using GS-train as the 

prior known interactions. Precision and recall curves were computed for each run 

corresponding to a re-sample and a value of τ, using GS-fit as the set of true interactions. We 
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compared precision-recall curves across RNA half-lives by taking the element-wise median 

of the precision and recall vectors across Gold Standard re-samples for a given value of 

RNA half-life (Figures S1A and S1B). Conversely, to create a half-life-versus-AUPR curve 

for each re-sample, we compared AUPRs measured for different t’s, without changing GS-

train and GS-fit between τ values or bi-clusters. These comparisons are represented by 

isochromatic curves in Figures 1A and 1B and S4. We chose an optimal τ for each re-sample 

by maximizing AUPR along the corresponding curve. We also compared performances 

between models with different RNA half-lives using AUROC instead of AUPR, yielding 

similar optimal half-lives (Figures S1C, S1D, and S5). For best RNA half-life inference 

results, we recommend that at least 30% of samples belong to time series of reasonable 

spacing (i.e., measured in minutes or hours but not days or weeks).

Finally, we considered the distribution of optimal RNA half-lives across the 20 re-samples 

for each condition and gene bi-cluster using the Split A procedure in Figure S2. These 

distributions are shown in Figure 2, and their medians are shown in Figure 1D (and in Figure 

S1F for AUROCs). The median values of AUPR constitute the RNA half-life predictions for 

each gene and condition bi-cluster. Comparisons of predicted and observed RNA half-lives 

in the minimally perturbed condition clusters were performed by comparing median 

predicted RNA half-lives across re-samples with the median experimentally measured RNA 

half-lives across genes. Predicted and observed median values for each gene cluster were 

averaged across the chemostat and log phase growth condition clusters (Figure S1I).

To predict RNA half-lives for translation genes only (Figures 2C and S4), we applied the 

same AUPR maximization procedure to each condition cluster, using only known 

cytoplasmic translation genes and their known regulators for AUPR calculations. To predict 

RNA half-lives for nucleotide metabolism genes, we used the entire gene cluster because it 

was strongly enriched in the respective genes. Data S3 contains the final RNA half-life 

predictions for each gene and condition cluster. For more detail, see the Supplemental 

Experimental Procedures.

To demonstrate the improvement in TRN inference gained in InfereCLaDR compared with 

the original framework, we first split the gold standard according to Split B into GS-fit, GS-

train, and GS-validate. For a given re-sample, we predicted RNA half-lives by maximizing 

AUPR (as measured on GS-fit) on each bi-cluster, using GS-train for training TFA and 

BBSR. Using those half-life values and the same re-sample of the gold standard, the model 

was trained again, but now using a union of GS-train and GS-fit (GS-train+fit) for TFA and 

BBSR computation. We calculated the final precision-recall curve by adding confidence 

scores across condition clusters for each re-sample, estimating precision and recall only on 

the GS-valid set corresponding to that re-sample (because GS-valid was not used to produce 

the predicted network) and then taking the element-wise median of the precision and the 

recall vectors across the 20 re-samples (Figure 3A). Figure S1F was calculated the same way 

but with number of true positives and number of false positives instead of precision and 

recall in the last (validation) step. Note that the Split B approach (Table 1) underestimates 

the magnitude of the increase in inference accuracy because of half-life fitting compared 

with the actual increase in accuracy of our final predicted network, which is produced using 

the Split A approach (Supplemental Experimental Procedures).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Explicitly accounting for RNA degradation improves regulatory network 

inference

• Network-based optimization of RNA half-lives predicts correct RNA stability 

values

• Resulting networks are specific to groups of similar genes and conditions

• Importance of accounting for RNA half-lives is shown for yeast and B. 
subtilis
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Figure 1. Network Inference Is Sensitive to RNA Half-Lives in Both Eukaryotes and Pro-
karyotes in a Condition- and Gene-Specific Manner
(A and B) AUPR is shown as a function of preset RNA half-life (A) in Saccharomyces 
cerevisiae and (B) in Bacillus subtilis. Each line denotes one of the 20 independent gold 

standard re-samples, and colored dots represent the maximum AUPR for a given re-sample.

(C) Over two thousand expression datasets group into 20 bi-clusters (unrelated to 20 Gold 

Standard re-samples) with gene- and condition-specific properties. Red and blue denote high 

and low expression levels, respectively. Gene cluster names correspond to the most highly 

enriched function category. Condition cluster names represent the most highly enriched 

terms in the meta-data. The heatmap shows the 997 genes from the Gold Standard. Note that 

the final network was derived from expression data of 5,716 genes mapped onto these 

clusters.

(D) Shades of red denote the optimal half-life, in minutes, for each of the 20 bi-clusters. The 

color scale is devised to discriminate half-lives < 50 min, which contain 16/20 of the 

predictions.

For the full plot of AUPR and AUROC trajectories for every bi-cluster, see Figures S4 and 

S5, respectively. See also Figures S1 and S6A–S6H.
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Figure 2. InfereCLaDR Recapitulates Known Differences between RNA Half-Lives of Different 
Genes and Conditions and Identifies New Relationships
(A–H) The boxes show median RNA half-lives with the first and third quartiles. (A)–(D) 

show the distribution of predicted values across 20 Gold Standard re-samples, and (E)–(H) 

show values measured experimentally across genes. Predicted values are produced by 

InfereCLaDR; observed values are from experimental datasets. Magenta color denotes 

minimally perturbed conditions (i.e., chemostat and log phase growth) (predicted) and 

Neymotin et al. (2014) experimental data for subsets of genes; i.e., nucleobase-containing 

small-molecule metabolism (NCSM) and translation. We highlight the NCSM category 

because its high half-lives was the most prominent predicted pattern under minimally 

perturbed conditions. Light blue denotes all genes predicted or observed under unperturbed 

conditions. Green denotes half-lives of all genes predicted or observed under conditions of 

transcription inhibition (Shalem et al., 2008). See also Figure S4.
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Figure 3. InfereCLaDR Outperforms Previous Network Inference Approaches by Predicting 
New High-Confidence Condition-Specific Interactions
(A) The improvement in the precision-recall curve is a result of the use of a high-quality 

Gold Standard, bi-cluster specific network inference, and optimization of bi-cluster specific 

RNA half-lives. We compare InfereCLaDR (red line) with Inferelator without bi-clustering 

or half-life optimization (black dotted line), with the Inferelator using the MacIsaac gold 

standard of interactions (orange dashed line), and with context likelihood of relatedness 

(CLR), Genie3, and iRafNet (purple dash-dotted line, blue dashed line, and green dash-

dotted line, respectively). Each curve is constructed using median precision and recall values 

across 20 re-samples. For improvement based on AUROC, see Figure S1F.

(B) The number of new predicted interactions (i.e., interactions not in the Gold Standard), 

obtained using the optimized bi-cluster-specific half-lives and the full Gold Standard for 

training, compares favorably with new predictions from the original Inferelator and from 

Genie3. The height of a section within each bar corresponds to the number of new 
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interactions that were confirmed by the corresponding type of evidence in orthogonal data. 

Direct evidence refers to physical protein-DNA interactions, and indirect evidence refers to 

knockout and overexpression assays (Table S1). The number above each bar denotes the 

fraction of new interactions supported by at least one orthogonal source. Prec, precision.

(C) High-scoring regulatory interactions correlate between InfereCLaDR and Inferelator, but 

InfereCLaDR predicts many new interactions. The vertical and horizontal blue lines show 

the precision = 0.5 rank cutoff for InfereCLaDR and Inferelator, respectively (Supplemental 

Experimental Procedures). The lower the rank, the higher the confidence in the prediction. 

The red line maps the InfereCLaDR rank to the same rank in Inferelator. See also Figures 

S6I–S6K.

(D) Most (56%) regulatory interactions that were newly predicted by InfereCLaDR have 

orthogonal support to validate them. In comparison, Inferelator’s predictions that were 

removed in InfereCLaDR have little support, suggesting that they had been false positives. 

Black bars denote the bottom right quadrant in (C) (gained), gray bars denote the top left 

quadrant in (C) (lost), and white bars denote the interactions in the bottom left quadrant of 

(C) (conserved).

(E) InfereCLaDR’s gained interactions are often specific to experimental conditions. Each 

bar displays how many regulatory interactions were above the rank-based cutoff 

(Supplemental Experimental Procedures) for the given number of clusters. Interactions that 

only appear in one cluster are very condition-specific, whereas interactions that appear in all 

four clusters are more general and independent of experimental conditions. The graph shows 

only the high-confidence predictions that were above the cutoff for at least one cluster prior 

to rank-combining.

(F) InfereCLaDR’s gained predictions are often specific to non-standard conditions. Each 

interaction was assigned a bi-cluster based on the gene cluster of the target gene and a 

condition cluster in which this interaction had the best rank. Red cells represent bi-clusters 

with significantly more gained interactions, blue cells represent bi-clusters with significantly 

fewer gained interactions, and white cells represent no enrichment (Supplemental 

Experimental Procedures).
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Figure 4. Condition-Specific Networks Reveal New Predictions and Regulatory Relationships 
beyond What a Global Network Can Show
The figure displays the final high-confidence regulatory network split into four parts, based 

on the four experimental condition clusters, where each interaction was detected with the 

strongest confidence. Transcription factors are shown in black (center), and target genes are 

colored (periphery). Different colors indicate different gene clusters, as shown in the legend. 

The colors of the edges correspond to predicted transcriptionally activating (red) and 

repressive (blue) regulation, respectively. A stronger color denotes high confidence. A large 

font size denotes the five transcription factors that are most specific to each condition 

cluster. TFs that were not among the top 5 in terms of cluster specificity in any of the 

clusters are not shown.
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Table 1

Expression Data Bi-clustering, RNA Half-Life Fitting, and a High-Quality Gold Standard Underlie 

InfereCLaDR’s Superior Performance

Method
Re-samples Outperforming 
Inferelator + GS

Re-samples Outperformed by 
InfereCLaDR Median AUPR

InfereCLaDR (GS + clustering + RNA half-life) 19/20 – – 0.328

Inferelator + GS + clustering 20/20 17/20 0.319

Inferelator + GS + RNA half-life 19/20 19/20 0.305

Inferelator + GS – 19/20 0.290

Inferelator + MacIsaac 0/20 20/20 0.146

Genie3 + GS 0/20 20/20 0.042

iRafNet + GS 0/20 20/20 0.031

Each modification independently outperforms the original Inferelator using the Gold Standard (second column). “Inferelator + MacIsaac” shows 
the results of the Inferelator when the MacIsaac standard of interactions was used for training and Gold Standard for evaluation. Combining all 
modifications optimizes performance compared with using them separately (third column). Columns two and three show the number of times one 
method outperformed the other in a re-sample, as specified by the corresponding row and column, in terms of AUPR. The fourth column shows the 
median AUPR. See Sub-sampling the Gold Standard for RNA Half-Life Fitting and Error Estimation, RNA Half-Life Estimation, and 
Supplemental Experimental Procedures for further details. See also Table S2.
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